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Introduction
Evapotranspiration is the main source of water losses from 

the hydrological cycle and one of the most important parameters 
in hydrological, environmental, and agricultural studies. 
Evapotranspiration is used as a key parameter in irrigation project 
design, recreational and tourism, and hydrological projects. While 
actual crop evapotranspiration estimated by different methods from 
direct measurements with lysimeters, Bowen ratio energy balance 
system, Eddy covariance system and scintillometer,1–6 reference 
crop evapotranspiration is reasonably estimated from the climatic 
variables7–17 and satellite remote sensing models (Lopez et al., 
2017).18,19 Other modeling approaches such as artificial neural network, 
hybrid modeling and machine leaning are also used to estimate the 
daily reference evapotranspiration with very good accuracy.20–23

Numerous ETo estimation equations have been developed with 
different performance and adaptability throughout the globe and 
the Penman-Monteith equation is shown to be the most worldwide 
accurate under all types of climatic conditions.16,24–28 Numerous and 
usually non-available climatic variables required by the Penman-
Monteith equation constitute the most limiting constraint for its 
adoption under limited data conditions. Climatic models with fewer 
parameters are therefore used throughout the globe. 

The Hargreaves reference evapotranspiration equation is a very 
simple equation that requires air temperature and solar radiation and 
is one of the most widely used simple reference evapotranspiration 
equation for daily or monthly ETo estimation with variable degree of 
performance in Canada,29 in China,30,31 in Italy,32,33 in Spain,34 in Iran,35–

37 in South Korea,38 and in Senegal, Kenya, and Tanzania.39–41 Musa 
and Elagib42 reported the calibration of the Hargreaves ETo equation 
showed latitude dependance of the calibrated constant with is 0.0023 
in the original equation, offering interpolation and extrapolation 
of the constants within the equation across a large study area with 

limited climate dataset. However, they pointed out that calibrating the 
constant 0.0023 is more suitable for the hyper-arid and semi-arid zones 
of Sudan and South-Sudan as well as for the hot and wet seasons. The 
regionally calibrated Hargreaves ETo equation is a viable alternative 
for estimating ETo in regions with limited meteorological data 
compared to the Penman-Monteith equation.43 Heydari and Heydari37 
calibrated the Hargreaves ETo equation to the semiarid and arid 
climatic conditions in Iran and found the constant 0.0023 to change to 
0.0018 and 0.0037 under semiarid and arid conditions, respectively, 
while the root mean square error was improved by 40% and the mean 
bias error was improved by 66%. Aschonitis et al.44 revised and 
calibrated the Hargreaves solar radiation equation used into global 
ETo estimation with improvement of 28% in RMSE. In a hyper-arid 
and arid Mediterranean region, the Hargreaves ETo equation showed 
similar performance as the Penman-Monteith equation.45 Mehdizadeh 
et al.46 found the Hargreaves coefficient to be 0.0026 instead of the 
original value of 0.0023 in the northwest of Iran. The calibrated 
coefficient for Davis in California is equal to 0.170 (Hargreaves and 
Samani, 1985) and Salt Lake City in Utah.47 Feng et al.48 also reported 
improvement in ETo estimation with locally calibrated Hargreaves 
ETo equation in Sichuan basin of southwest China. Almorox and 
Grieser49 also found improvement in ETo estimated by the calibrated 
form of the Hargreaves equation under different Köppen climate using 
4,368 weather stations worldwide. 

While most of the developed equations are able to predict reference 
evapotranspiration, their accuracy varies with the climatic zones and 
the quality of the available meteorological data. Equation calibration 
to the local climatic conditions usually improves the performance and 
the accuracy of the equations.39,50,51 Thus, the objective of this study 
was to site specific and statewide calibrate the Hargreaves equation 
for the estimation of the daily reference evapotranspiration across the 
state of New Mexico, USA. 
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Abstract

Reference evapotranspiration is estimated by several equations with diverse performance and 
accuracy. While the Penman-Monteith equation is revealed as the most accurate estimation 
method, it requires several weather variables that are not measured at most weather stations 
across the globe. This study aimed to evaluate the Hargreaves evapotranspiration equations 
and to adjust the parameters or constants within the different equation to improve their 
performance and accuracy across the State of New Mexico, USA. The results showed 
that the calibration of the different Hargreaves equations improved equation performance. 
Calibrated equations’ King-Gupta Efficiency (KGE) ranging from 0.73 to 0.97, the Nash-
Sutcliffe Efficiency Coefficient (NSE) from 0.84 and 0.88, coefficient of determination (R2) 
from 0.76 to 0.93, and the regression slope from 0.97 to 1.04. All equations showed poor 
performance at the Corona Range which is a hyper arid station without any influence of 
agricultural irrigation management in the area. The calibrated Equation 11 showed more 
accuracy and should be recommended for daily reference evapotranspiration across the 
State of New Mexico. 
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Material and methods
Study sites

This study was conducted at thirteen (13) weather stations across 
New Mexico (USA) (Figure 1) for the period of January 2017 to 
December 2024. The geographical coordinates of the weather stations 
are presented in Table 1. Minimum temperature (Tmin), maximum 

temperature (Tmax), minimum relative humidity (RHmin), maximum 
relative humidity (RHmax), wind speed (u2), and solar radiation (Rs) 
were collected on the daily basis from automated weather stations 
installed by the New Mexico Climate Center. The time series data 
were checked for quality control following the methodology described 
by Allen et al.16 and the abnormal data points were removed before the 
analysis.

Table 1 The geographical coordinates of the weather stations under the present study

Research 
Stations

Latitude 
(degrees)

Longitude 
(degrees)

Elevation 
(m)

Tmax 
(oC)

Tmin 
(oC)

RHmax 
(%) RHmin (%) U2 

(m/s)
Solar R.s
 (MJ/m2)

Adams Ranch 34.25 -105.42 1882.4 19.72 3.5 72.91 21.18 2.15 18.4
Alcalde 36.09 -106.06 1734 20.82 1.57 89.9 30.69 2.02 16.61
Artesia 32.75 -104.38 1027 26.12 8.36 72.01 21.42 2.81 18
Clovis 34.6 -103.22 1366 22.97 6.39 77.92 24.83 3.39 19.7
Corona Range 34.27 -105.44 1910 20.05 5.15 69.64 22.05 3.7 19.15
Fabian Garcia 32.28 -106.77 1186 26.35 9.59 64.92 17.73 1.55 20.45
Farmington 36.69 -108.31 1720 19.62 3.75 72.49 22.3 2 18.12
Las Cruces 32.28 -106.76 1185 26.65 10.77 61.36 17.01 1.45 19.52
Leyendecker 32.2 -106.74 1176 26.04 7.37 77.41 18.3 1.58 20.93
Los Lunas 34.77 -106.76 1476 23.47 4.77 75.56 19.3 0.92 17.43
Mora 35.98 -105.35 2213 17.86 0.64 73.08 19.51 1.73 17.56

Sevillata 34.36 -106.69 1595 23.59 7.07 68.83 19.9 2.19 19.87
Tucumcari 35.2 -103.69 1246 23.58 7.56 70.61 22.31 3.06 19.45

Figure 1 Presentation of study location in the United States of America. (Red 
polygon on the US map) and the weather stations as shown by red arrows 
(downloaded from Google earth on 17 June 2025).

Penman-Monteith reference evapotranspiration equation

Daily grass-reference ET was computed using the standardized 
ASCE form of the Penman-Monteith (PM-ETo) equation:17
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where: ETo is the reference evapotranspiration (mm day-1), Δ is 
the slope of saturation vapor pressure versus air temperature curve 
(kPa oC-1), Rn is the net radiation at the crop surface (MJ m-2 d-1), G is 
the soil heat flux density at the soil surface (MJ m-2 d-1), T is the mean 
daily air temperature at 1.5 - 2.5 m height (oC), u2 is the mean daily 
wind speed at 2 m height (m s-1), es is the saturation vapor pressure 
at 1.5-2.5 m height (kPa), ea is the actual vapor pressure at 1.5-2.5 m 
height (kPa), es-ea is the saturation vapor pressure deficit (kPa), γ is 
the psychrometric constant (kPa oC-1). The procedure developed by 
Allen et al.16 was used to compute the needed parameters. 

Hargreaves and Samani (1982)

The Hargreaves-Samani10 reference evapotranspiration equation, 
when the global solar radiation data is available, is presented as 
(equation 2):

( )0.0135* * 17.8ETo Rs T= + 			   (2)

where Rs id the global solar radiation, T is the mean daily 
temperature. In the case global solar radiation is not available at 
the site, Hargreaves and Samani11 and Hargreaves and Allen13 have 
developed a formula to estimate the daily solar radiation (equation 3):

( )0.5* *Rs Krs Ra Tmax Tmin= − 			   (3)

where Krs is an empirical coefficient, Ra is extra-terrestrial 
radiation estimated following Allen et al.16 λ is the latent heat of 
vaporization, Tmax is maximum temperature, Tmin is minimum 
temperature. Krs values of 0.16 and 0.19 are recommended for the 
coastal and inland regions, respectively.52 Annandale et al.53 adjusted 
the Krs equation to account for the elevation of the location and 
Allen54 also proposed a new improved equation for Krs estimation 
accounting for the site altitude.
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				    where P is mean atmospheric 
pressure of the site in kPa,55 Po is the mean atmospheric pressure at 
sea level in kPa, Z is the elevation of the site above mean sea level in 
m, Krso is the empirical coefficient which is equal to 0.17 for coastal 
regions and 0.20 for inland regions. 

The integration of equation 5 into equation 2 results in equation 7:

( ) ( )
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Po
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                                                                                                        (7)

Hargreaves and Samani (1985)

Equation 7 could be rewritten as equation 8:

( ) ( )0.5* * 17.8 *ETo KHS Ra T Tmax Tmin= + −                  
(8)

where KHS is empirical coefficient; KHS =
0.5

0.0135  PKrso
Po

 
 
 . The recommended value of KHS is 0.0023 [11] which gives the 

equation 9:

( ) ( )0.50.0023* * 17.8 *ETo Ra T Tmax Tmin= + − 	  (9)	

Data processing and site-specific and statewide calibration 
and validation of the Hargreaves-Samani equations 

The first step of data processing consisted of daily reference 
evapotranspiration estimation using the Hargreaves-Samani equations 
2 and 9 and which were compared with the Penman-Monteith ETo 
estimates. In the case of non-measured solar radiation at the site, 
equation 3 is integrated into equation 2. For the site specific and 
statewide calibration, the Penman-Monteith ETo estimates were 
supposed to be the measured or observed data and ETo was estimated 
using equations 7 and 8 for local and statewide Krs and KHS 
modeling. Further, different calibrated constants A, B, C, D, E, F, Ko, 
K1, K2 were determined for each research site and for the State of 
New Mexico following the equations 10-14. 

( )* * 17.8ETo A Rs T= + 	                  (10)		
	

( )* *ETo B Rs T C= + 				    (11)

( ) ( )0.5* * 17.8 *ETo Ko Ra T Tmax Tmin= + − 	 (12)	

( ) ( )0.51* * *ETo K Ra T D Tmax Tmin= + − 		  (13)

( ) ( )2* * * FETo K Ra T E Tmax Tmin= + − 		  (14)

The generalized reduced gradient method was used for model 
calibration for the January 2017-March 2020 period. This procedure 
allows iterations by changing the constants in the equations to 
create new equations for each location and for all 13 stations pooled 
together. The solver add-in Excel is a tool that was used to fit the 
original equations by minimizing the sum of the squared residuals 
between the Penman-Monteith ETo estimates and the ETo estimates 

by the equation to be calibrated. The Penman-Monteith equation was 
recommended as the standard reference evapotranspiration method 
by the Agriculture Organization (FAO) and the World Meteorological 
Organization (WMO).16 Multiple initial values were tested to ensure 
that the global minimum of the errors was found56 and maximum 
value of the Kling-Gupta efficiency (KGE)57 was reached. For model 
evaluation, simple linear regression was used to compare the daily 
ETo estimates by the Hargreaves-Samani equations and the Penman-
Monteith equation at each weather station and all 13 stations pooled 
together. The intercept of the regression line was forced to be zero. 
The more accurate the reference evapotranspiration is the more the 
regression slope and the coefficient of determination are close to 
unity. The Kling-Gupta efficiency (KGE),57,58 Nash-Sutcliffe model 
efficiency coefficient (NSE), the coefficient of determination R2, and 
the mean absolute error (MAE)59 were also used for model evaluation. 
The KGE is a statistical approach proposed to overcome the limitations 
of other statistical model performance evaluation such as the NSE and 
R2. The KGE measures not only the accuracy of the model predictions 
but also it has the ability to reproduce the variability and timing of the 
observed data. The objective function was to maximize KGE (KGE 
varies between – infinite and 1 and the higher KGE is, the better the 
simulation process is). The calibrated equations were validated for the 
April 2020-December 2024 period.

Results and discussion
Model performance evaluation

The adjustment of different parameters of equations 10, 11, 12, 
13 and 14 was great overall when the estimated daily reference 
evapotranspiration values were compared to the estimated by the 
Penman-Monteith equation. For the equation 10, 11, 12, 13 and 14, 
all statistics evaluation criteria varied with stations across the State 
of New Mexico. KGE varied from 0.73 to 0.93 for equation 10, from 
0.73 to 0.97 for equation 11, from 0.77 to 0.94 for equation 12, from 
0.88 to 0.96 for equation 13 and from 0.88 to 0.96 for equation 14, and 
averaged 0.85, 0.92, 0.88, 0.92 and 0.92 for the respective equations 
(Table 2). All KGE values are greater than 0.5, indicating that all 
models’ performance is good.60 The calibration of the Hargreaves 
ETo equations significantly improved the performance achieving 
validation values of NSE ranging from 0.67 to 0.94 while the NSE 
values of the original equations ranged from −0.57 to 0.87 in the 
Peruvian Altiplano.43 The performance of all models was the poorest 
at the Corona Range which is hyper arid area while the best model 
performance occurred at Alcalde and Las Cruces. Model calibration 
might be focused on the monthly and or seasonal basis to account for 
the abrupt changes in the weather parameters patterns in the temperate 
hyper-arid locations. Model performance at all stations is confirmed 
by the Nash-Sutcliffe model efficiency coefficient which averaged 
between 0.84 and 0.88 for the five equations all stations combined and 
from 0.80 to 0.91 all equations together. The greatest NSE value was 
obtained at Alcalde while the lowest value was registered at Corona 
Range like for the KGE. 

The coefficient of determination of the linear regression between 
the daily reference evapotranspiration estimated by the Penman-
Monteith and the different models represented by equations 10, 11, 
12, 13, and 14, varied from 0.84 to 0.93, 0.81 to 0.93, 0.78 to 0.93, 
0.76 to 0.93, and from 0.76 to 0.93 and averaged 0.88, 0.87, 0.85, 
0.85 and 0.85 for the respective equations (Table 2). The highest R2 
was obtained at Alcalde while the lowest R2 was obtained at Corona 
Range. The regression slopes of the linear regression between the 
daily reference evapotranspiration estimated by the Penman-Monteith 
and the different models varied from 1.00 to 1.04, 0.98 to 1.00, 

https://doi.org/10.15406/ijh.2026.10.00420


Local and regional calibration of Hargreaves-Samani equations for reference evapotranspiration 
estimation in a semiarid climate

4
Copyright:

©2026 Djaman et al.

Citation: Djaman K, Koudahe K, Shanwad UK, et al. Local and regional calibration of Hargreaves-Samani equations for reference evapotranspiration estimation 
in a semiarid climate. Int J Hydro. 2026;10(1):1‒11. DOI: 10.15406/ijh.2026.10.00420

0.98 to 1.02, 0.97 to 0.99, and from 0.97 to 0.99 for the equation 
10, 11, 12, 13, and 14, respectively, and averaged 1.01, 0.99, 1.00, 
0.98 and 0.98 for the respective equations (Table 2). The average 
regression slopes varied from 0.99 to 1.00 for the different stations, 
showing the good performance of different equations with only 1% 
of evapotranspiration overestimation or 2% of evapotranspiration 

underestimation. The equation 10 overestimated daily reference 
evapotranspiration from 1 to 4% at 77% of the stations. The equations 
11, 13, and 14 underestimated daily reference evapotranspiration 
up to 3% compared to the Penman-Monteith equation. Higher daily 
reference evapotranspiration overestimation and underestimation 
were observed at the Corona Range station.

Table 2 Summary of the calibration evaluation criteria

Evaluation criteria Weather Location Equation 10 Equation 11 Equation 12 Equation 13 Equation 14
KGE Adams Ranch 0.83 0.94 0.83 0.89 0.89

Alcalde 0.92 0.97 0.93 0.95 0.95
Artesia 0.84 0.91 0.92 0.92 0.92
Clovis 0.75 0.92 0.78 0.89 0.89
Corona Range 0.73 0.73 0.82 0.88 0.88
Fabian Garcia 0.92 0.95 0.93 0.93 0.93
Farmington 0.88 0.96 0.91 0.96 0.96
Las Cruces 0.93 0.95 0.93 0.93 0.94
Leyendecker 0.82 0.92 0.89 0.92 0.93
Los Lunas 0.88 0.95 0.93 0.94 0.94
Mora 0.76 0.93 0.77 0.9 0.9
Sevilleta 0.9 0.94 0.94 0.94 0.95
Tucumcari 0.86 0.93 0.89 0.92 0.92

NSE Adams Ranch 0.88 0.87 0.81 0.79 0.79
Alcalde 0.93 0.93 0.9 0.9 0.9
Artesia 0.84 0.82 0.84 0.84 0.85
Clovis 0.86 0.85 0.79 0.78 0.79
Corona Range 0.84 0.84 0.78 0.76 0.76
Fabian Garcia 0.9 0.89 0.86 0.86 0.86
Farmington 0.92 0.92 0.93 0.93 0.93
Las Cruces 0.91 0.9 0.87 0.87 0.89
Leyendecker 0.85 0.84 0.84 0.84 0.85
Los Lunas 0.9 0.91 0.88 0.88 0.89
Mora 0.88 0.87 0.8 0.79 0.8
Sevilleta 0.89 0.88 0.89 0.89 0.89
Tucumcari 0.87 0.86 0.86 0.85 0.85

R2 Adams Ranch 0.88 0.87 0.81 0.79 0.79
Alcalde 0.93 0.93 0.9 0.9 0.9
Artesia 0.84 0.83 0.85 0.84 0.85
Clovis 0.87 0.85 0.79 0.78 0.79
Corona Range 0.85 0.81 0.78 0.76 0.76
Fabian Garcia 0.9 0.9 0.86 0.86 0.87
Farmington 0.92 0.92 0.93 0.93 0.93
Las Cruces 0.91 0.9 0.87 0.87 0.89
Leyendecker 0.85 0.84 0.84 0.84 0.85
Los Lunas 0.9 0.91 0.88 0.88 0.89
Mora 0.88 0.87 0.8 0.8 0.8
Sevilleta 0.89 0.88 0.89 0.89 0.89
Tucumcari 0.87 0.86 0.86 0.85 0.85

Regression slope Adams Ranch 1.02 0.99 1 0.98 0.98
Alcalde 1.01 1 1 0.99 0.99
Artesia 1.01 0.98 0.98 0.98 0.98
Clovis 1.03 0.99 1.01 0.98 0.98
Corona Range 1.04 0.98 1 0.97 0.97
Fabian Garcia 1 0.99 0.99 0.99 0.99
Farmington 1.02 0.99 1.01 0.99 0.99

https://doi.org/10.15406/ijh.2026.10.00420
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Las Cruces 1 0.99 0.99 0.99 0.99
Leyendecker 1.01 0.99 1 0.99 0.99
Los Lunas 1.01 0.99 1 0.99 0.99
Mora 1.03 0.99 1.02 0.98 0.98
Sevilleta 1 0.99 0.99 0.99 0.99
Tucumcari 1.01 0.99 1 0.98 0.98

RMSE Adams Ranch 0.87 0.78 1.09 1.01 1.01
Alcalde 0.51 0.48 0.62 0.59 0.58
Artesia 1.18 1.09 1.03 1.02 1
Clovis 0.79 0.69 0.95 0.82 0.81
Corona Range 1.13 1.13 1.2 1.12 1.12
Fabian Garcia 0.7 0.68 0.79 0.79 0.77
Farmington 0.71 0.65 0.65 0.6 0.6
Las Cruces 0.65 0.64 0.75 0.75 0.7
Leyendecker 0.89 0.8 0.86 0.81 0.77
Los Lunas 0.6 0.53 0.62 0.59 0.58
Mora 0.75 0.64 0.94 0.8 0.79
Sevilleta 0.93 0.91 0.89 0.89 0.87
Tucumcari 1.07 1.01 1.07 0.92 1.03

MAE Adams Ranch 0.66 0.61 0.85 0.79 0.79
Alcalde 0.39 0.36 0.45 0.43 0.43
Artesia 0.89 0.82 0.77 0.77 0.74
Clovis 0.58 0.51 0.72 0.62 0.6
Corona Range 0.89 0.89 0.94 0.89 0.89
Fabian Garcia 0.54 0.51 0.58 0.57 0.57
Farmington 0.54 0.49 0.48 0.44 0.44
Las Cruces 0.5 0.49 0.55 0.55 0.52
Leyendecker 0.7 0.62 0.64 0.61 0.59
Los Lunas 0.47 0.41 0.45 0.43 0.43
Mora 0.55 0.48 0.72 0.6 0.59
Sevilleta 0.71 0.7 0.68 0.68 0.66
Tucumcari 0.82 0.79 0.83 0.8 0.8

The RMSE varied with locations and reference evapotranspiration 
models. It varied from 0.51 to 1.18 mm/day, 0.48 to 1.13 mm/day, 0.62 
to 1.2 mm/day, 0.59 to 1.12 mm/day, and from 0.58 to 1.12 mm/day 
and averaged 0.83, 0.77, 0.88, 0.82 and 0.82 for the equations 10, 11, 
12, 13, and 14 (Table 2). The RMSE was at the highest values at the 
Corona Range station while the lowest RMSE values were observed 
at Alcalde and Los Lunas. The Mean absolute error also varied with 
locations and evapotranspiration models. It varied from 0.39 to 0.89 
mm/day, 0.36 to 0.89 mm/day, 0.45 to 0.94 mm/day, 0.43 to 0.89 mm/
day, and from 0.43 to 0.89 mm/day for the equations 10, 11, 12, 13, 
and 14, respectively, and averaged 0.63, 0.59, 0.67, 0.63 mm/day 
for the respective equations (Table 2). The lowest MAE values were 
obtained at Alcalde station for all equations while the highest MAE 
values were obtained at Corona Range due to the differences in model 
performance at these locations. 

Adjusted Krs values at each location 

Krs values varied from 0.1371 to 0.2409 and averaged 0.1877. The 
most arid location Corona Range showed the highest Krs value, and 
the lowest value was obtained at Los Lunas. Krs value when all the 
stations were pooled together is 0.1850, which is 1.4% lower than the 
average Krs value. Hargreaves and Samani11 set the initial Krs to 0.17 
for arid and semiarid regions and Hargreaves52 recommended 0.16 for 
interior regions and 0.19 for coastal regions16 and which are similar 
to the reported values in the present study. Krs values of 0.17-0.18 

and 0.10-0.22 were reported for the semiarid and arid-hyper arid area 
respectively in Inner Mongolia, Iran, Portugal, and Spain.61 Lujano et 
al.62 reported a range of Krs values from 0.150 to 0.209 in the Peruvian 
Lake Titicaca basin, Peru. Krs values from 0.157 and 0.165 were 
found in the Évora district in the Alentejo region, Southern Portugal.63 
Tabari et al.64 found the Krs of the Hargreaves‐Samani model of 0.14 
for the semi-arid climate of Iran. Krs was empirically developed to 
estimate solar radiation based solely on the air temperature. However, 
solar radiation is influenced by other factors such as cloud cover, air 
relative humidity and wind speed which are not incorporated into the 
Krs estimation method, and which might explain the differences in 
Krs values across different environments López-Urrea et al.65

The adjusted parameters in equations 10, 11, 12, 13, and 
14

The adjustment of equation 10 at each station revealed variation 
of A values from 0.0135 to 0.0204 and average 0.0167 while it was 
0.0164 when all stations were pooled together. The lowest value was 
obtained Los Lunas in the central region of New Mexico while the 
highest value was obtained at Corona Range in the highly arid area 
without active farm irrigation system. The parameters B and C within 
equation 11 varied from 0.0082 to 0.143 and from 23.610 to 62.531 
and averaged 0.0111 and 35.846, respectively. With all the stations 
pooled together, the adjusted B and C values were 0.0148 and 21.507, 
respectively. Ko values varied with locations and ranged from 0.0019 

Table 1 Continued...
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to 0.0033 and averaged 0.0025, Ko value obtained when all the weather 
stations’ data were pooled together during the calibration phase was 
0.0025 (Table 3). The highest value is recorded at Corona Range in 
the desert area while the lowest value was recorded at Alcade and 
Los Lunas research centers. The relatively lower values at the other 
stations compared to Corona range might be the impact of agricultural 
irrigation not too far from the stations and which increases air 
relative humidity, temperature, and vapor pressure deficit. In arid and 
semiarid region in Iran, Heydari and Heydari37 found the Ko values 
of the calibrated Hargreaves and Samani11 (equation 12) to range 
from 0.0018 to 0.0037 while a range of 0.0025-0.0186 was found in 
the Amu Darya River Basin, Central Asia, due to the hyper aridity 
conditions in the study area.66 Azzam et al.66 reported a very high 
value of 0.0047 in a very dry windy and high vapor pressure region 
and 0.0033 at an area toward humid region of the study area. Gavilan 
et al.67 showed that calibration was not necessary for some locations 

because the new coefficients were 0.00234 and 0.00241 while new 
values were 0.00209, 0.0021, 0.0026, 0.00273, and 0.0029 for other 
locations with an improvement of the MBE of 54%. Vanderlinden et 
al.47 reported an average value of 0.0029 at the coastal area and 0.0022 
at inland area in Spain. In recent study, Musa and Elagib42 found Ko 
to increase to 0.00238 and 0.00247 at Port Sudan and Dongola in 
the northern Sudan, respectively, while it was within the range from 
0.00176 to 0.00226 elsewhere in Soudan. Very high values within the 
range of 0.0025-0.0067 were recorded across different agricultural 
climatic zones in India.68 A large range of Ko values was reported by 
Gavilan et al.67 with averages of 0.00209, 0.00235, 0.00241, 0.00271, 
and 0.0029 for difference regions and three values such as 0.0021, 
0.00273, and 0.0026 were proposed for different regions in Andalusia 
(Spain) instead of 0.0023. Tabari and Talaee36 and Ndiaye et al.69 
reported ko value of 0.0031 in the arid and cold climates of Iran and 
Senegal. 

Table 3 Summary of the calibrated parameters

Stations Calibrated parameters (constants)
Krs A B C Ko K1 D K2 E F

Adams Ranch 0.2208 0.0189 0.012 36.049 0.003 0.0021 30.9095 0.0026 28.7823 0.4413
Alcalde 0.1441 0.0143 0.0117 24.649 0.0019 0.0017 22.647 0.0021 21.4894 0.4414
Artesia 0.2103 0.0196 0.0132 35.308 0.0028 0.0028 18.7703 0.0018 20.6695 0.6405
Clovis 0.1811 0.0172 0.0082 49.7 0.0024 0.0015 35.5847 0.0007 44.3733 0.6953
Corona Range 0.2409 0.0204 0.0083 62.531 0.0033 0.0024 29.0366 0.0028 27.6314 0.454
Fabian Garcia 0.1675 0.0142 0.0118 25.249 0.0023 0.0022 18.6407 0.0037 16.3314 0.3394
Farmington 0.1899 0.0161 0.0119 29.437 0.0026 0.0021 24.8319 0.0025 23.8291 0.4432
Las Cruces 0.1625 0.0142 0.0123 23.61 0.0022 0.0022 18.4559 0.005 14.9871 0.2346
Leyendecker 0.172 0.0159 0.0096 40.946 0.0023 0.0019 25.636 0.0037 21.9163 0.2976
Los Lunas 0.1371 0.0135 0.0098 30.596 0.0019 0.0017 21.6686 0.0027 19.8895 0.3558
Mora 0.1831 0.0172 0.0083 48.29 0.0025 0.0014 39.2594 0.0007 48.4587 0.6752
Sevilleta 0.2103 0.0181 0.0143 27.187 0.0028 0.0027 19.5117 0.004 17.9041 0.3777
Tucumcari 0.2201 0.0177 0.0126 32.445 0.003 0.0025 24.9393 0.0023 25.259 0.5179
Average 0.1877 0.0167 0.0111 35.846 0.0025 0.0021 25.3763 0.0027 25.5016 0.4549
Pooled data 0.185 0.0164 0.0148 21.507 0.0025 0.0031 11.2629 0.0023 11.7155 0.6023

The calibrated parameters K1 and D varied from 0.0014 to 0.0028 
and from 18.46 to 39.26, respectively. There is a decreasing trend 
in parameter K1 with increasing D values. With all data pooled 
together, the parameter K1 was 0.0032 and the D was 11.26 while 
the parameters K1 and D averaged 0.0021 and 25.38, respectively. 
The lowest values of K1 were obtained at Mora and Clovis with the 
corresponding highest values of D at the same locations. Adversely 
the highest value of K1 was obtained at Artesia in the southeastern 
New Mexico. The parameters K2, E, and F of the equation 14 varied 
with locations and ranged from 0.0007 to 0.0050, 14.99 to 48.46, 
and from 0.2346 to 0.6953 and averaged 0.0027, 25.50, and 0.4549, 
respectively. Using all stations data pooled together, the respective 
parameters were 0.0023, 11.7155, and 0.6023. The parameters at each 
single station are quite different from the 0.0023, 17.8, and 0.5 within 
the original equation. These parameters differ from the reported 
values in other studies. Calibration of the Hargreaves’ equation 14 in 
Sichuan basin of southwest China revealed that parameter K2, E, and 
F were within the rages of 0.00213 – 0,00217, 16.19 – 16.58, and 0.40 
– 0.46, and averaged 0002166, 16.40105, and 0.4353, respectively.31 
Feng et al.31 reported no clear change trend of these parameters, 
however their reported values were lower than the original values 
within equation 9. In Jordan, Mohawest and Talozi70 reported values 
of 0.6957, 0.58 and 16.6 for the K2, E, and F respectively, while 
Droogers and Allen71 reported 0.0030, 0.4, and 20.0 worldwide, and 

Smith72 reported 0.0030, 0.4, and 20.0 for the respective parameters 
in California, USA. Ranges of parameters K2, E, and F of 0.0011-
0.0013, 1.1669-15.5731, and 0.6128-0.8312 were reported for the 
respective parameters in Brazil.73 The calibration parameters K, E, 
and F across the Han-River basin in South Korea were within the 
ranges of 0.0015–0.0028, 19.3–36, and 0.25–0.49, respectively.74 The 
locally recalibrated equations effectively reduced the systematic bias 
associated with the use of the original equations.42,66,74,68,31,40,70,72

Adjusted equations with the pooled dataset

The adjustment of different parameters with the pooled data 
calibration showed nonconsistency across the models. The comparison 
of the Hargreaves-Samani10 (equation 7) and the adjusted equation 
9 to the Penman-Monteith equation showed an improvement of the 
regression slope from 0.823 showing 17.7 % of ETo underestimation 
to 0.983 with only 1.7% of ETo underestimation. However, the RMSE 
was only reduced by 3.6% and the MAE was reduced by 2.8%. With 
the original Hargreaves-Samani10 and the equation 10 adjusted, the 
regression slope was improved from 0.823 to 1.0026 decreasing ETo 
underestimation of 17.7 to ETo overestimation of only 0.26% with 
15.08% decrease in RMSE and 14.08% of the MAE and showing the 
great opportunity to adopt the adjusted equation 10 for ETo estimation 
across the State of New Mexico. Similarly, the adjusted equation 11 

https://doi.org/10.15406/ijh.2026.10.00420
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showed improvement of the regression slope from 0.823 to 0.994 
with the greatest improvement of RMSE by 17.79% and the MAE by 
16.98%. Therefore, the adjusted equation 11 is the best performing ETo 
model across New Mexico. The comparison of the Hargreaves11 and 
the adjusted equation 12 to the Penman-Monteith showed an increase 
in regression slope from 0.904 to 0.9882 equivalent to a decrease of 
ETo underestimation of 9.6% to 1.83%. The RMSE was reduced by 
0.42% while the MAE was increased by 0.37%. The adjusted equation 
13 increased the regression slope from 0.904 to 1.003, equivalent to 
only 0.3% of ETo overestimation compared to the Penman-Monteith 
model. However, the adjusted equation 13 increased the RMSE by 
8.02% and the MAE by 11.69%. Consequently, the adjusted equation 
13 may lead to some misleading daily irrigation water requirement 
estimation, jeopardizing crop growth and development, and probably 
crop yield and should not be used while the adjusted equations 10 and 

11 showed better performance than the adjusted equation 13. Like the 
adjusted equation 13, the adjusted equation 14 showed only 0.39% 
ETo overestimation compared to the original Hargreaves 1985 model 
but it induced 8.02% increase in RMSE and 11.69% increase in MAE. 
The results shown in Figure 2 and Figure 3 for the calibration phase 
are confirmed with the validation phase shown in Figure 4. Çıtakoglu 
et al.75 reported that reference evapotranspiration estimates by using 
calibrated Hargreaves and Samani (HS) equations are close to those 
calculated by Penman-Monteith equation in Marmara Region of 
Turkey. Overall, the combination of model evaluation criteria, the 
adjusted equation 11 should be the first choice from the Hargreaves’ 
reference evapotranspiration estimation model at the location with 
only temperature and/or solar radiation data available. Adjusted 
equation 10 should be the second choice under the same limited 
weather dataset across the State of New Mexico.

Figure 2 Comparison of the Penman-Monteith ETo estimates to the original Hargreaves and Samani ETo estimates (a) Equation 9 (b) equation 10, (c) equation 
11, (d) equation 12), (e) equation 13, (f) equation 14 (all 13 weather stations pooled together) for the January 2017-March 2020 period.
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Figure 3 Comparison of the Penman-Monteith ETo estimates to the calibrated Hargreaves and Samani ETo estimates (a) Equation 9 (b) equation 10, (c) 
equation 11, (d) equation 12), (e) equation 13, (f) equation 14 (all 13 weather stations pooled together) for the January 2017-March 2020 period.
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Figure 4 Validation of the calibrated equations for the April 2000 - December 2024 period: the calibrated Hargreaves and Samani ETo estimates (a) Equation 
9 (b) equation 10, (c) equation 11, (d) equation 12), (e) equation 13, (f) equation 14 (11 weather stations pooled together).

The calibrated Hargreaves-Samani model showed a good 
performance within acceptable ranges of accuracy in the Free State, 
South Africa.76 The calibration of reference evapotranspiration 
using the Solver tool from Microsoft Excel was successfully used 
by Ferreira et al.63 who concluded less uncertainty using solver to 
optimize the solution. In contrast, Gharehbaghi et al.77 used three 
different model calibration methods and found that the regression 
analysis and traditional methods demonstrated a higher level of 
accuracy. For future work we recommend testing different model 
calibrations methods and evaluating their performance accuracy.78,79

Conclusion
The Hargreaves reference evapotranspiration equations were 

evaluated across the State of New Mexico (USA) after adjustment 
of the equations’ constants. The performance of different equations 
varies with locations with the poorest performance at Corona 
Range, the hyper arid. Overall, equation calibration improved the 
performance of all equations which showed good agreement with the 
Penman-Monteith equation. The correlation between the reference 
evapotranspiration estimates by the equation 11 and the Penman-
Monteith equation showed a coefficient of determination varying 
from 0.81 to 0.94 and the regression slope from 0.98 to 1.00 with the 
calibration KEG varying from 0.92 to 0.97 besides the KEG value of 
0.73 at the Farmington station, and the NSE varying from 0.82 to 0.93. 
The adjusted equation 11 requiring only the daily solar radiation and 
air temperature, is the best performing one and should be considered 
as the alternative reference evapotranspiration estimation method 
under limited weather variables under the semiarid dry climate across 
New Mexico. 
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