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certain factors have been found that clearly contribute to explain 
this phenomenon such as DNA methylation, histone modifications, 
and micro-RNAs which appear to confer levels of gene regulation 
without altering sequences in DNA[for reviews, see 3,4]. So far, DNA 
methylation is the only known factor to cause epigenesis.3 Histones 
are major regulators of chromatin.3 Micro-RNAs target mRNA which 
is involved in regulation of protein synthesis.3 

Ever since we discovered, in the late 1960’s, that reduction in the 
level of extracellular magnesium ions ([Mg2+]) could cause powerful 
contractions and spasms of coronary, cerebral and peripheral blood 
vessels , including intrauterine vessels, excised from diverse animals 
and human beings, along with increased vascular reactivity to neuro-
humoral constrictor agents,5–21 we have thought that dietary deficiency 
of Mg could lead to development of CVDs later in life and that Mg 
deficiency could be termed “genotoxic”.22 In order to gain insight into 
our hypothesis of the critical importance of adequate dietary intake of 
Mg in development of CVDs, we have recently measured the levels 
of DNA methylation, histone modifications and micro-RNAs along 
with the levels of telomerase in ventricular, atrial and vascular smooth 
muscle cells (i.e., coronary, cerebral, mesenteric, aortic, etc.) excised 
from rats placed on different Mg-deficient diets for up to 21 days[for 
review, see 23]. 

In addition, using newly designed specific, sensitive electrodes to 
quantify serum, whole blood, plasma and cerebral spinal fluid ionized 
Mg levels,24–31 we measured [Mg2+] in bloods and CSF of women 
throughout pregnancy and at delivery in healthy and preeclamptic 
women, as well as in women with diseases specific to women (e.g., 
gestational diabetes; menopause,; PCOS; ovarian hyperstimulation)32–47 
and newborn healthy and diseased infants.27,28,30,34,43,48 

So far, our data clearly show that cardiac and vascular smooth 
muscle cells excised from rats placed on Mg-deficient diets for 
up to 21 days reveal upregulation of DNA methylation, histone 

modifications, oxidation of DNA, upregulation of several micro-
RNAs, and downregulation of telomerases.23,49,50 Measurement 
of blood levels of Mg2+ in pregnant women up to term pregnancy 
demonstrated a gradual reduction in serum Mg2+; women who 
developed transient hypertension at birth showed further reductions 
in serum levels of Mg2+,32,33,36–38,40,41 along with alterations in cerebral 
spinal fluid levels of Mg2+.46 Some newborn infants were found to 
have developed pulmonary hypertension , in utero, and these babies 
demonstrated lowered serum levels of Mg2+ on delivery. We believe 
these preliminary data are enough, so far, to implicate Mg deficiency 
as a “genotoxic agent” and a causal factor in potential development 
and aberrant epigenesis and CVDs. Mg2+ is a critical requirement 
for over 500 different enzymes in the body which regulate protein 
synthesis, and metabolism of carbohydrates, lipids, phospholipids, 
nucleotides, DNA, and RNA, as well as excitation-contraction 
coupling of all muscle cells, nerve excitation, and membrane transport 
of key ions and solutes. 

Conclusions and future thoughts 
During the past decade, a considerable amount of experimental 

and clinical data has appeared to implicate that the epigenetic code 
can provide a link between prenatal stress and alterations in gene 
expression that might alter developmental programming of various 
diseases later in life. More than 50 years ago, two of us found that 
reductions in extracellular ionized Mg levels, both in-vivo and in-vitro, 
would cause coronary, cerebral, peripheral and uterine blood vessels 
to go into spasm and demonstrate increases in vascular reactivity 
to neuro-humoral constrictor agents and circulating vasopeptides. 
Dietary deficiency in rats resulted in methylation of DNA, histone 
modifications, increased levels of certain micro-RNAs, and oxidation 
of DNA as well as a downregulation in telomerases in cardiac 
and vascular muscle cells. Using specifically-designed, sensitive 
electrodes for measurement of blood ionized levels of Mg, we found 
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Short communication
In 1988, Barker and Osmond suggested that suboptimal 

intrauterine development could produce a predisposition to 
cardiovascular disease (CVD) in adulthood.1 This led to the “concept 
of developmental origins of health and disease”.1 Since Barker and 
Osmond’s concept, a considerable amount of animal and human 
studies has been undertaken to gain insight into the exact mechanisms 
underlying the developmental programming leading to CVD[see 
2, for review]. This work has established that early intrauterine 
developmental programming is dependent upon, what has been 
termed developmental involvement of “epigenetic regulation”.2 It has 
been suggested that insults such as poor nutrition, hypoxia, microbial 
toxins, environmental factors, and diverse chemical agents will 
increase the risk for CVD and metabolic disorders later in life such as 
type 2 diabetes mellitus, metabolic syndrome, hypertension, ischemic 
heart disease (IHD), sudden death ischemic heart disease (SDIHD) 
and strokes.2 

In 2001, Hales and Barker developed the “thrifty phenotype 
hypothesis” to explain this phenomenon.3 Even though the precise 
explanation(s) for this developmental phenomenon is not known, 
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that pregnant women demonstrate reductions in blood levels of Mg2+ 
towards term with some women who developed transient hypertension 
and gestational diabetes demonstrating further reductions in serum 
Mg2+. Some infants at birth presented with pulmonary hypertension 
and lowered serum ionized Mg. We believe these new experimental 
and clinical observations provide presumptive evidence that dietary 
deficiency of Mg can lead to epigenetic alterations in cardiac and 
vascular muscle phenotypic alterations which could induce CV 
diseases such as hypertension, diabetes, IHD, SDIHD, preeclampsia, 
neonatal pulmonary hypertension, and other syndromes. In view of 
our new studies, all pregnant mothers and babies should be monitored 
for ionized Mg levels and treated accordingly. 
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