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Introduction
Discussions on climate change are growing and many studies 

indicate that in the southeast region of Brazil precipitation will be 
more intense. Thus, flooding-related issues tend to increase, especially 
in urban areas.  Studying watersheds is essential for understanding 
the behavior of precipitation and natural watercourses. This has an 
influence on the execution of Civil Engineering works concerning the 
construction of dams, regardless of their purposes, and on the planning 
of urban areas, since the rainwater harvesting system and the traffic 
routes of a city require prior knowledge of the water flow direction and 
critical flooding areas. In addition, the basin analysis is an essential 
factor for managing water resources, since Brazil is a country in which, 
in addition to essential daily activities, energy production is related to 
these resources.1  In Santos et al.,2 the morphometric indices of the 
Jaguaribe River basin were evaluated to confirm flooding likelihood. 
This basin, like many others, is undergoing an urbanization process, 
which causes serious environmental problems due to the silting up 
of river channels due to erosion processes and increased surface 
runoff. Along the same lines, Soares and Galvíncio3 used the LiDAR 
(Light Detection and Ranging) sensor with a spatial resolution of 5 
m and a scale of 1:5000 in a study carried out in the Beberibe River 
watershed. Based on morphometric parameters, they concluded that 
this basin is not naturally susceptible to flooding, but that, despite this, 
other factors lead to this type of problem. 

Alves et al.4 evaluated the use of large-scale models to assess flood 
risk areas at local, regional, and national levels in three municipalities 
in the State of Rio Grande do Sul. They considered precipitations with 
specific periods and compared the results achieved with the flood 
spots obtained by the Geological Survey of Brazil (CPRM), with 
satisfactory results. The importance of this type of study is noted in 
the definition of possible flooded areas, especially near urban regions. 
Thus, it is known that whatersheds with a shape similar to a circle 
are more likely to have flood regions, due to the greater difficulty 
of water flow towards the outlet. Therefore, the calculation method 
developed in this work aims to explore this proximity in a simple 
and efficient way, which can be measured through numerical values, 
such as the circularity index. Lima and Lima5 consider this index the 
ratio between the watershed and circle areas. To find the area of a 
circle, we must know the basin perimeter, which must be equal to 

the circle’s circumference. This allows us to know its radius and, 
consequently, its area. Concerning the indexes, the derivative is one of 
the mathematical tools that permeate the development of data analysis 
methods. The data analysis is essential for predicting the moment 
and the ideal way to carry out specific actions so that the measures 
taken allow the best solution for a practical problem, or even the best 
possible understanding of reality.6

Therefore, since this study is closely related to data analysis, it is 
also aligned with statistics. Costa Neto7 defined it as a science that 
deals with the means of achieving goals, and not with the purpose 
itself, serving to offer information that will serve as a guide for 
decision making based on data and facts.  Lastly, this study region 
is located in Serra da Mantiqueira, a mountain range located on the 
borders between three Brazilian states in the southeast region: Minas 
Gerais, Rio de Janeiro, and São Paulo.8 This paper aims to establish 
a method capable of analyzing and comparing the various basins of a 
region regarding the degree of proximity to a circle that presents each 
of them. Therefore, the study aims at defining a calculation method 
based on simple input parameters capable of providing analytical 
results that can be easy to interpret. To this end, the script was applied 
through calculations made for a set of three basins in a given region 
of Serra da Mantiqueira. 

Material and methods
Study area

The three hydrographic basins of this study are in Serra da 
Mantiqueira, a mountain range in Southeastern Brazil, close to the 
border with Rio de Janeiro. As shown in Figure 1, developed with the 
QGIS software, said basins comprise the Congonhal (blue), Piedade 
(brown), and Toca (pink) streams. The approximate coordinates of the 
outlets are -22o 08’ 19.03” (latitude) and -44o 24’ 39.17 (longitude) 
for the Congonhal stream basin, -22o 04’ 30.68” (latitude) and -44o 
21’ 8.46” (longitude) for the Piedade stream basin, and -22o 13’ 
14.02” (latitude) and -44 o 22’ 59.01” (longitude) for the Toca stream 
basin. Santos8 lists some of the main physical aspects of Serra da 
Mantiqueira: the oldest part of its geological and geomorphological 
structure originates from the cooling of the Earth in the Precambrian 
period, about more than 2 billion years ago. Over time, the rocks 
formed at that time suffered from the chemical action caused by 
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Abstract

This paper relies on concepts from analytical geometry, differential and integral calculus, 
and statistics to develop a calculation script to analyze watersheds vis-à-vis their shapes. 
Said script consists of determining whether or not each watershed studied has a shape 
the deviates from the average behavior of the set. For this purpose, the method considers 
the approximation of the shape of each basin by ellipses, so that the semi-axes of the 
determined ellipses are the input parameters of the tool. The sequence of equations to be 
adopted is based on the existence of a trend line that reflects the average behavior of the 
set, while each scattered point corresponds to the shape condition of a basin. Applying the 
method to a group of neighboring basins located in Serra da Mantiqueira showed that the 
projections can produce different results, and also demonstrated that the script could be 
used with relative practicality. 
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their contact with water, becoming earth hills and producing the 
geomorphological basis of what Ab’Sáber9 refers to as ‘seas of hills’. 
In addition, the entire mountain range is located in the intertropical 
thermal zone and at high altitudes for the Brazilian relief, with a 
high altitude tropical climate, hot and rainy summers, and cold, dry 
winters.10 From 1961 to 1990, rainfall above 350 mm was recorded in 
January, one of the wettest months, and below 40 mm in September, 
one of the driest. In the same period, temperatures below 16º C were 
recorded in June, one of the coldest months, and above 22º C in 
December, one of the hottest.11 Finally, the area comprises tropical 
forests of Atlantic Forest and associated ecosystems, with prevalence 
of semideciduous seasonal forests (SISEMA (Sistema Estadual de 
Meio Ambiente e Recursos Hidricos, 2019)12 and IBGE (Instituto 
Brasileiro de Geografia e Estatística, 2019).13

Figure 1 Watershed delineation. Source: The authors (2023).

Deduction of the fundamental equations of the 
method 

According to Figure 2, which is consistent with the geometric 
and elliptical elements discussed by Winterle14 the equation 1 can be 
obtained from the Pythagorean theorem:15

2 2 2b c a+ =                                                         (1)

Figure 2 Ellipsis. Source: The authors (2023).

Where c is the distance between the center of the ellipsis and 
one of the foci, a is the greatest distance between the center and the 
contour line, and b is the smallest distance between the center and the 
contour line. 

Thus, Equation 2 is valid: 

2 2c a b= −                                                     (2)

Then, equations 3 and 4 below are validated: 
2 2a c a a bγ = + = + −                                     (3)

Where y is the greatest distance between the foci and the contour 
line. 

2 2a c a a bρ = − = − −                                     (4)

Where ρ  is the shortest distance between each focus and the 
contour line.

In order to obtain the first and second main equations, it is 
necessary to carry out the development of equation 5 below: 

( )2 2 22 * *b c b b c c+ = + +                                 (5)

Since S the area of the right triangle enclosed in the ellipsis, 
equation 6 is true: 

*
2

b c S=                                                              (6)

Therefore, equation 7 is also valid: 

2 * * 4 *b c S=                                                    (7)

Since p is the semiperimeter of the right triangle, we can insert 
equation 8:

2
a b cp + +

=                                                      (8)

Applying equations 1 and 7 in 5, we obtain the equation 9: 

( )2 24 * S b c a= + −                                             (9)

Equation 9 can be analyzed as formula 10: 

( ) ( ) ( ) ( )4 * * 2 * * 2 * 2 * 4 * *S b c a b c a p p a p p a= + + + − = − = −  

                                                                                                 (10)

So, the equation 11 is true: 

( )*S p p a= −                                                       (11)

Therefore, we obtain formula 12: 
2 * 0p p a S− − =                                                   (12)

Thus, assuming p as a variable, one of the solutions to this equation 
is p, the semiperimeter. For organization purposes, this solution will 
be called k, such that k p= .

Since j is the other solution, through the concept of sum and 
product for 2nd-degree equations,16 the equation 13 is true: 

( )k j a a+ = − − =                                                  (13)

After that, we obtain equations 14 and 15: 

2
a b ck + +

=                                                          (14)

2
a b cj − −

=                                                          (15)

Based on equations 2 and 3, equations 16 and 17 are true: 

2
a γ ρ+
=                                                               (16)

2
c γ ρ−
=                                                               (17)
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If equation 18 is true: 

( ) ( )2 2 2 *b a c a c a c= − = + −                               (18)

What is proposed in equation 19 is also true: 

( ) ( )*b a c a c= + −                                              (19)

Applying equations 16 and 17 in equation 19, we obtain equation 
20: 

*b γ ρ=                                                                (20)

Substituting 16, 17, and 20 into 14 and 15 gives equations 21 and 
22: 

( )1 * *
2

k γ γ ρ= +                                                  (21)

( )1 * *
2

j ρ γ ρ= −                                                   (22)

Since rc is the radius of any circle, it is possible to verify that the 
semi-axes a and b are equal to each other and also equal to rc, such that 
c is equal to zero, since there is no distance between the center and foci 
in a circle, and both semi-axes are equal to the radius. Therefore, we 
obtain equations 23 and 24, through equations 14 and 15, for circles: 

ck r=                                                                        (23)

0j =                                                                          (24)

Thus, we can conclude that equations 21 and 22 are, respectively, 
the first and second main equations of the method, since k is the radius 
of a hypothetical circle to which the analyzed ellipsis approaches, 
while 0j =  means that the ellipsis is equal to that circle. It is 
important to emphasize that 0j ≤ . Now, consider a cylinder with a 
circular base, whose base radius equals r. The plane π  divides the 
cylinder transversely. Said plane rotates θ degrees (such that
0  90o oθ≤ ≤ ) around the axis of the diameter of the circle of radius r, 

described when intersecting at 0oθ = , as shown in Figure 3:

This method requires the delimitation of the hydrographic basins 
in a flat figure, such as a planialtimetric chart. The plane π , depicted 
in the figure above, is not the same plane on which each watershed 
analyzed is delimited, but otherwise the plane whose rotation describes 
the necessary angle of inclination of the intersection between the 
cylinder with a circular base and the plane itself ( )π so that this (the 
intersection) results in the ellipsis whose ratio between the semi-axes a
b

, discussed below, is equal to the same ratio a
b

calculated for the 

ellipsis that approximates the shape of the basin.

Figure 3 Cylinder and transverse intersection by plane . Source: The 
Authors (2023).

As the plane π  is rotated, the intersections with the cylinder begin 
to describe ellipses until, when 90oθ = , the longitudinal section will 
be an infinite rectangle. Therefore, the sections obtained as a function 
of the angle θ  must be carried out, according to Figure 4:

Hence it is concluded that equation 25 is true: 
*a r sec sec

b r
θ θ= =                                                (25)

Figure 4 Sections on cylinder as a function of angle . Source: The authors 
(2023).

Where r is the radius of the circle obtained from the intersection 
of theπ  plane with the cylinder when 0oθ = , and θ  the angle of 
rotation of the π  plane around the axis of the diameter of the circle 
generated when 0oθ = . 

We can determine the ab ratio for the ellipses that approximate the 
shape of the watersheds by transforming the referred geometric shapes 
into points on the curve of the secθ  function within the 0  90o oθ≤ ≤  
interval. Thus, we can draw the tangent lines to the curve of the 
function at each point corresponding to the ellipsis of a watershed 
and calculate the angle formed between them. This is a parameter that 
indicates the behavior of the curve between the points and, therefore, 
a comparison between them within the function. Figure 5 shows this 
condition. 

Figure 5 Tangent lines to the secant curve. Source: The authors (2023).

Since line s is tangent to the curve at point A, and line t is tangent 
to point B, we want to measure the angle ε , formed between them. A 
priori, formula 26 is true: 

2 1ε α α= −                                                               (26)

Being 1α  and 2α  the angles of inclination of the tangent lines, 
such that always 2 1α α> . For 'sec θ  as the first derivative of the 
function ( ) 'f secθ θ= , equation 27 is true:

( )2* sensec sec tg
cos

θθ θ θ
θ

= =′                                  (27)

Equation 28 is, therefore, verifiable: 

( )
2

2 bcos
a

θ  =  
 

                                                       (28)

As the fundamental equation of trigonometry, or equation 29, 
states: 
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( ) ( )2 2 1sen cosθ θ+ =                                              (29)

Equation 30 is true: 

( )
2

21 1 bsen cos
a

θ θ  = − = −  
 

                          (30)

Therefore, equation 31 is equally verifiable: 
2

2 2

2

1
* 1

b
a a bsec

b ab
a

θ

 −  
    = = −   
    

 
 

′                 (31)

Thus, equation 32 is true: 

2 2
2 * ** 1

2 * *
tg sec γ ργ ρµ α θ

γ ργ ρ

   +
= = = −      + 

′
 

 (32)

The value of the tangent of the angle α  (angular coefficient of 
the tangent line to the curve at the point, that is, the derivative of the 
function at that point) can be 1α α=  or 2α α= , and µ  is the value of 
the tangent of the angle α , and 'γ and 'ρ are the parameters for the 
main watershed (the one in which the river with the largest volume is 
located). Thus, equation 32 is broken down into equation 33: 

2 2
2* * '' '' ' * 1

' '2* * '
tg sec γ ργ ρµ α θ

γ ργ ρ

   +
= = = −      + 

′

′ 
′  (33)

Can be 1α α′ =  or 2α α′ = , and µ′  are the tangent value of the 
angleα′ . Thus, whereas for function secθ  ( 0 90o oθ≤ ≤ ), we can 
conclude that the greater tgα  is, the greater α  will be, and therefore 

2 1tg tgα α> . Thus, if 'tg tgα α> , 2α α= and 1 'α α= , and if 
'tg tgα α> , 1α α= and 2α α′ = , emphasizing that 2 1α α>  (always). 

This is true since the tangent function, ( ) ( )f tgθ θ= , increasing. 

From trigonometry, we know equation 34 starts: 

( ) 2 1
2 1

2 11 *
tan tantan tan

tan tan
α αε α α
α α
−

= − =
+

                   (34)

Defining tan(α₂) = µc and tan(α₁) = µd, and applying the arctan, we 
obtain, the equation 35 is addressed: 

*1
c d

c d
arctan µ µε

µ µ
 −

=  
+ 

                                              (35)

And cµ  being the greater value between µ  and 'µ , and dµ  being 
the smallest between them. Therefore, 35 is the third main equation 
of the method, in which ε allows comparing the main basin with the 
others in terms of shape. 

For the main equations, k and j will have km as their unit, while 
ε  will be considered in degrees. Thereafter, the dependence between 
the basin shape indicators (k and j) and the comparison  between the 
main basin and each of the others analyzed will be assessed graphically 
and algebraically. Therefore, we will develop two scatter plots. Since 
both will have the  data on the x-axis, the first one will have the k 
values on the y-axis, while the second will have the j data on this same 
axis. Its trend line will be drawn so that it has the most convenient 

formation law, that is, the one that most closely approximates the 
curve resulting from the scattered points. 

Figure 6 and 7, with exclusively illustrative purpose, exemplify 
that situation, using demonstrative values that do not correspond to any 
actual set of watersheds. Trend lines were obtained in Excel, using the 
tool designed to obtain approximation functions and considering the 
function options that best visually fit the sets of scattered points. As for 
trend lines, we remind that, for a set of n points, there will always be 
a polynomial of degree n capable of algebraically describing a curve 
that passes perfectly through all n points of the set. Preliminary this 
fact would eliminate the need to use trend lines. However, we must 
understand that, in Civil Engineering, the most used computational 
tools have limitations related to the order of approximation functions 
and their type, making the demand for trend lines not be overcome so 
easily. The following procedure was used for all points of both graphs 
during the calculations when applying the method. However, for the 
deduction of the last necessary formula, it is sufficient to have a point 
as an example, as shown in Figure 8. In the method’s script, the point 
is horizontally projected onto the trend line so as to reach the region 
closest to it and keep its image on the axis y. Then, another point is 
created on the curve from the projection so that the tangent line to the 
curve at the given point is determined. Then, a straight line parallel 
to the referred one is drawn to pass through the original point, finally 
calculating the distance between the two straight lines. 

Figure 6 Chart k x ε. Source: The authors (2023).

Figure 7 Chart k x ε. Source: The authors (2023).

Figure 8 Lines and point projection. Source: The authors (2023).

The point A is part of the graph k x ε . A” and is its horizontal 
projection on the trend line expressed as a 2nd degree polynomial. r is 
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the tangent line to point A”, and u is the line parallel to r and passing 
through the point A. Initially, one must define r: 

Being f(x) the function corresponding to the trend line formation 
law and obtained using computational tools so that this is the function 
that best approximates the scattered points. Knowing the coordinates 
of point A (the ellipsis that approximates a hydrographic basin) and 
being A ( ε ; k), A” has the same value as k, while its value of ε  is 
the one whose application in the equation of the curve results in an 
image equals k. Therefore, if it is point A” ( "ε ; k), equation 36 must 
be completed:

( )"f kε =                                                     (36)

That is, k is the very image of "ε . Thus, to find "ε , just isolate the 
variable x in the trendline equation, putting y k= . After calculating 
said value, you must find the angular coefficient of r, which is given 
through equation 37: 

( )' "m f ε=                                                   (37)

Being m the angular coefficient of the tangent line to the trend line, 
and f’(x) the first order derivative of f(x). 

This means that the angular coefficient of r is obtained by 
substituting "ε in the variable x in the first-order derivative of f(x). As 
we know that r passes through point A”, we can calculate the linear 
coefficient, since we have equation 38: 

* "k m nε= +                                               (38)

Where n the linear coefficient of the tangent line to the trend line. 

Therefore, equation 39 is valid: 

* "n k m ε= −                                              (39)

Applying equation 37 to equation 39, we obtain equation 40, 
which represents r in *y m x n= + . 

( ) ( )( )' " * ' " * "y f x k fε ε ε= + −              (40)

For the line u, equation 37 is also valid, since the lines are parallel 
and their angular coefficients are equal. Since y k=  is again at point 
A, through which u passes, it is correct to say that what translates into 
equation 41, which represents u in the form *y m x n= + , is true.

( ) ( )( )' " * ' " *y f x k fε ε ε= + −                  (41)

To find the distance d between them, consider the geometric 
formula 42 below:17

2 2

C D
d

A B

−
=

+
                                                (42)

Being A, B, C, and D the parameters for two straight line equations 
in the form * *  A x B y C+ =  and * *A x B y D+ = . 

Thus, we have equations 43 and 44 below: 

r: ( )” * '( ")*å"f x y f kε ε′ − = −                           (43)

Where ( )' "A f ε= , 1B = − , and ( )' " * "C f kε ε= − . 

u: ( )” * '( ")*åf x y f kε ε′ − = −  (44)

Where ( )' "A f ε= , 1B = − , and ( )' " * D f kε ε= − . 

So, equation 45 is true: 

( )( )2' ” 1
l m

id
f

µ µ

ε

−
=

+
                                            (45)

Being di  the observed graphic distance for each basin, lµ the 
highest value between ( )' " * "f kε ε −  and ( )' " * f kε ε − , and μm the 
smallest between them. 

Similarly, this holds for j, where lµ  is the largest value between 
( )' " * "f jε ε −  and ( )' " * f jε ε − , and μm the smallest between 

them. 

After that, we can calculate the arithmetic mean of the distances 
using equation 46 (BUSSAB & MORETTIN, 2013):

1
N

ii
i

d
d

N
== ∑                                                          (46)

Being id  the average of the distances, and N is the number of 
basins studied. 

Finally, di and id  can be compared in the following sense: i id d<  
(basin inside the mean), i id d>  (basin outside the mean) and i id d=
: basin in the mean. 

Some practical remarks about this script are: for the main basin, 
0ε =  (always), since the corresponding point will be compared 

with itself; the study should not evaluate less than three basins, since 
the method will lose its effect as the trend line would be a straight 
line passing precisely through the single point or the two points in 
dispersion, so that the distances measured between the two parallel 
lines in the graphs would be null.

Deduction of the vertical projection equations 

Similarly to the development of the horizontal projection of 
points, the vertical projection can be introduced. Therefore, Figure 
9 demonstrates this mathematical tool’s geometric and analytical 
principle within differential and integral calculus. In the figure below, 
A is the original point, A’ is the projected point, s is the line tangent 
to the curve at A’, and v is the line parallel to s and passing through A. 

Figure 9 Vertical projection of the point and auxiliary lines. Source: The 
authors (2023).

Thus, under the same line of reasoning as the deduction for the 
projection on y, the projection on x can be considered to obtain 
equations 47 and 48, which refer to k, but which equally serve to j: 

( ) 1*k f nε ε′= +
                                                   

 (47)

( ) 2*k f nε ε′ +′=                                                     (48)
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Being k the image of the original point, k’ the image at the 
projected point, ε  the value on the axis x for both points, n1 the linear 
coefficient of the line passing through the original point, and n2  the 
linear coefficient of the tangent line to the trend line. 

Therefore, we proceed to equations 49 and 50 for the real and 
projected points.

( )1 *n k f ε ε′= −                                                        (49)

( )2 *n k f ε ε= −′ ′                                                       (50)

In this case, we obtain equations 51 and 52: 

( ) ( )* *f k f kε ε ε ε− = ′ −′                                      (51)

( ) ( )* * 'f k f kε ε ε ε− = ′ −′ ′                                    (52)

Being ( )'A f ε= , 1B = − , ( )' *C f kε ε= − , and 
( )' * 'D f kε ε= − , we can conclude that equation 53 is valid, which 

calculates the distance dj between lines for the projection on x: 

( )( )2' 1
n o

jd
f

µ µ

ε

−
=

+
                                                  (53)

Being nµ  being the largest value between ( )’ *f kε ε −  and 
( )’ * 'f kε ε − , and oµ  being the smallest value.

Deduction of the compound projection equation 
After specific deductions of di  and dj, we can find the distance 

dc given by the composite projection, which is the geometric mean 
between the distances calculated for the horizontal and vertical 
projections. Equation 54, in turn, demonstrates how this geometric 
mean is calculated:18 

*c i jd d d=
                                                          

 (54)

Thus, we can compare individual and average distances for the 
three types of calculated distances: the horizontal projection (di), the 
vertical projection (dj) and the composite projection (dc).

Calculating the semi-axes of the ellipsis

We obtain measurements as follows: the distance between the 
watershed mouth and the farthest point from it is measured as the 
longest axis of each approximation ellipsis. The parameter a, in turn, 
is half of the distance. Parameter b is determined as the arithmetic 
mean between the distances (right and left) from the central point 
of the major axis to the edges of the respective basin, such that the 
measurements are made on the axis perpendicular to the major axis. 
Such segments are highlighted in Figure 1 in black. We used the 
AutoCAD software in the measurements on a contour map. 

Results
Table 1 summarizes the data from the measurements made in the 

three hydrographic basins studied. These measurements allowed the 
calculation of the semi-axes of the approximation ellipses and their 
use as input parameters for the script calculations.

Table 1 Dimensions of watersheds. Source: The authors (2023)

Major axis (2*a) (km) 
Longest 
Perpendicular 
Distance (km) 

Smallest 
perpendicular 
distance (km) 

Basin 1 87,5658  19,0106  9,7155 
Basin 2 153,9927  50,1284  4,8250 
Basin 3 153,9927  17,5906  12,9690 

Table 2, on the other hand, provides the calculated values of the 
distances resulting from the horizontal projection for basins 1, 2, and 
3, representing parameters k and j, according to the indexes indicated.

Table 2 di for k and j (lu). Source: The authors (2023)

di1k 0,00023866
di2k 0,00000546
di3k 0,00002206
di1j 0,00027826
di2j 0,00003780
di3j 0,00091246

Table 3, in turn, provides the average values of the distances 
resulting from the horizontal projection concerning parameters k and 
j.

Table 3 id  to k and j (lu). Source: The authors (2023)

 ikd 0,00008873 

i jd 0,00040951 

Concerning these results, we draw attention to what is written in 
Table 4, that is, basin 1 is considered outside the mean for k. Basin 
1 is inconsistent with the average behavior, represented by the trend 
line. At the same time, it can be seen that for j this is true for basin 3.

Table 4 Analysis of the horizontal projection results.  Source: The authors 
(2023)

As for k x ε  
Basin 1  OUTSIDE THE MEAN NOT IN THE MEAN
Basin 2  INSIDE THE MEAN NOT IN THE MEAN
Basin 3  INSIDE THE MEAN NOT IN THE MEAN

As for j x ε
Basin 1  INSIDE THE MEAN NOT IN THE MEAN
Basin 2  INSIDE THE MEAN NOT IN THE MEAN
Basin 3  OUTSIDE THE MEAN NOT IN THE MEAN

As for the vertical and composite projections calculations, the 
procedures were only performed for parameter k, to save time. 
However, the same can be applied for j. All these results have been 
tabulated, starting from Table 5, which is designated to introduce the 
values of calculated values of the distances resulting from the vertical 
projection for basins 1, 2, and 3.

Table 5 dj to k (lu). Source: The authors (2023)

dj1k 0,00003251 
dj2k 0,00000548 
dj3k 0,00003522 

To keep the reasoning behind the work, Table 6 presents the 
status of “outside the mean” for basins 1 and 3, meanwhile basin 2 is 
classified as “inside the mean”. In this case, basin 3 is the only basin 
with a different configuration from that to be found in Table 4.

Table 6 Analysis of the vertical projection results. Source: The authors (2023)

As for k x ε
Basin 1  OUTSIDE THE MEAN NOT IN THE MEAN
Basin 2  INSIDE THE MEAND NOT IN THE MEAN
Basin 3  OUTSIDE THE MEAN NOT IN THE MEAN

https://doi.org/10.15406//ijh.2025.09.00419


Calculation method for the classification of water basins shape within a specific basins set 186
Copyright:

©2025 Bueno et al.

Citation: Bueno GC, Pereira CE. Calculation method for the classification of water basins shape within a specific basins set. Int J Hydro. 2025;9(4):180‒187. 
DOI: 10.15406/ijh.2025.09.00419

For the compound projection, Table 7 has been designed to 
introduce the calculated distances for parameter k, including the same 
3 basins.

Table 7 dc to k (lu). Source: The authors (2023)

dc1k 0,00008808 
dc2k 0,00000547 
dc3k 0,00002787 

To conclude the results section, Table 8 shows basins 1, 2 and 
3 in the same status configuration that can be found in Table 4 for 
parameter k.

Table 8 Analysis of the composite projection results.  Source: The authors 
(2023)

As for k x ε
Basin 1  OUTSIDE THE MEAN NOT IN THE MEAN 
Basin 2  INSIDE THE MEAN NOT IN THE MEAN 
Basin 3  INSIDE THE MEAN NOT IN THE MEAN 

In this regard, while basins 1 and 2 maintain their respective 
status of outside and inside the mean in all projections, basin 3 shows 
changes, going from inside to outside the mean from the horizontal 
to the vertical projection, and returning to inside the mean in the 
composite projection.

Discussion
As Table 1 stablishes, the descending order for the major axis, the 

longest and the smallest perpendicular distance is, respectively: basin 
2, basin 1 and basin 3; basin 2, basin 1 and basin 3; basin 3, basin 
1 and basin 2. Furthermore, basin 3 is the one in which the longest 
perpendicular distance is the closest to the smallest, meanwhile basin 
2 is the one with the biggest disproportion related to the perpendicular 
distances. That information is relevant to demonstrate differences in 
the basins’ shapes are significant, especially when basins 2 and 3 are 
placed in a pair to be directly compared.

As shown by Table 2, the descending order for di related to the k 
x ε  analysis is basin 1, basin 3 and basin 2, revealing basin 1 has the 
furthest position to the trend line in terms of the horizontal projection, 
and that basin 2 has the closest. Meanwhile, the descending order 
for di in terms of the j x ε  analysis is basin 3, basin 1 and basin 2, 
which indicates that basin 3 is the one with the furthest position to 
the trend line in terms of the horizontal projection, and that basin 2 
has the closest position. So, the fact that analyses based on different 
parameters can bring notably different results is demonstrated by 
that situation and should be emphasized. Those results are useful to 
identify the differences in the behavior of curves stablished for k x  
and j x ε , which is something predictable, since the trend lines are 
oriented by fundamentally different parameters.

Table 3 shows that the average value of the di for the j x ε  analysis 
is higher than the one for the k x ε  analysis. That is a predictable 
result, due to what is demonstrated in Table 2, in which bigger values 
of the distance can be seen for basins 2 and 3, since basin 1 is an 
exception, as it keeps its values of di reasonably close for both k x 
ε  and j x ε  analyses. Those data are important to point out the 
difference in susceptibility of basins’ geometrical conditions to the 
change of parameters that guide the analysis. It is not something that 
happens particularly in this case. It is something that is shown as 
possible to happen in many other analyses.

In addition to stablishing there are no values of di that are in in the 
mean, or exactly equal to the average values calculated for each one of 

the analysis, Table 4 reinforces how different choices of the parameter 
to substantiate the analyses can bring different results. Objectively, 
basins 1 and 3 switch conditions from k x ε  to j x ε  analysis. Basin 
1 holds an “outside the mean” state in terms of k x  and an “inside the 
mean” in terms of j x ε . Meanwhile, the opposite happens to basin 
3, and basin 2 keeps its state stable as “inside the mean”. That shows 
how the difference in sensitivity of basin’s condition to the change 
of the parameter to guide the analysis, as described in the previous 
paragraph, has an impact on the status comparison between k x ε  
and j x ε  analyses, since the average distance is conditioned by all the 
distances calculated, which are directly influenced by that sensitivity.

At this point, there are some comparisons that need to be made. 
The first one includes Table 2, 5 and 7. In descending orders, as dc is 
the geometric mean of di and dj, it is always going to exist between di 
and dj. So that is why all the results from Table 7 occupy the second 
position in the orders to be stablished. To conclude this reasoning, 
for basin 1, di is the biggest distance calculated, meanwhile dc is the 
second one, and dj is the smallest. For basin 2, dj is the biggest distance 
calculated, meanwhile dc is the second one, and di is the smallest. For 
basin 3, the same configuration that appears in the case of basin 2 
is verified to be true. This is a relevant result, since it means that, in 
terms of k x ε  analysis, basin 1 presents greater proximity to the curve 
when it comes to the vertical projection (dj is the smallest distance), 
meanwhile basins 2 and 3 reveal that they have that condition in 
relation to horizontal projection (di is the smallest distance).

One point to be emphasized is that the difference between di and 
dj for basin 2 is very small, at least if compared to what happens to 
basins 1 and 3. On the other hand, basin 1 suffers the largest variation 
between both distances. Those data reiterate that the behavior of each 
basin when compared to the behavior predicted by the trend line 
changes due to the chosen projection. In relation to the basins this 
work focuses on, that information is relevant to demonstrate greater 
regularity of basin 2 in terms of its conditions when compared to the 
trend line’s behavior, since di and dj present more remarkable proximity 
for that basin. Simultaneously, basin 1 occupies the last position in 
the aspect of regularity, which leads basin 3 to automatically get the 
second. 

Furthermore, the comparison between Table 4, 6 and 8 reveals 
that the choice of the projection also has an influence on the result 
supposed to classify basins as “inside the mean”, “in the mean” or 
“outside the mean”. Basin 1 keeps its state as “outside the mean” 
in every case of projection. Basin 2 keeps its behavior as an “inside 
the mean” in every case. However, basin 3 presents an “inside the 
mean” condition for the horizontal and the composite projections (di 
and dc, respectively) and an “outside the mean” one for the vertical 
projection (dj). The significance of those data is to emphasize that, 
besides presenting the greatest regularity in relation to di and dj, basin 
2 has is perfectly regular in the status classification, being stablished 
as “inside the mean” to any chosen projection (in the k x ε analysis). 
Meanwhile, basin 1, the basin with the greatest irregularity in di and 
dj comparison, presents regular “outside the mean” status for all the 
projections (for k x ε  analysis). That leads basin 3 to be the only one 
to revel irregularity in its status.19

Conclusion
Once the calculations with the equation have been completed, 

the method is applicable effectively for a set of watersheds, as 
proposed (minimum of 3 watersheds). Moreover, the equations for 
the trend lines should be adapted to reproduce accurately average 
behavior of the set of ellipses, thus minimizing the errors inherent 
to the calculation process. Finally, it is also interesting to note the 
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possible need to subdivide regions with many river basins into smaller 
sets, avoiding failures during the graphical analysis. Moreover, the 
different results each analysis can offer by being developed based on a 
different parameter and using distinct projections reveal how applying 
a variety of methods can make the work of classifying basins from 
a certain group more robust. For that, it is important to elaborate a 
comparison between the different results obtained. In the aspect of 
the 3 basins, general diagnosis for k x  analysis stablishes that basin 
1 presents the most divergent geometrical behavior in relation to 
trend line curve, since it is classified as “outside the mean” for all 
3 projections. Under the same analysis, basin 2 is the one with the 
closest geometrical behavior in terms of proximity to the trend line 
curve. Basin 3, on the other hand, stands out as the most inconstant 
one. For the briefer j x  analysis, the overall classification changes, 
revealing basins 1 and 2 as “inside the mean” and basin 3 as “outside 
the mean” for horizontal projection.
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