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Abstract

A polymerase-tautomer model for ultraviolet mutagenesis is described that is based on
formation of rare tautomeric bases in cis-syn cyclobutane pyrimidine dimers. The model is
based on that fact that during error-prone and SOS synthesis the induced DNA polymerase
inserts canonical bases opposite the dimers in a complementary way in contrast to un
complementary one in the conventional models. There are same types of potential mutagens
damages in cis-syn cyclobutane cytosine dimers. They correspond to 7 basic types of rare
tautomeric conformations of cytosine. Error-prone and SOS replication of double-stranded
DNA having cis-syn cyclobutane cytosine dimers, with one or both bases in 4 basic types of
rare tautomeric conformations of cytosine (the dimers CC *, CC,*, CC;* and CC*, with the
*indicating a rare tautomeric base and subscript referring to the particular conformation),
results only in targeted substitution mutations. The structural analysis indicates that three
types of cis-syn cyclobutane cytosine dimer containing a single tautomeric base (the dimers
CC*, CC,*, CC,*) can cause G: C—A: T transition or G: C—C: G homologous transfusion.
Another two dimers (CC,* and CC*") can result only in G: C—T:A transverse. The dimer
CC,* can cause G: C—A:T transition, G:C—C:G homologous transverse or G:C—T:A
transfusion. If both bases in the dimer are in a rare tautomeric form, then tandem mutations
can be formed. The 90 substitution mutations have been interpreted from the point of view
of polymerase-tautomer model of UV mutagenesis.
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Some features and models of the mutagenesis

Features of UV mutagenesis

Nearly the 48 agents were already known to induce somatic-
cell mutations.! They result in cancer, aging, diabetes, and other
chronic diseases.? Exposure of male mice to genotoxic agents can
increase mutation frequencies in their unexposed descendants. This
phenomenon, known as transgenerational genomic instability, can
persist for several generations. However, little is known about the
underlying mechanism.? Delayed mutations and untargeted mutations
are two features of genomic instability.** In recent decades untargeted
and delays mutations are combined in bystander effects.®® The
bystander effect is defined as the induction of cellular damage in un
irradiated cells, induced by irradiated cells in the surrounding area.’
There are now known to be many late expressed effects of exposure
that cannot simply be explained on the basis of direct ionizing
radiation DNA damages. Examples include genomic instability,
bystander effects and adaptive responses.®”’

As to understand the mechanisms of the untargeted and delayed
mutations formation you first need tounderstand themechanisms ofthe
targeted base substitutions, deletions, insertions, and complex frame
shift mutations. In order to understand the mechanisms of mutations
formation by various mutagens, you first need to develop a model of
these mechanisms caused by any one specific mutagen. Ultraviolet
mutagen is understood better than anyone. So it is need to understand

of mechanisms formation of different mutations that appear when
DNA molecule is irradiated with UV light.

Ultraviolet (UV) radiation produces cyclobutane pyrimidine
dimers and pyrimidine-pyrimidone (6-4) photoproduct from (78% to
84%),'"!" hydrated bases (1%-7%) (cytosine bases form more often),
linked DNA-protein and DNA-DNA, and break in filaments (less than
1%) in Escherichia coli'*"®yeast,' in xeroderma pigmentosum variant cell
extracts and in mammalian cells under induced by UVB irradiation.!'
In addition to pyrimidine-pyrimidine adducts, the purines-pyrimidine
adducts are formed, for example, in consecution TpA, but they form
very rarely.'® Cis-syn cyclobutane pyrimidine dimers account for
a large majority of UV-induced mutations.'”'® If not all dimers are
moved cyclobutane pyrimidine dimers'*??and pyrimidine-pyrimidone
(6-4) photoproduct*?* may produce mutations. Replication past the
cis-syn T-C cyclobutane dimer, like replication past its T-T and U-U
counterparts, is in fact >95% accurate and that the frequencies of
bypass are also very similar for these photoproducts.® Overall, 5 -
12% of cyclobutane dimers and (6-4) adduct result in replication errors.*
Cis-syn cyclobutane pyrimidine dimers constitute a much more
important premutagenic lesion than (6-4) pyrimidine-pyrimidone
photoproducts, and it has been estimated that cis-syn cyclobutane
pyrimidine dimers account for ~80% of UV-induced mutations in
mammalian cells." In addition to the formation of cyclobutane dimers
at TT sites, UV induces the formation of cyclobutane dimers at 5'-TC-
3" and 5'-CC-3' dipyrimidine sites, and both in yeast and humans, UV-
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induced mutations occur predominantly by a C-to-T transition at the 3’
base.?”?° Usually mutations occur opposite the photoproducts during
error-prone and SOS replication, repair or transcription.'*?3%3¢ Such
mutagenesis is termed targeted.”’** Sometimes mutations are formed
in the vicinity of the damage, a process that is termed untargeted
mutagenesis.®** Sometimes delayed mutations are formed.*
Untargeted and delayed mutations are two features of genomic
instability.> Cyclobutane pyrimidine dimers and (6-4) photoproducts
cause substitution mutations (transitions and transversions),?#54¢
frame shift mutations (deletions and insertions) 34 and complex
frame shift mutations.’>’! Mismatch-repair systems suppress only
about half of UV mutations.”? Delayed mutation and untargeted
mutations are two features of genomic instability.” Sunlight ultraviolet
irradiation has been implicated in the etiology of human skin cancer.>
As arule sewed DNA-protein and DNA-DNA and break in filaments
result only in frame shift mutations. Cytosine dimers more often result
in mutations then thymine dimers. Hot spots of UV-mutagenesis are
sites consisting of photoproducts having thymine and cytosine bases
or two cytosine bases.?’-**

DNA polymerases involved in SOS synthesis of DNA

As a rule, DNA synthesis is a highly accurate process. If an
erroneous base is inserted during the replication process, it is usually
removed by 3'— 5’exonuclease activity.’*> UV irradiation generates
cyclobutane dimers and 6-4 adducts in DNA, which if not removed by
excision repair, result in the induction of the error-prone or SOS system.
Error-prone or SOS induction allows DNA synthesis to occur even on
templates containing cyclobutane dimers and 6-4 adducts;* replication
on a damaged DNA template, however, results in mutations. Specialized
mutagenic DNA polymerases E. Coli poll II, poll IV, and poll V are
capable of replicating past DNA lesions, a process called translation
synthesis.’’*° Lesion bypass during in vitro replication of duplex DNA
containing cis-syn cyclobutane thymine dimers occurs by translation
synthesis.*® Translation replication is carried out by specialized DNA
polymerases.®' Mutations arise when modified by sliding clamp®*¢
or specialized low fidelity>**" DNA polymerases are involved in
DNA synthesis. There is a cooperative and sequential assembly of
translation synthesis polymerases in response to DNA damage.”

Poll IV and Poll V polymerases of the Escherichia coli are inducible
components of the SOS system.**”*” They have low-fidelity DNA
polymerase activity.®® Poll IV and Poll V appear to extend mismatched
base pairs efficiently in the absence of other proteins. Polymerase Poll
V catalyses template-directed nucleotide incorporation. Poll IV produces
untargeted mutations.*’® Poll V, in contrast to Poll III, does not possess
any associated proof-reading functions.”®”” This mutator activity is
influenced by the defective proof-reading sub-unit of Poll II1.7-8!

DNA polymerase poll V is responsible for most of the mutagenesis
associated with the SOS response.’> 8 Escherichia coli DNA
polymerase V bypasses cis-syn-cyclobutane thymine-thymine dimer
and TT (6-4)-photoproduct, especially TT (6-4)-photoproduct, in an
error-prone manner.”* DNA polymerase poll V bypasses T-T cis-syn
cyclobutane dimers in vitro and in vivo.”33¢ Very little replication
past a T-T cis-syn cyclobutane dimer normally takes place in
Escherichia coli in the absence of DNA polymerase V.

DNA polymerases involved in error-prone synthesis of
DNA

Poll n and Poll {polymerases of the yeast are inducible components
of the error-prone system.® % In the case of yeast Poll { is highly error-
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prone. 36707187 DNA polymerase ( replicated past a thymine-thymine
cis-syn cyclobutane dimer.®® DNA polymerase ( is responsible for
insertion in bypass of and a basic site, T-T (6-4) photo adduct and
T-T cis-syn cyclobutane dimer events other than those in which
polymerase 1 performs this function.® The Poll { translation synthesis
DNA polymerase is responsible for over 50% of spontaneous
mutagenesis and virtually all damage-induced mutagenesis in yeast.®
Poll { catalyzes nucleotide incorporation opposite AAF-guanine and
TT (6-4) photoproduct with a limited efficiency. Secondly, more
efficient bypass of these lesions may require nucleotide incorporation
by other DNA polymerases followed by extension DNA synthesis by
Poll {.¥

DNA polymerase n was found to be involved only rarely in
the bypass of the T-T (6-4) photo adduct or the a basic sites in the
sequence context used, although, as expected, it was solely responsible
for the bypass of the T-T cis-syn cyclobutane dimer.®® The human
DNA polymerase polln bypasses cis-syn-cyclobutane thymine-
thymine dimer efficiently in a mostly error-free manner but does not
bypass TT (6-4)-photoproduct.”® Drosophila DNA polymerase polln
efficiently bypass a cis-syn cyclobutane thymine-thymine dimer in a
mostly error-free manner. Drosophila DNA polymerases polln shows
limited ability to bypass a (6-4)-photoproduct at thymine-thymine
(6-4)-photoproduct or at thymine-cytosine (6-4)-photoproduct in
an error-prone manner.” Polln plays the protective role of against
UV-induced lesions and the activation by UV of polln-independent
mutagenic processes.’! Although accessory proteins clearly participate
in polln functions in vivo, they do not appear to help suppress UV
mutagenesis by improving polln bypass fidelity per se.”> The yeast
DNA polymerase 1 bypasses a cis-syn cyclobutane pyrimidine dimers
and (6-4) photoproducts efficiently and accurately.”> DNA polymerase
1 plays an important in vivo role in inserting G opposite the 3' T of 6-4
TT photoproducts.*

DNA polymerase has been implicated in translation DNA synthesis
of oxidative and UV-induced lesions. Drosophila DNA polymerase
pollt efficiently bypass a cis-syn cyclobutane thymine-thymine dimer
in a mostly error-free manner.*” Purified human Polli responded to
a template TT (6-4) photoproduct by inserting predominantly an A
opposite the 3' T of the lesion before aborting DNA synthesis. In
contrast, human Poll was largely unresponsive to a template TT cis-
syn cyclobutane dimer.”® In cells lacking Poll is responsible for the
high frequency and abnormal spectrum of UV-induced mutations, and
ultimately their malignant transformation.” The mutagenic properties
of a lesion can depend strongly on the particular enzyme employed
in bypass.* Human DNA polymerase k (Pollk) is unable to insert
nucleotides opposite the 3'T of a cis-syn T-T dimer, but it can efficiently
extend from a nucleotide inserted opposite the 3'T of the dimer by
another DNA polymerase.” Human mitochondrial DNA polymerase
polly mis incorporated a guanine residue opposite the 3’-thymine of
the dimer only 4-fold less efficiently than it incorporated an adenine.”
De Marini®” shown that different mutagens induce the same primary
class of base substitution and frameshift mutations in most organisms,
this reflecting the conserved nature of DNA replication and repair
processes.

Sliding clamp in mutagenesis

DNA polymerase III (Poll III) plays the main role in SOS
replication in bacterial cells.**® UV-induced mutagenesis has been
studied extensively in E. Coli, and several E. Coli DNA-polymerases
involved in the process have been identified. Most erroneously
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incorporated nucleotides are removed during DNA replication by 3'—
S'exonuclease, which are components of DNA-polymerases I and 1II,
or by autonomous 3’ 5'exonuclease (subunit ¢ of DNA-polymerase
IIT).*! The possessiveness factor, i.e., subunit 3, plays a decisive role in
controlling the ratio between the polymerase and proofreading activities
of DNA-polymerase ITL.* Its molecules form a ring-like moving platform
or a “sliding clamp” that contains a central hole for double-stranded DNA
to pass through as the polymerase moves along the DNA. It positions
DNA-polymerase III on the template and ensures the highly processive
synthesis of DNA.!” Even when an erroneous base pair is formed,
the sliding clamp mechanism presses the DNA polymerase against
the template and prevents the 3'—5'-exonuclease from removing the
“improper” base, this result in mutations.

DNA polymerases 6 (Polld) and € (Polle) play the main role in error-
prone replication in eukaryotic cells.'”"'®> Mammalian proliferating cell
nuclear antigen (PCNA) is the processivity factor in sliding clamp for
essential eukaryotic DNA polymerases dand €. The trimetric PCNA
ring is striking similar to the dimeric ring formed by the  subunit
(processivity factor) of the essential Escherichia coli DNA polymerase
IIT holoenzyme and the gene 45 protein of T4 phage.””'”® Even when
an erroneous base pair is formed, the sliding clamp mechanism
presses the DNA polymerase against the template and prevents the
3'—5'-exonuclease from removing the “improper” base, this result in
mutations. Cyclobutane pyrimidine dimers are responsible for most of
the PCNA ubiquitin tion events after UV-irradiation.'%

Sliding clamps are used by numerous different DNA polymerases
and repair proteins in both prokaryotic (B clamp)'® and eukaryotic
(PCNA clamp) organisms.'* Sliding B clamps functions with Poll I,
Poll III holoenzyme and with the three damage inducible polymerases
Poll 1, Poll TV, and Poll V.2 During DNA damage, a damaged base
on the leading strand will halt fork progression by the Poll III. A low-
fidelity polymerase like Poll IV and Poll V presumably trade places
with the stalled Poll III on B for lesion bypass, after which the Poll I1I
may resume synthesis.!””!'® DNA polymerases Poll III, Poll IV and
Poll V increase cell fitness.!” The B sliding clamp of E. Coli binds
two different DNA polymerases at the same time. One is the high-
fidelity Poll III chromosomal replicas and the other is Poll IV or Poll
I polymerase. -1

When the error-prone or SOS system is induced, control over the
templating of bases becomes weaker, and bases are inserted opposite
dimers. Even when an erroneous base pair is formed, the “sliding
clamp” mechanism presses the DNA-polymerase against the template
and prevents the 3'—5'exonuclease from removing the “improper”
base. Alternatively, synthesis is performed by DNA polymerases
having no exonuclease at all (e.g., E. Coli DNA polymerase IV or V,
or DNA polymerase Poll, Pollt or Pollk).

DNA polymerase incorporates canonical bases
capable of forming hydrogen bonds with cyclobutane
pyrimidine dimers in template DNA

The efficiency and fidelity of nucleotide incorporation by high-
fidelity replicative DNA polymerases are governed by the geometric
constraints imposed upon the nascent base pair by the active site.
Kinetic analyses of nucleotide incorporation opposite a cis-syn
cyclobutane thymine-thymine dimer and an identical nondamaged
sequence by yeast DNA polymerase n (Polln) strongly support a
mechanism in which the nucleotide is directly inserted opposite the
cis-syn cyclobutane thymine-thymine dimer by using its intrinsic base-
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pairing ability without any hindrance from the distorted geometry of
the lesion.®® Both a human polymerase k (Pollk) and polymerase 1
rely on Watson-Crick hydrogen bonding. A low-fidelity polymerase n
shows more of a dependence upon Watson-Crick hydrogen bonding
than doe’s human Pollk, which differs from Pollnin having a higher
fidelity.""! These and other results support conclusion that during
the error prone or SOS synthesis, the canonical bases, which can form
hydrogen bonds with bases of the template DNA, are incorporated
opposite cyclobutane pyrimidine dimers.'"?

Models of mutagenesis

Polymerase paradigm of mutagenesis: At present, the conventional
paradigm relates the reason of mutations exclusively to sporadic errors
of DNA polymerases.’*828:113114 Bregler'!® proposed a mechanism for
the formation of base-substitution mutations during the synthesis of
DNA containing cyclobutane pyrimidine dimers. He assumed that the
mutations arise because the DNA-polymerase sometimes incorporates
non complementary nucleotides opposite the cyclobutane pyrimidine
dimers. From the point of view of mutagenesis, this model assumes
that, for example, all the cyclobutane thymine dimers are identical, and
that mutations are induced by errors produced by DNA-polymerases
when using DNA containing dimers as a template. However the
approach resting exclusively on the polymerase paradigm is limited,
it contradicts several experimental facts and can’t explain some
mutagenesis phenomena.''?

The reasons of mutation origination are explained by the so-
called “A-rule”.!'31"® The experiment shows that adenine (A) is
most frequently incorporated opposite T (cis-syn) T dimers (94%),
guanine (G) - opposite T (cis-syn) C dimers (95%).25-26:66.68. 74.93.116-118
Poll V incorporates adenine opposite T (cis-syn) T dimers (98%).™
Polln incorporates adenine opposite T (cis-syn) C dimers (99%) and
guanine (G) opposite T (cis-syn) C dimers.*¢73117.118 Pollnu Polleta
incorporates guanine opposite T (cis-syn) C.”* Polymerase exo-T7
DNA poll incorporates adenine opposite T (cis-syn) T dimers (98%).!'¢
Polymerases polln and poll V incorporates adenine opposite 3'-T
TT.**!" In vitro replication studies of Pollishow that it replicates past
5’T-T3’ and 5°T-U3’ cyclobutane pyrimidine dimers, incorporating
G or T nucleotides opposite the 3’ nucleotide.” Polln incorporates G
opposite the 3T or (6-4) adducts.”* Cyclobutane pyrimidine dimers as
well as, to a lesser extent, the thymine-thymine pyrimidine-pyrimidone
(6-4) photo product, were bypassed. Poll Pmostly incorporates
the correct dATP opposite the 3’-terminus of both cyclobutane
pyrimidine dimers CPD and the (6-4) photoproduct but canals
misinsert Dctp.!?® Purified yeast Poll{performed limited translation
synthesis opposite a template TT (6-4) photoproduct, incorporating
A or T with similar efficiencies (and less frequently G) opposite the
3’ T, and predominantly A opposite the 5’ T.¥ DNA Poll{,essential
for UV induced mutagenesis, efficiently extends from the G residue
inserted opposite the 3’ T of the (6-4) TT lesion by Polln, and Poll{
inserts the correct nucleotide A opposite the 5° T of the lesion.!"® These
biochemical observations are in concert with genetic studies in yeast
indicating that mutations occur predominantly at the 3° T of the (6-4)
TT photoproduct and that these mutations frequently exhibita 3’ T—C
change that would result from the insertion of a G opposite the 3° T
of the (6-4) TT lesion. It has been shown that a cytosine or an adenine
is the predominant nucleotide inserted opposite abasic sites.'?! Basing
on polymerase paradigm Taylor conclude that “the instructional or
non-instructional behavior of a lesion in directing nucleotide insertion
is not an invariant property of the lesion, but depends on the structure
and mechanism of the polymerase involved”.*
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These models undoubtedly describe some cases and features of
mutagenesis. In £. Coli, DNA polymerases [VandV, as a rule, function
when DNA polymerase III has a defective & subunit.®>*1% However,
the majority of mutations occur when DNA polymerase III has fully
functional 3'—5' exonuclease proofreading activity (a fully functional
¢ subunit), when the SOS system is induced, and when the “sliding
clamp” mechanism is operating.’>*> Hence, this generally accepted
paradigm describes only a small part of mutagenesis in E. coli.
Moreover, this approach ignores the structure of the DNA damage.

Tautomeric model of mutagenesis: In the paper by Watson and
Crick'? it was stated that the spontaneous mutagenesis is based on
capability of nucleotide bases to change their tautomeric state, which
influences the character of base pairing. The participation of rare
tautomeric forms in mutagenesis was repeatedly discussed.'>'?> The
role of tautomeric transitions in mutagenesis of the analogues of the bases
is almost universally recognized.'” The mutagenesis models resting on
rare tautomer hypothesis are, in fact, physical-chemical. Usually, they
are simply stating that a change in the tautomeric state of bases is
possible and concluding an erroneous pairing and, consequently, base
substitution mutation to result from that change. The biological data
are, as a rule, ignored. Spontaneous mutagenesis models suppose that
the tautomeric state of DNA bases can be changed due to thermal
vibrations. However, such bases in rare tautomeric forms will, most
likely, be effectively removed by repair systems. The operation of
free radicals formed in metabolism processes is known to be the main
cause of spontaneous mutagenesis. These free radicals give damages
of bases, sugar-phosphate stoma, etc.'””'? The removal of DNA
structure damages by repair systems and conditions for them to be
a template for DNA synthesis, etc, are not usually examined. Wang
et al. provides structural evidence for the rare tautomer hypothesis of
spontaneous mutagenesis.'?’

There are now two practically independent approaches to explaining
mutagenesis. Physicists and chemists consider polymerases to be
important; however, they largely ignore their role in the process and
rely almost exclusively upon Watson and Crick’s paradigm.'?130131 In
contrast, most biologists cite Watson and Crick’s idea, but base their
research on the polymerase paradigm.748283.113.114

Bystander Effects: Bystander effects include untargeted and delays
mutations.®® Naga Saw and little first reported bystander effects.'*? It
is believed now that untargeted and part of delayed mutations appears
on not damaged DNA sites.” These, so called, untargeted effects are
demonstrated in cells that are the descendants of irradiated cells either
directly or via media transfer (radiation-induced genomic instability)
or in cells that have communicated with irradiated cells (radiation-
induced bystander effects).'”® The dogma that genetic alterations
are restricted to directly irradiated cells has been challenged by
observations in which effects of ionizing radiation, characteristically
associated with the consequences of energy deposition in the cell
nucleus, arise in non-irradiated cells. These, so called, untargeted
effects are demonstrated in cells that have received damaging signals
produced by irradiated cells (radiation-induced bystander effects) or
that are the descendants of irradiated cells (radiation-induced genomic
instability).'3*

The most convincing explanation of radiation-induced genomic
instability attributes it to an irreversible regulatory change in the
dynamic interaction network of the cellular gene products, as a
response to non-specific molecular damage.'* The central role of
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cell-cell communication on non-targeted effects is underlined.'* The
discovery of non-targeted and delayed radiation effects has challenged
the classical paradigm of radiobiology.'*” It is assumed that a radiation
cancer-causing target is protein.'>® Furthermore, it is still not known
what the initial target and early interactions in cells are that give
rise to non-targeted responses in neighboring or descendant cells.®
Moreover,itwasconcludedthat only a third of the variation in cancer
risk among tissues is attributable to environmental factors or inherited
predispositions. The majority is due to “bad luck,” that is, random
mutations arising during DNA replication in normal, noncancerous
stem cells.'®’

Deamination of cytosine in mutagenesis: Cytosine -easily
undergoes hydrolytic Deamination.'* One hypothesisis that UV-
induced mutations occur only after deamination of the cytosine
or 5-methylcytosine within the pyrimidine dimer.'"' Two models
have been proposed: “error-free” bypass of deaminated cytosine-
containing cyclobutane pyrimidine dimers by DNA polymerase 0,
and error-prone bypass of cyclobutane pyrimidine dimers and other
UV-induced photo lesions by combinations of translation DNA
synthesis and replicative DNA polymerases the latter model has also
been known as the two-step model, in which the cooperation of two
(or more) DNA polymerases as misinserters and (mis)extenders is
assumed.'*? Sunlight-induced cytosine to thymine mutation hotspots
in skin cancers occur primarily at methylated CpG sites that coincide
with sites of UV-induced cyclobutane pyrimidine dimer formation.
The cytosine or 5-methyl-cytosine in cyclobutane pyrimidine dimers
are not stable and deaminate to uracil and thymine, respectively,
which leads to the insertion of adenine by DNA polymerase n and
defines a probable mechanism for the origin of UV-induced cytosine
to thymine mutations."> ' There is evidence to suggest that,
depending on solvent polarity, a cytosine or a 5-methylcytosine in
a cis-syn cyclobutane pyrimidine dimer can adopt three tautomeric
forms, one of which could code as thymine.'* Some data implicate the
deamination of cytosine to uracil as a possible cause, but other results
appear to indicate that the rate of deamination is too low for this to be
significant in Escherichia coli.

Polymerase-tautomeric model for ultraviolet mutagenesis: [
have attempted to Construct a polymerase-tautomeric model for UV-
induced mutagenesis,''>!*"1 based on idea by Watson and Crick'?
that changes in tautomeric state are possible for DNA bases. A
mechanism for changes in the tautomeric state of base pairs has been
proposed. 461521617163 Tt wags assumed that the tautomeric state of the
constituent bases may change during the formation of cyclobutane
pyrimidine dimers.!'>!4152 A mechanism for changes in the tautomeric
state of base pairs has been proposed for the case when DNA is UV-
irradiated and cyclobutane pyrimidine dimers are formed.'**!>! Five
new rare tautomeric conformations of the adenine and thymine'**!5?
and seven of the cytosine and guanine'® are proposed that are capable
of influencing the character of base pairing. It is shown that such rare
tautomeric forms of DNA bases are stable when they are parts of the
cis-syn cyclobutane pyrimidine dimers and they are stable under DNA
synthesis.'"?

Cis-syn cyclobutane thymine dimers wherein a thymine occurs
in the rare tautomeric forms T *, T,*, or T,* were shown to cause
targeted base substitution mutations only.">!* Cis-syn cyclobutane
thymine dimers wherein a thymine is in the rare tautomeric form
T,* may result in targeted frame shift mutations (targeted insertions
and targeted deletions)."®!"7 T propose the mechanisms of targeted
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insertions formation during error-prone or SOS synthesis of DNA
containing cis-syn cyclobutane cytosine'”® and thymine'®® dimers.
A mechanisms was proposed for targeted complex insertions'® and
targeted deletions'*”!% caused by cis-syn cyclobutane thymine dimers.
Cis-syn cyclobutane thymine dimers wherein a thymine is in the rare
tautomeric form T,* may result in targeted delayed base substitution
mutations.'®  Polymerase-tautomeric  model for untargeted
substitution mutations formation when DNA molecule contains cis-
syn cyclobutane thymine dimers also have been developed.'#® 151154 A
polymerase-tautomeric model was developed for the formation of hot
and cold spots of UV-induced mutagenesis.'>

Development of a polymerase-tautomeric
model for targeted substitution mutations at
cis-syn cyclobutane cytosine dimers

Mechanism of alteration of DNA bases tautomeric
state under cis-syn cytosine dimers formation

I use the polymerase-tautomer model for ultraviolet mutagenesis
to determine which targeted mutations form by the error-prone or
SOS replication opposite cis-syn cyclobutane cytosine dimers. The
polymerase-tautomer model for ultraviolet mutagenesis is based on
formation of rare tautomeric bases in cis-syn cyclobutane pyrimidine
dimers. It was found that cytosine, guanine and other nucleic acid
bases primarily exist in the form of two tautomer canonic and
hydroxo forms with a possible small presence of the amino tautomeric
form. 24125164 The existence of up to four tautomers of guanine, namely
enol-N_H, keto-N.H, keto-N;H and enol-N;H in the gas phase has
been suggested.!>*! The double-proton transfer in adenine-thymine and
guanine-cytosine base pairs at room temperature in gas phase and with
the inclusion of environmental effects has been investigated.'®*1¢’ It was
shown that double-proton transfer results in stable rare tautomeric forms
only in guanine-cytosine base pairs.!-168169

As known, there are four types of cyclobutane pyrimidine
dimers: Cis-syn, Trans-syn, Cis-anti and Trans-anti dimers.'” This
analysis only considers the cis-syn cyclobutane dimer, which is
the most common type. There is no change in the orientation of
the bases relative to the sugar-phosphate backbone as a result of
cis-syn cyclobutane dimer formation.'”” The mechanism of changes
in tautomeric states is a radiation less deexitation of the quantum of UV
energy.'>32 In result the hydrogen atom in hydrogen bond can assume
new positions.!'>146150132 Tt wag shown what under cis-syn cyclobutane
pyrimidine dimers formations the tautomer states of bases can
change. A mechanism of changes in the tautomeric state of base
pairs for the case when DNA molecule is UV-irradiated and cis-syn
cyclobutane pyrimidine dimers are formed.!>!46:130152 A quantum-
mechanical calculations show hydrogen atoms return in original
position.'¢¢1%8.1¢ Only one of new positions can be stable. 66168169

Assume that all processes of energy spreading are complete and
that the UV-quantum is localized to one of the bases. This results
in the excitation of electronic-vibration states.'”! There are three
channels for the relaxation of electronic-vibration states. First is
fractional energy transfer to neighboring bases with radiation of
some of the energy."”!” This is the most probable process for the
relaxation of a single electronic level,' and it results in undamaged
DNA. For a triplet level excitation, the most probable process for
relaxation involves the transformation of energy to oscillations of the
neighboring atoms.' It is known'”*!” that non radiative deexitation
in DNA molecules occurs in a small volume of 3-5 bases pairs. This
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results in a strong “local heating-up”, followed by initiation of normal
oscillations of the bases. After several oscillations, taking ~10-* - 1012
sec, 17 the vibratory system will reach equilibrium.

The oscillations of atoms will cause changes in the distances
between the paired bases, in other words, in the lengths of H-bonds.
For pairs of bases and in model systems, the first excited state results
in a decrease in the height of potential energy barriers for proton
transfer among H-bonds.!”” For example, the barriers are lowered by a
factor of approximately 1.5 for the H-bond of a 7-azaindole dimer.'”’
Such change of proton potential occurs in ~10"® sec and results in an
increased probability that the hydrogen atom is in an excited state.'”
Grebneva'®® calculated the probabilities of a change in the lengths
of H-bonds (R) for distances of #0.01nm to+0.05nm during several
“instantaneous temperatures” of local heating-up.

Tolpygo and Sreval”s described the shapes of the potential curves
for the protons of all three H-bonds of Watson and Crick’s G: C base
pair for several lengths of H-bonds. It turned out that a decrease in the
length of a H-bond by 0.02 nm from the equilibrium transforms the
proton potential into a single-well. With an increase in H-bond length,
the second minimum becomes more and more obvious. The dynamics
of the changes in the shape of proton potential for a wide spectrum of
H-bond lengths were calculated.'” The curves were designed with a
system (water dimer, (H,0),) having H-bond parameters very similar
to those of the H-bonds in base pairs.'” Semi-empirical potential
function developed by us, has been used.'s

The H-bonds that are formed between the DNA bases are
characterized by a strong valence bond with one of the partner atoms
in the H-bond, and a weak bond with the other. When the H-bond
length (R) of a valence bond changes, the length (r) changes very
little. But distance from the hydrogen to the second atom (R-r) varies
considerably.’®" A decrease in the R of a H-bond by 0.04-0.05nmis
sufficient to place the atom of hydrogen almost in the center of
H-bond where it forms a strong bond. Therefore, when the H-bond is
extended, the hydrogen atom can assume new positions. If the atoms
of hydrogen participating in the formation of H-bonds are excited,'”
their effective radius will increase by ~0.01 nm and there will be a
higher probability that the hydrogen atom will participate in a H-bond.
Second, Danilova et al.'”” found that potential energy barriers are
reduced when the hydrogen’s are in an excited state. Third, some of the
new proton positions can be stable, or even favorable from the point
of view of the energy compared with other potential positions.'66:168.169
The assumption of favorable conformations is possible, as the lifetime
of a triplet state is ~10°¢ sec.'™ The lifetime of the excited H-bond is ~4
x 107 sec,'®1%3 and the characteristic periods of atomic oscillations are
~107% -10"'2 sec.!” Therefore, there will be not more than several 10s
of oscillations up to 100oscillations that influence the length of the
H-bond. This results in a time of ~10-'° sec for any one conformation.

The proposed model is in a good agreement with the results
obtained by other authors.'® Light-mediated proton transfer is required
for the photo chromic transformation of organic compounds.'”® Proton
transitions in H-bonds occur in acids and bases, in crystals, proteins,
molecular membranes, enzymes, and in other systems.!”®

Similar processes can occur upon dimer formation. The mechanism
responsible for dimer formation and changes in tautomeric states is
one and the same, namely, a radiation less deexitation of the quantum
of UV energy. As a consequence, changes in the tautomeric state of
bases can occur upon dimer formation. Hovorun'” has developed a
model of semi open Meta stable states in DNA. Logically, the process
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of dimer formation proceeds through a semi open metastable state, and
changes in the tautomeric conformation of bases follow the induction
of metastable semi open states. The rare tautomeric states of thymine
and adenine,'*? which are represented in Figure 1, were obtained by
assuming the occurrence of semi open metastable states.'s

¢t cor coiceyy cor dor dor o der o
GG GT  GIGY) G GI G GIoGro oGP
a)
ce cdor ceouceyy cor cor cer der cer e
GG A A G T A T
b)

GG A A G T A T
<)

CC T T C A T A

GG A A G T A T
d)

Figure | G, C base pairs formed by bases in canonical and rare tautomeric
conformations. (a) (G) and (C) are in canonical tautomeric forms; (b-h)
guanine (G*) and cytosine (C*) are in rare tautomeric forms, i=1+7.

It was shown what under dimers formations the tautomer states
of bases can change. A mechanism of changes in the tautomeric state
of base pairs for the case when DNA molecule is UV-irradiated and
thymine dimers are formed is the very mechanism when cytosine
dimers are formed.">!*? The process of dimer formation proceeds
through a semi open metastable state, and changes in the tautomeric
conformation of bases follow the induction of metastable semi open
states. 12152

In a canonical DNA molecule, conformational fluctuations of
different DNA sites result in different metastable states .The exposure
of bases from a double spiral to the solution is known as “opening”
or “melting” of Watson and Crick’s pairs. In this case, the hydrogen
bonds between DNA bases are broken.!” Metastable states developing
with incomplete opening of the pair and with partial conservation
of H-bonds and with the amine group free from H-bond are called
semi open metastable states.!®" There exist several models of semi
open metastable states.'® In our opinion, the model developed by
Hovorun'” is well-grounded; it explains a number of phenomena and
is confirmed by experimental data.

To find out what new tautomeric state can be formed at cytosine
dimers formation, let us address to this structural-dynamical model
of DNA semi open states by Hovorun'”’ It is rather probable that the
process of tautomeric state change goes in two stages. At the first
stage, the metastable semi open DNA states are formed. At the second
stage, the formed rare metastable tautomeric states transform into the
stable ones. Let us study possible new tautomeric states of the Watson-
Crick’s pair guanine-cytosine which may influence the character of
pairing. According to Hovorun model,'”” for guanine-cytosine pair
there is several semi open states. It is well known that the lifetime
of semi open states in DNA ~10s.'® The processes for tautomeric
state change are much less durable.!'>!s3 Therefore, they may take
place during the time of existence of semi open states. Figure 1 shows
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possible tautomeric states of bases of the G: C pair which could result
from the processes described.

When cis-syn cyclobutane pyrimidine dimer is formed, the
DNA strand containing this dimer becomes bent and the H-bonds
become broken.'®"!*> That’s why in double-stranded DNA the mentioned
rare tautomeric states are stable. DNA synthesis is rare quick even
under the SOS synthesis, while it takes comparatively much time to
change tautomeric states of bases because of the interaction with water
molecules. Therefore these rare tautomeric forms will be also stable
during DNA molecule synthesis when the DNA molecule is for a
while in single-stranded form."? The resulted were 7 rare tautomeric
states of the cytosine and guanine Figure 1,'% that were capable of
influencing the character of base pairing. Rare tautomeric forms of
various types may occur with different probabilities. In Figure 1 the
pairs of bases, which are in rare tautomeric forms, are enumerated in
the order corresponding to the lowering of possible probabilities of
their formation. Asterisk (*) means that the base is in a rare tautomeric
form. Cis-syn cyclobutane cytosine dimers cause mutations more
frequent than cis-syn cyclobutane thymine dimers.?”-* The following
analysis considers mechanisms for targeted base substitution mutations
when the template DNA contains cis-syn cyclobutane cytosine dimers.

Error-prone and SOS replication of DNA containing
Cis-Syn cyclobutane cytosine dimers

The polymerase-tautomer model for ultraviolet mutagenesis
is based on that fact that during error-prone and SOS synthesis the
induced DNA polymerase inserts canonical bases opposite the dimers;
the inserted bases are capable of forming hydrogen bonds with bases
in the template DNA. To determine which of the canonical bases will
be inserted by the error-prone or SOS inducible DNA polymerase
opposite cis-syn cyclobutane cytosine dimers Figure 2a consider the
constraints on the formation of hydrogen bonds (H-bonds) between the
bases of the template DNA and the inserted bases. DNA polymerase
incorporates canonical bases capable of forming hydrogen bonds
with dimerized bases in template DNA.!'? First of all; H-bonds do
not necessarily form. During error-prone or SOS synthesis of DNA
containing cyclobutane pyrimidine dimers, nucleotide bases are
inserted opposite the cyclobutane pyrimidine dimers without the
removal of the dimer-containing sites. This only possible when the
DNA polymerases, such as Polldand Polle of the eukaryotic cells or Poll
111 of the Escherichia coli are pressed on the DNA by the sliding clamp,
obstructing the operation of exonuclease, or when the synthesis
involves low-fidelity specialize DNA polymerases, such as Polln and
Polllpolymerases of the yeast or Poll IV and Poll V polymerases of the
Escherichia coli. Under these conditions, the strand of DNA containing
no photo-dimers does not result in mutations Figure 2b.

The rare C* cytosine tautomer Figure 1b does not form H-bonds
with canonical guanine G because of the repulsion of hydrogen H,
of guanine and H, of C * cytosine atoms. Cytosine C,* is capable of
forming two hydrogen bonds with adenine Figure 3a. The insertion of
a canonical form of adenine opposite C,* produces G: CA:T transition
Figure 2. Canonical tautomeric forms of cytosine can be incorporated
opposite the rare C * Figure 1b cytosine tautomer Figure 3b. In this
case, homologous G: C—C: G transverse will result Figure 5. The rare
C,* tautomer cannot form H-bonds with canonical tautomer of thymine
because of the repulsion of hydrogen atoms H, of thymine and H,, of
C,* cytosine. So, rare C,* cytosine may produce G:C—A:T transition
and homologous G:C—C:G transverse, but cannot cause G:C—T:A
transverse or form error free pair G:C—G:C.
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Figure 2 SOS replication of DNA containing cytosine dimers. (a) DNA strand
(horizontal line) containing cis-syn pyrimidine dimers CC * CC* CC*, CC*,
CC,* CC* CC*and CC * where some of the cytosine molecules are in the
rare tautomeric forms shown in Figure 1. The opposite DNA strand contains
molecules of guanine in the conformations G * G,*, G,*, G;* G * G* G *
and G,* as indicated in Figure I;(b) DNA strand containing the dimmers after
replication by the modified DNA polymerase during SOS synthesis; (c) DNA
site containing the dimmers is cut out by the excision repair; (d) excision gap

is incorporated.

The rare C,* cytosine tautomer Figure 1c does not form hydrogen
bonds with canonical guanine G because of the repulsion of hydrogen
atoms H, of guanine and H, of C,* cytosine. But it can form two
hydrogen bonds with canonical cytosine Figure 3d. The rare C,*
cytosine tautomer is capable of forming two hydrogen bonds with
adenine Figure 3c. Cytosine C,* cannot form H-bonds with canonical
thymine because of the repulsion of hydrogen atoms H, of thymine
and H,, of cytosine C,*. The insertion of a canonical form of cytosine
opposite cytosine C,* produces homologous G: CC: G transverse Figure
5, the insertion of a canonical form of adenine opposite cytosine C,*
produces G:C—A:T transition Figure 2. If the H', ‘hydrogen atom in C,*
cytosine turns as shown in Figure 3e, C,*' cytosine could form H-bond
with adenine Figure 3e and cytosine Figure 3f. These pairings result in G:
C—A: T transition Figure 2 or homologous G:C—C:G transverse Figure
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5. So, the rare C,* and C,*’ cytosine tautomer may produce G:C—A:T
transition and homologous G:C—C:G transverse, but cannot cause
G:C—T:A transverse or form error free pair G:C—G:C.

Figure 3 Possible base pairs formed between bases in rare and canonical
tautomeric conformations. (a) C *and A; (b) C *and C; (c) C,* and A; (d) C,*
and C; (e) C,*and A; (f) C,*and C; (g) C,*and T; (h) C,*and G.

The rare C;* cytosine tautomer Figure 1f can’t form hydrogen
bonds with canonical guanine G because of the repulsion of the
H', hydrogen of the cytosine C;* and hydrogen H', of guanine G and
because of the repulsion of hydrogen atoms H, of guanine and H, , of
C,* cytosine. The rare C * cytosine can’t form H-bonds with canonical
cytosine because of the repulsion hydrogen H', of the cytosine C *
and hydrogen H, of the canonical cytosine. Cytosine C* can’t form
H-bonds with adenine because of the repulsion of the hydrogen H’,
of the cytosine C,* and hydrogen H', of the canonical adenine. But
C,* can form three H-bonds with canonical thymine Figure 3g. The
insertion of a canonical form of canonical thymine opposite cytosine
C,* produces G:C—T:A transverse Figure 5. If the H', . hydrogen atom
in C;* cytosine turns as shown in Figure 3h, C*'cytosine could form
H-bond with guanine Figure 3h, it may not result in mutations. So, the
rare C* cytosine tautomer may produce G:C—T:A transverse, but
can’t cause G:C—A:T transition and homologous G:C—C:G transverse
or form error free pair G:C—G:C.

The rare C* cytosine tautomer Figure 1f can’t form hydrogen
bonds with canonical guanine G because of the repulsion of the
H', hydrogen of the cytosine C* and hydrogen H, of guanine G.
The rare C* cytosine tautomer Figure lg can form two H-bonds
with canonical cytosine Figure 4a, one H-bond with canonical
adenine Figure 4c and two H-bonds with canonical thymine Figure
4b. Canonical tautomeric forms of cytosine, adenine or thymine can
be incorporated opposite C* cytosine. These insertions result in
G:C—C:G homologous transverse Figure 5, G:CA:T transition Figure
2 or G:CT:A transverse Figure 5. If the H',; hydrogen atom in C*
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cytosine turns as shown in Figure 4d, the resulting C,*' cytosine may
form two H-bonds with canonical guanine Figure 4d. However, if the
H", hydrogen atom in C,* cytosine turns as shown in Figure 4e, C*"
cytosine could form three H-bonds with thymine Figure 4e. The insertion
of a canonical tautomeric form of thymine opposite C,*"cytosine can
produce G:C—T:A transverse Figure 2. If the H',; hydrogen atom in
C,*"cytosine turns as shown in Figure 4f, the resulting C *""" cytosine
may form three H-bonds with canonical guanine Figure 4f and it
may not result in mutations. So, the rare C *cytosine tautomer may
produce G:C—A:T transition, G:C—C:G homologous transverse and
G:C—T:A transverse, but can’t form error free pair G:C—G:C. The
rare C.*"" cytosine tautomer can produces G:C—T:A transverse, but
can’t cause G:C—A:T transition and homologous G:C—C:G transverse
or form error free pair G:C—G:C.

T cy G cy
€) n

Figure 4 Possible base pairs formed between bases in rare and canonical
tautomeric conformations. (a) C,/*and C; (b) C,*and T; (c) C,*and A; (d)
C,/¥and G; (e) C,;*"and T; (f) C,*""and G.

The rare C,* cytosine tautomer can pair with guanine; it may not
result in mutations. The rare C,* and C * cytosine tautomer do not
form H-bonds with any canonical tautomer. So it is possible that DNA
polymerase will not incorporate any bases opposite this rare tautomer
and that DNA synthesis will result in a one-nucleotide gap. Figure 2
shows the most probable bases incorporated by the modified DNA-
polymerase opposite C,” cytosine. The CC * and CC_* dimers will give
gaps, and guanine will be likely incorporated opposite the CC * dimer.
Adenine will be incorporated opposite CC *, CC,*, CC,*and CC*
dimers. Thymine will be incorporated opposite CC,* and CC,*""dimers.
It is known that the DNA strand having no dimers does not result in
mutations Figure 2b. We shall consider that one-nucleotide gaps have
been repaired, and the DNA site with dimers Figure 2b is repaired by the
excision repair. Next, the DNA site having dimers is removed Figure 2c.
The bases are inserted by an ordinary DNA polymerase in the excision
gap Figure 2d. The complementary incorporation results in mutations:
transitions G:C—A:T and transverse G:CT:A.
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Figure 5 shows another variant of events development. The CC*
and CC * dimers will give gaps as be before. The CC,* dimer most
likely will not result in mutation. The CC*, CC,* and CC,*’ dimers
will cause the G:C—C:G homologous transverse. The CC* dimer will
induce G:C—T:A transverse . The CC * dimer can induce G:C—T:A
transverse or G:C—C:G homologous transverse. These predictions
need experimental verifications.

cc ot cancence:  dor e Cor

GG G G: (GY) Gt Gt Gt G Gy

a)
‘e cor coucence: dor cor o e
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b)
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c)
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Figure 5 SOS replication of DNA containing cytosine dimers. (a) DNA
strand (horizontal line) containing cis-syn pyrimidine dimers CC* CC*,
CC,¥,CC ¥ CC X CC* CC¥ CC X% (b) DNA strand containing the dimmers
after replication by the modified DNA polymerase during SOS synthesis.
The resulting are homologous transversions G—C and transversions G—T;
(c) DNA strand containing the dimmers dimers is cut out by the excision
repair; (d) the excision gap is incorporated. The resulting are homologous
transversions G-C—C-G and transversions G-C—T-A.

Discussion

Let us interpret some experimental data from the viewpoint of the
polymerase-tautomer model of UV mutagenesis. For example let us
consider big collection of mutations caused by, cytosine photoproducts
and cytosine-thymine photoproducts under hot spots UV mutagenesis
investigation.”’?® We will investigate the UV mutational spectrum
for supF (157G171C) variant having 90 mutations consisting of 68
G:CA:T transitions, 14 homologous transversions G:C—C:G, two
G:C—T:A transversions and six tandem mutations (when both bases
of a photo dimer result in mutations).?”* The CC photoproducts are
sources of tandem mutations and all tandem mutations are G:C—A:T
transitions. An interesting aspect of the mutations at 150 sites in the
variant supF' (157G171C) gene is that most of them were G: C—C:
G transversions. This was quite different from almost all the other
mutations which were G: C—A: T transitions. Homologous G: C—C:
G transversions are not in accord with the “A-rule”. The polymerase-
tautomer model explains these results in the following way.

Dipyrimidine photoproducts C,C - and C .C . give only
transitions G: C—A:T. Dipyrimidine photoproduct C,,C,  gives two

transitions G:C—A:T opposite cytosine C,. So, they most likely
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correspond to the most probable cis-syn cyclobutane dimers C *C.
But it is quite probable that this is less possible cis-syn cyclobutane
dimer C,*C or even cis-syn cyclobutane dimer C *C. Moreover,
dipyrimidine photoproduct C,,C,  gives tandem mutation in the form
of two transitions opposite cytosine C,, and cytosine C,, at a time.
Then cis-syn cyclobutane dimer C,*C * or, with all versions taken
into account, cis-syn cyclobutane dimer CI_*C/_* (=1, 2, 6; j=1, 2, 6)
will correspond to the above cis-syn cyclobutane dimer, since only
cytosine’s C*, C,* and C/* can result in transitions G: C—A:T.
Cis-syn cyclobutane dimer C, ,C, . gives four transitions G:C—A:T
opposite cytosine C, ,. So, cis-syn cyclobutane dimer CC* (i=1, 2,
6) will correspond to it. Dipyrimidine photoproduct C, C, = gives
11 transitions G: C—A:T and one transversions G:C—T:A opposite
cytosine C, .. The 11 transitions can be given only by cis-syn
cyclobutane dimer C *C (i=1, 2, 6), while the transverse G:C—T:A can
be only due to cis-syn cyclobutane dimers C *C and C *C, since only
cytosine’s C* and C* can result in such a transverse. Dipyrimidine
photoproduct C, T, , gives one homologous transverse G: C—C:G.
It can be caused only by cis-syn cyclobutane dimer C *T, where i =1,
2, 6 since only cytosine’s C,*, C,* and C* can result in homologous
transversions G:C—C:G. Dipyrimidine photoproduct T, ,C,,, gives
one transition G:C—A:T, consequently, it is in correspondence with
cis-syn cyclobutane dimer TC * (=1, 2, 6). Dipyrimidine photoproduct
C,,, T, gives one transition G:C—A:T, hence cis-syn cyclobutane
dimer C*T (i=1, 2, 6) corresponds to it.

Dipyrimidine photoproduct C T, gives two transitions G:
C—A:T opposite cytosine C ,, and one transition A: T —G:C opposite
thymine T , . In the first case, cis-syn cyclobutane dimer C*T (i =1,
2, 6) corresponds to it and in the second case - dimer CT * since only
T,* can result in transition A:T—G:C."? Dipyrimidine photoproduct
C,,,T,,, gives four transitions G: C—A: T and one transverse G:C—T:A
opposite cytosine C ., and one transverse A:T—T:A opposite thymine
T,,,- In the first four cases, cis-syn cyclobutane dimer C*T (i=1, 2, 6)
will correspond to it. In the fifth case-cis-syn cyclobutane dimer C*T
(=5, 6). In the sixth case, it will be cis-syn cyclobutane dimer CT *
(=1, 5), since only thymines T,* and T,* may result in homologous
transversions A: T—T: A.""? Dipyrimidine photoproduct C T, gives
one transition G: C—A: T opposite cytosine C ,,, consequently, there
will be the correspondence with cis-syn cyclobutane dimer C*T (i=1,
2,6).

Dipyrimidine photoproduct C T gives two transitions
G:C—A:T and twelve homologous transversions G:C—C:G opposite
cytosine C ,, consequently, cis-syn cyclobutane dimer C*T (=1,
2, 6) will correspond to it. The larger number of transversions is,
evidently, due to suppression of the enzymes responsible for the
absence of pyrimidine-pyrimidine or purines - purines pairing,
not due to some additional features of premutagenic lesion dimer.
Dipyrimidine photoproduct T .,C .. gives six transitions G: C—A:
T opposite cytosine C,,, so cis-syn cyclobutane dimer TC* (=1, 2,
6) will correspond to it. Dipyrimidine photoproduct C ,C, ., gives
three transitions G: C—A:T opposite cytosine C,,, and one tandem
mutation consisting of two transitions G:C—A:T. In the first three
cases there will be the correspondence with cis-syn cyclobutane dimer
CC* (i=1, 2, 6) and in the last case with cis-syn cyclobutane dimer
C*C* (i=1,2, 6; =1, 2, 6). Dipyrimidine photoproduct C,,C,  gives
one transition G: C—A:T opposite cytosine C,,, consequently, cis-syn
cyclobutane dimer C*C (i=1, 2, 6) may correspond to it. Dipyrimidine
photoproduct T, C, . gives six transitions G: C—A: T opposite

1627163
cytosine C, ., consequently, cis-syn cyclobutane dimer TC* (i=1, 2,
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6) will correspond to it. Dipyrimidine photoproduct C, T, - gives four
transitions G: C—A: T opposite cytosine C,,,, consequently, cis-syn
cyclobutane dimer C*T (i=1, 2, 6) will correspond to it. Dipyrimidine
photoproduct C, C, ., gives twelve transitions G: C—A: T, six ones
due to cytosine C,, and the other six - cytosine C,, so in the first
case, cis-syn cyclobutane dimer C*C (i=1, 2, 6) will correspond to
it and in the latter case - cis-syn cyclobutane dimer CC* (i=1, 2, 6).
Dimer C,C, . gives three transitions G: C—A: T opposite cytosine
C,,,» consequently, cis-syn cyclobutane dimer CC* (i=1, 2, 6) will
correspond to it. Dipyrimidine photoproduct C _,C . gives three
transitions G: C—A:T opposite cytosine C ., so cis-syn cyclobutane
dimer C*C (=1, 2, 6) will correspond to it. Besides, it gives four
tandem mutations in the form of transitions G: C—A: T, consequently,
in this case, cis-syn cyclobutane dimer Cl_*Cj* (=1,2,6;=1,2,6) will
correspond to it.

So, the polymerase-tautomer model may explain all 90 substitution
mutations. The most frequently arising transitions G: C—A:T and
homologous transversions G:C—C:G may correspond the most
probable rare C,* tautomeric forms of cytosine and two G:C—T:A
transversions may correspond less probable rare C* or C * tautomeric
form of cytosine. Predominance of homologous transversions G:
C—C:G causing by dipyrimidine photoproduct C ;T ., has naturally
explanation since cytosine C,*, C,*, and C* may cause homologous
transversions G:C—C:G.

Conclusion

The polymerase-tautomer model for ultraviolet mutagenesis
is described that is based on formation of rare tautomeric bases in
cis-syn cyclobutane pyrimidine dimers. The model is based on that
fact that during error-prone and SOS synthesis the induced DNA
polymerase inserts canonical bases opposite the dimers; the inserted
bases are capable of forming hydrogen bonds with bases in the
template DNA. Error-prone and SOS replication of double-stranded
DNA having cis-syn cyclobutane cytosine dimers, with one or both
bases in a rare tautomeric conformation, results in targeted transitions
and transversions. There are same types of potential mutagens
damages in cis-syn cyclobutane cytosine dimers. They correspond to
7 fundamental types of rare tautomeric conformations of cytosine.

The structural analysis indicates that three types of cis-syn
cyclobutane cytosine dimer containing a single tautomeric base (the
cis-syn cyclobutane cytosine dimers CC *, CC,*, CC,*') can cause G:
C—A:Ttransition and G:C—C:Ghomologous transverse. Another two
cis-syn cyclobutane cytosine dimers (the dimers CC,* and CC *"") can
result only in G: C—T: A transverse. The cis-syn cyclobutane cytosine
dimer CC*, can cause G: C—A:T transition, G:C—C:G homologous
transverse or G:C—T:A transverse. The 90 substitution mutations are
formed in the hot spots of UV mutagenesis*”?* are interpreted from point
in view polymerase-tautomer model. The polymerase-tautomeric
model may explain all 90 targeted base substitution mutations. The
polymerase-tautomericmodel is able toexplain themechanisms
formation of targeted base substitution mutations, targeted insertions,
targeted deletions and targeted complex insertion, and hot and cold
spots of UV-induced mutagenesis. The polymerase-tautomericmodel
for bystander effects is able toexplain themechanisms formation for
untargeted substitution mutations and targeted.
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