

Organic carbon in the climate crisis: a decade of bibliometric insights into global trends, gaps, and sustainable pathways

Highlight

- I. Organic carbon drives and mitigates climate change.
- II. SOC sequesters CO₂ but human activity disrupts balance.
- III. Post-Paris, OC research surged, peaking in 2021.
- IV. Biochar and Blue Carbon key but need scalability.

Global South research gaps highlight collaboration need.

Volume 9 Issue 3 - 2025

Kemal Adem Abdela,¹ Abdisa Abebe Gerbi,² Endris Ali Mohammed,³ Bekalu Melis Alehegn,² Deriba Mulata Megersa³

¹Department of Environmental science, College of Agriculture and natural resource, Assosa University, Ethiopia

²Department of soil resource and watershed management, College of Agriculture and natural resource, Assosa University, Ethiopia

³Ethiopia Meteorological Institute, Addis Ababa, Ethiopia, 1090

Correspondence: Department of Environmental science, College of Agriculture and natural resource, Assosa University, Ethiopia

Received: September 21, 2025 | **Published:** October 14, 2025

Abstract

Organic carbon (OC) is a critical yet paradoxical component of Earth's climate system, simultaneously driving and mitigating climate change. This study synthesizes insights from 516 articles published between 2012–2022 to evaluate global scientific efforts addressing OC's role in climate change and global warming from Web of Science Core Collection. Using advanced bibliometric mapping, we analyze research trends, collaborations, and underrepresented domains. Soil organic carbon (SOC), the largest terrestrial carbon reservoir, regulates atmospheric CO₂ but is destabilized by deforestation, land-use change, and rising temperatures, exacerbating emissions when disturbed. Following the 2015 Paris Agreement, OC-related research surged by 42%, peaking in 2021 amid global carbon neutrality pledges. China (33.05%) and the United States (29.22%) led publication output, while European nations like Denmark demonstrated exceptional collaborative networks, underscoring the value of international partnerships. Emerging strategies such as biochar application and coastal ecosystem conservation show promise for

carbon sequestration but face economic and policy implementation barriers. Critical gaps persist in understanding OC dynamics in vulnerable tropical regions and northern peatlands—key carbon sinks that remain understudied. Furthermore, limited inclusion of Global South perspectives and insufficient interdisciplinary collaboration impede equitable, context-specific solutions. This study emphasizes the urgency of fostering global cooperation to address spatial and disciplinary disparities, aligning research with policy frameworks to meet the 1.5°C climate target. Prioritizing the protection of carbon-rich ecosystems, advancing sustainable land management, and scaling nature-based solutions are vital. By bridging geographical and institutional divides, OC research can catalyze transformative, collaborative action to enhance climate resilience and achieve carbon neutrality, ensuring equitable progress toward global sustainability goals.

Keywords: Organic Carbon (OC), Soil Organic Carbon (SOC), climate change mitigation, bibliometric analysis, nature-based solutions, global south

Introduction

The Earth's climate system is intricately related to the global carbon cycle, in which organic carbon (OC) acts as both a driver and a mitigating factor of climate change.¹ Photosynthesis in terrestrial and marine ecosystems is a key carbon sink that absorbs atmospheric CO₂ and stabilizes world temperatures.^{2,3} However, anthropogenic activities—including fossil fuel combustion, deforestation, and intensive agriculture—have disrupted this equilibrium, releasing approximately 110 billion tons of carbon annually and elevating global surface temperatures by 0.9°C since the pre-industrial era.⁴ This imbalance underscores the urgency of managing carbon sinks, such as forests and soils, to offset emissions and mitigate warming trends.

Central to this issue is soil organic carbon (SOC), the greatest terrestrial carbon store, containing an estimated 2,700 gigatons (Gt) globally—triple the carbon content of the atmosphere and plants combined.^{5,6} Soil organic carbon (SOC), comprising 58% of soil organic matter, regulates greenhouse gas dynamics by governing carbon mineralization and anaerobic degradation pathways. It also acts as a long-term carbon sink, mitigating atmospheric CO₂ levels.^{7,8} SOC's dual roles as a source and reservoir of greenhouse gases highlight its critical influence on global climate systems, emphasizing the need for sustainable soil management to balance carbon emissions and sequestration.^{9,10} Yet its stability is threatened by environmental factors: rising temperatures accelerate microbial decomposition, converting stored carbon into CO₂ or methane and exacerbating global warming through feedback loops.^{11,12} Land-use practices like tillage, urbanization, and peatland drainage destabilize soil organic

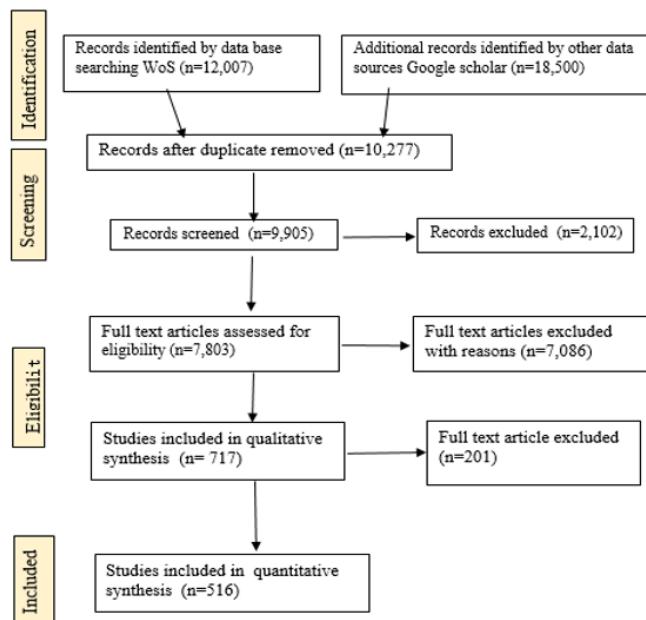
carbon, releasing greenhouse gases, contributing 12–15% of global CO₂ emissions.^{13,14} Sustainable land management is crucial to preserve SOC stocks and mitigate climate impacts.¹⁵

These disruptions manifest in cascading ecological crises, including glacial melt, sea-level rise, and extreme weather events, which jeopardize biodiversity, food security, and human livelihoods. International efforts, such as the Paris Agreement and national carbon neutrality pledges, aim to curb emissions by 2050. Novel approaches to carbon sequestration and climate resilience have surfaced, such as the use of biochar and the maintenance of Blue Carbon (BC) ecosystems, which focus on seagrass beds, mangroves, and coastal wetlands. Critical gaps still exist despite advancements.¹⁶ With a disproportionate emphasis on temperate regions and little integration of socioeconomic issues, research on SOC dynamics is still fragmented. Furthermore, the underrepresentation of research from the Global South impedes the development of equitable and context-specific remedies.

This study uses CiteSpace to analyze research trends, partnerships, and knowledge gaps from 2012 to 2022 in organic carbon-climate research. The investigation focuses on the progress of organic carbon-climate research, geographical and institutional differences in research output and collaboration, and significant hurdles preventing successful organic carbon management for climate mitigation.

The popularity of nature-based and technology solutions for carbon neutrality is expected to rise beyond 2020. However, regional imbalances and fragmented methodologies persist. This paper presents practical recommendations for safeguarding soil oxygen content (SOC), expanding biochar usage, and promoting global collaboration to align carbon management with the 1.5°C climate objective.

Data and methods


Eligibility criteria and processing

A bibliometric analysis was conducted to evaluate the role of organic carbon in global warming and climate change, following the PRISMA framework (Figure 1). The initial search identified a large corpus of literature, with 12,007 records sourced from the Web of Science (WoS) Core Collection and an additional 18,500 records from Google Scholar. After removing duplicates and screening titles and abstracts for relevance, 9,905 articles from WoS were assessed for eligibility. A subsequent rigorous full-text review refined this pool, ultimately identifying 516 qualified articles published between 2012 and 2022 for the final quantitative synthesis. Data processing and visualization were performed using CiteSpace (v6.1.R6) and VOSviewer, with records exported to plain text and Excel for systematic analysis.^{17,18} This transparent selection process underscores the growing interest in organic carbon dynamics, highlights regional biases and knowledge gaps, and promotes informed decision-making through the consistent application of PRISMA standards.¹⁹

Scientometrics analysis

This scientometric study employed CiteSpace (v.6.1.R6) as outlined by Liang et al. (2021) to analyze 9,905 articles published between 2012 and 2022 from the Web of Science, focusing on global research trends regarding the role of organic carbon in climate change.²⁰ The study analyzed publication trends, identified core themes like soil carbon sequestration and biochar, highlighted leading contributors from the U.S., China, and EU, and detected emerging frontiers like blue carbon ecosystems.²¹ Post-2015, research on carbon-climate feedback increased, revealing geographic bias

towards temperate ecosystems. CiteSpace visualizations facilitated interdisciplinary connections, and linking research.^{22–24} The data for the CiteSpace analysis comprised 9,905 papers on theory and practice published from January 1, 2012, to December 31, 2022, with a total of 345,833 unique references sourced from the Web of Science.

Figure 1 Flow Diagram detailing PRISMA from 2012 to 2022.

Bibliometric network analysis framework

Bibliometric networks are analyzed using VOSviewer and CiteSpace, emphasizing the significance of strength, degree, and link in understanding relationships within scientific literature.²⁵ The analysis begins with network construction and graphs, with VOSviewer assessing relationship strength, CiteSpace assessing centrality, and a temporal and burst analysis.²⁶

Bursts, trends, and their influence

CiteSpace's burst detection and multi-perspective analysis aid in understanding research trends over time, automating data processing, and identifying underrepresented tropical ecosystems. This tool aligns studies with global challenges like climate mitigation, promoting evidence-based science and policy through quantitative metrics.¹⁷ The “multiple-perspective co-citation analysis” method was used to analyze a work with high burstiness, focusing on structural, temporal, and semantic patterns (Table S1).

Selection of nodes

CiteSpace uses two network analysis methods such as Top N per slice and g-index, which indicate the number of articles required to get g² citations.²⁷ The dataset is divided into yearly segments. The g-index dynamically identified significant nodes based on citation impact, with a predefined threshold for highly cited works. The network showcased the top 10 most cited or referenced entities within each annual slice, highlighting sustained impact over raw citation numbers.²⁸

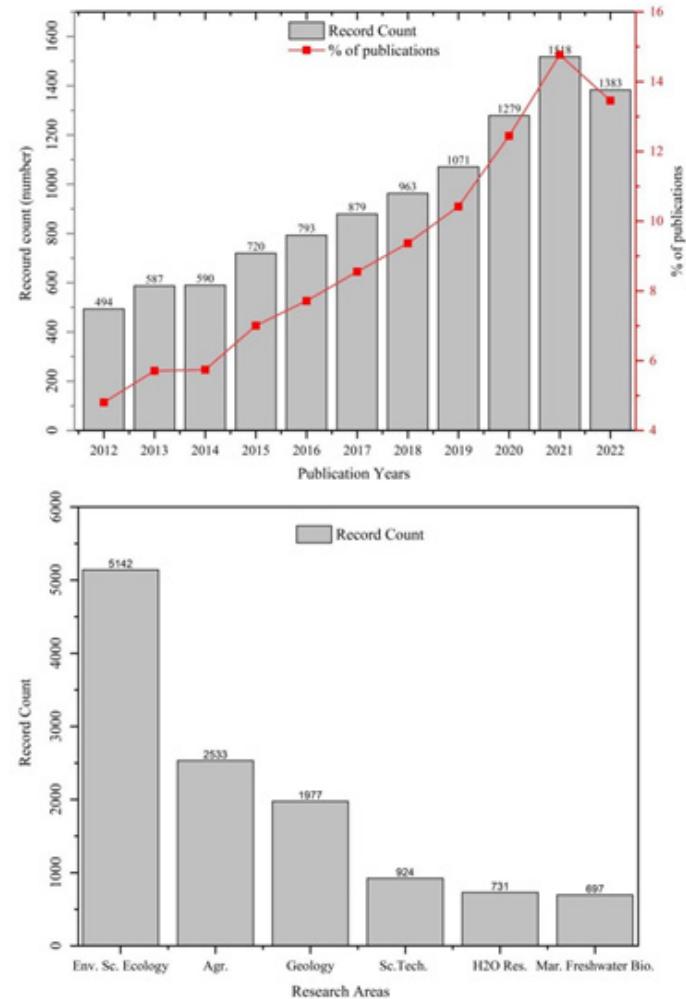
Network development

The study utilized the Web of Science database to create co-citation networks for organic carbon and climate change research trends, utilizing Author (ACA), Document (DCA), and Journal Co-

citation Analysis (JCA) methodologies and keyword co-occurrence mapping. Temporal metrics like burstiness and citation degree track research focus, while structural metrics like modularity, centrality, and silhouette scores confirm the strength of thematic groups like soil carbon and oceanic cycles. For example, high modularity ($Q>0.3$) and silhouette scores (>0.7) confirmed distinct, high-quality clusters, while centrality highlighted foundational works linking carbon cycles to climate models.^{29,30} The study utilized both quantitative and qualitative methods to identify climate science publications that highlighted policy changes and underrepresented ecosystems.

Visualization and labeling

To illustrate the evolution and connections of research themes, we used two complementary methods: a timeline view and a cluster view.³¹ The timeline view organized biochar studies chronologically, while the cluster approach connected nodes across historical periods, illustrating thematic linkages and the impact of fundamental concepts like soil carbon modeling on agroforestry carbon storage, and objectively categorized these clusters.²⁸ The study utilized dual visualization and data-driven labeling to label a cluster of terms like “peatland,” “methane,” and “thaw” as “Permafrost Carbon Feedback,” transforming complex citation networks into clear research development maps over a decade.


Results and discussions

Analysis of research trend

The analysis of publication trends from 2012 to 2022 provides important insights into the changing academic focus on the role of organic carbon in global warming and climate change. A total of 12,007 peer-reviewed articles were published, with 10,277 of them being in English (95% of their total output from 2012–2022) (Figure 1). Annual publication numbers steadily increased until 2021, exceeding 1,500 articles per year, indicating a growing global interest in scientific research and policy. However, there was an unexpected drop in 2022 (Figure 2a), which may be attributed to data delays or changing priorities after the pandemic. Initially, research was primarily focused on soil science (16.61%) and marine biology, with England and Bangladesh standing out as key contributors—the former working on policy frameworks and the latter concentrating on vulnerable ecosystems like mangroves. After 2019, the emphasis shifted significantly towards climate change adaptation and organic carbon reserves, influenced by IPCC reports and commitments to net-zero emissions. Environmental Sciences led the way (41.3% of studies), followed by Multidisciplinary Geosciences (18.78%) and Soil Science (16.61%) (Figure 2b). Research emphasizes Arctic and blue carbon habitats’ importance for carbon storage, recommending scalable solutions like improved trading systems, fair pricing, and interdisciplinary collaboration in underrepresented areas.

The number of published studies on organic carbon and global warming/climate change is strongly linked, indicating progress. China and the USA dominate the world in terms of publication number and citation due to their significant contributions to global emissions.^{32,33} The US spends more on research than any other country, yet China has the most researchers working in universities and corporations. However, their publication degrees and bursts are lower than England.³⁴ It highlighted the global reach and impact of this research. The primary areas of focus evolved over time, with Environmental Sciences, Multidisciplinary Geosciences, and Soil Science emerging as the leading topics.³⁵ The review analyzes citation counts and article relevance using rigorous exclusion criteria, focusing on key models

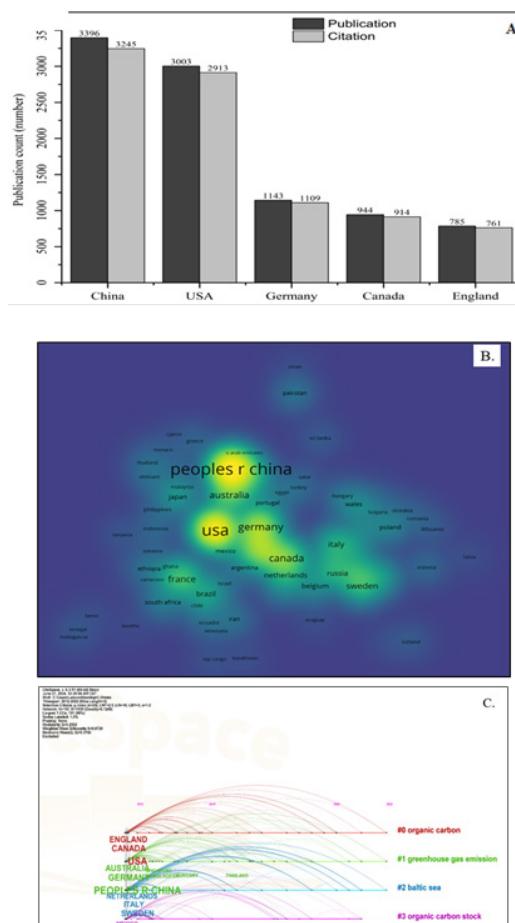
like BRT, soil erosion, CiteScore, bibliographic coupling, and organic carbon modeling community (Figure 2).³⁶

Figure 2 Analysis of Research Trend; (a) Trend in changes in the number of published papers, (b). Study areas.

The organic carbon modeling community should prioritize understanding uncertainty, performance evaluation, and standardization to standardize and evaluate carbon trading systems.^{37,38} Research from the same nation or region is often cited by researchers. The Arctic region experienced the highest warming trends from 2012 to 2022, with 2022 being the fifth-warmest year on record. Soil is the largest terrestrial organic carbon store, and soil quality impacts atmospheric carbon concentrations. Research surges due to social, political, and scientific factors, necessitating institutional cooperation for climate-friendly technology and filling gaps in the Earth System Model and Qinghai Plateau Cluster.³⁹

Analysis of research cooperation network

Analysis of research countries' collaboration


This study examined international research contributions on organic carbon and climate change from 2012 to 2022, highlighting significant collaboration among 151 countries (with a 96% cooperation rate) through a network comprising 156 nodes and 1,299 connections (density=0.146, (Figure 3). China led in both output (3,396 publications, 33.05%) and citations (3,245), closely followed by the United States with 2,913 citations (Figure 3a), emphasizing

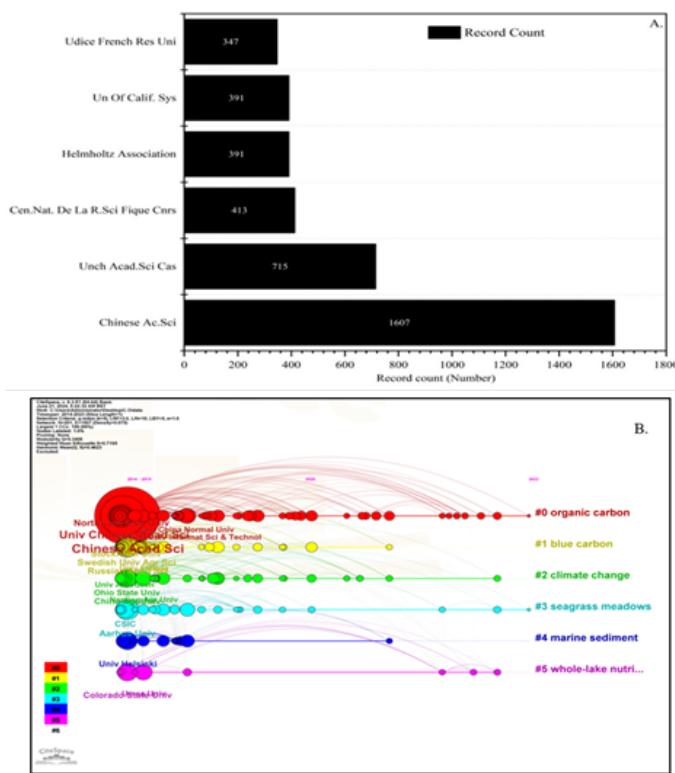
their crucial roles in advancing this field (Table S2). Notably, Denmark emerged as the most influential collaborator (degree centrality=48), surpassing major contributors like France (47) and Switzerland (47), which underscores its vital role in connecting research communities. After 2017, China and the U.S. further established their leadership, driving significant advancements in organic carbon dynamics and greenhouse gas mitigation (Figure 3b). At the same time, Bangladesh (burst strength = 6.35, 2021–2022) and Ethiopia (5.05, 2020–2022) rose as important voices, especially in climate-vulnerable regions, reflecting an increasing focus on localized impacts (Table 1). Early

contributors like England laid the groundwork for climate change research, with recent activity from Bangladesh and Egypt indicating a shift towards areas disproportionately affected by climate extremes. However, significant gaps remain in studies on tropical farmland and environmental variables integration (Figure 3c, Table 1). European nations excel in Arctic research, but tropical ecosystems are underrepresented, highlighting the need for equitable partnerships to address geographic and thematic imbalances and align science with global climate resilience objectives.

Table 1 Top 10 Countries with the strongest citation bursts

Countries	Year	Strength	Begin	End	2012 - 2022
England	2012	10.09	2012	2012	
Bangladesh	2013	6.35	2021	2022	
Ethiopia	2012	5.05	2020	2022	
Egypt	2012	4.29	2021	2022	
Venezuela	2013	4.1	2013	2015	
Mexico	2012	3.31	2012	2012	
Zimbabwe	2015	3.27	2015	2016	
Madagascar	2014	2.85	2016	2018	
Nepal	2014	2.84	2019	2019	
Italy	2012	2.64	2012	2012	

Figure 3 Countries' researched publication, Citation and clustering; (a) Countries publications and citations, (b) Countries clustering in citospace (c) Tree time graph of countries Clusters of countries publication (where N=156, E=1299, Density=0.1074, S=0.68, QS=0.4117).

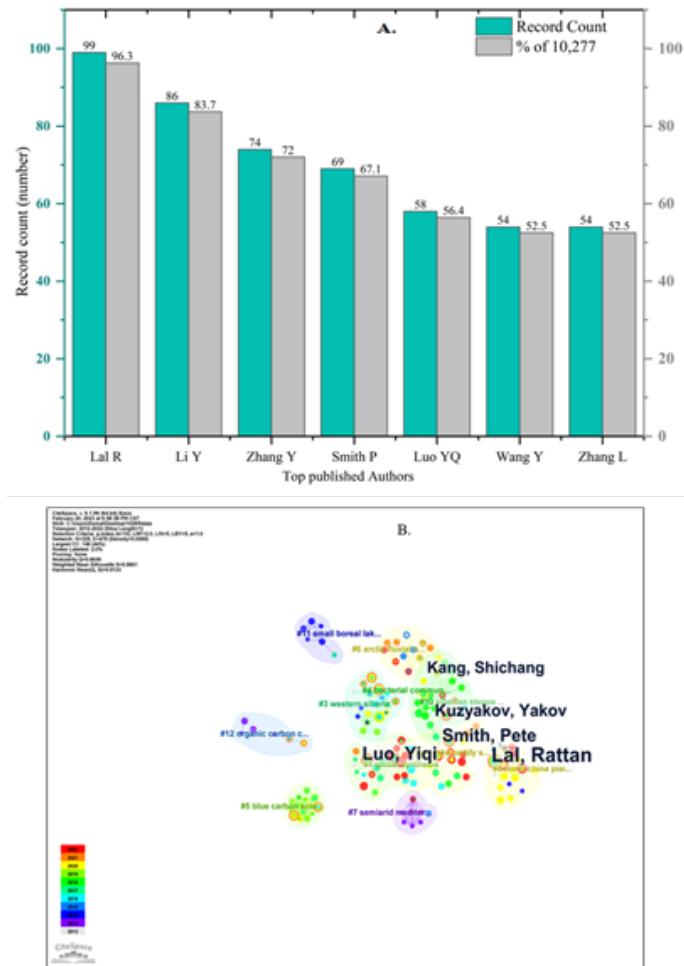

Research institutions analysis: collaboration and impact

This study examined global research collaboration on organic carbon and climate change among 487 institutions from 2012 to 2022, uncovering a network of 3,169 partnerships (density=0.0288), with 96% of institutions actively engaged in collaboration.⁴⁰ The Chinese Academy of Sciences (CAS) led in citations (1,452 citations, Cluster #1: Earth System Models), highlighting its crucial role in foundational climate research (Figure 4a, Table S3). Meanwhile, the University of Quebec stood out as the most influential collaborator (degree centrality=12.88) and showed the strongest citation burst (strength = 13, 2012–2016), emphasizing its leadership in interdisciplinary networks (Table 2). Thematic clusters identified the Qinghai-Tibetan Plateau (Cluster #0) as the most extensively researched area, concentrating on high-altitude carbon dynamics (Figure 4b).⁴¹ Institutions such as INRA (2014–2019) and CSIRO Land & Water (2012–2017) maintained significant 5-year research lifespans, contributing to advancements in soil and water carbon studies. Despite these advancements, notable gaps remain in northern peatland systems, earth system feedback mechanisms, and region-specific impacts (e.g., effects of Arctic warming). Burst analysis indicated temporary leadership from institutions like the University of Alaska Fairbanks (2012–2016, strength=10.01) and Bangor University (2012–2016, strength=7.86), while newer contributors like Iowa State University (2016–2020) indicated shifting research priorities (Table 2, and Table S3). European and Australian institutions (e.g., ETH Zurich, CSIRO) maintained consistent collaboration, while gaps in studies of tropical and boreal ecosystems highlighted the need for greater geographic inclusivity.

The Chinese Academy of Sciences and the University of China Academy of Sciences are renowned for their research on organic carbon and global warming/climate change.⁴² However, their citations do not always indicate the quality of their work. The Earth System Model and Qinghai Plateau Cluster are complex systems designed to understand and predict Earth's climate and environment, but they have gaps due to intricacy, sparse observation, changing study priorities, and technical limitations (Figure 4, Table 2).^{43,44}

Table 2 Top 10 Institutions with the Strongest Citation Bursts

Institutions	Year	Strength	Begin	End	2012 - 2022
Univ Quebec	2012	13	2012	2016	
INRA	2014	10.31	2014	2019	
Univ Alaska Fairbanks	2012	10.01	2012	2016	
CSIRO Land & Water	2012	7.99	2012	2017	
Bangor Univ	2012	7.86	2012	2016	
CNRS	2013	7.06	2013	2017	
Duke Univ	2012	6.9	2012	2016	
Univ Sydney	2015	6.25	2015	2019	
Univ Lancaster	2012	5.27	2012	2016	
Univ Texas Austin	2013	3.92	2013	2017	
Iowa State Univ	2016	3.58	2016	2020	


Figure 4 institutes cooperation in study areas A. top 6 Institutes of research record B. cluster of institutes citation and tree cite of institute citation C. link strength and citation count of institutions (N=311, E=1936, Density=0.0402, Q=0.3671, S=0.7044, QS=0.4826).

Author co-citation analysis (ACA)

Indicators of a researcher's research capability, level of cooperation, and academic influence include their publications and collaboration networks.⁴⁵ Using "author" as the node type, we obtained a graph of author cooperation relationships with 558 nodes and 990 connections.

The authors' cooperation network graph has a modularity Q score of 0.8377, 54% connections, and a network density of 0.064, indicating low cooperation. The network has several autonomous clusters but no distinct boundaries. Emerging authors like Oscar Serrano and Jin-Sheng He show strong citation bursts, with an average silhouette score of 0.8926. Rattan Lal leads with 78 citations and 30 degrees (Figure 5a). Lal Rattan (2012) and Luo Yiqi have been

awarded the most citations and degrees, indicating their significant contributions to the field. The "several viewpoints" approach, using network visualization techniques, helps analyze data structures and linkages in large databases. Understanding the Earth's carbon cycle and its impact on climate change is crucial (Figure 5a, Table 3).⁴⁶


Figure 5 Author Co-Citation Analysis (a) Authors publication in numbers (b) Authors clustering.

Publications with a high degree of betweenness were linked to two or more clusters, and hence to two or more themes (clusters).⁴⁷ Connecting themes and synthesizing ideas can transform the way

ideas are linked, resulting in a revolutionary relationship (Figure 5b). Author clustering reveals geochemistry, geophysics, and soil science as the most studied areas, with renowned researchers, but gaps exist

in environmental science, geoscience, multidisciplinary studies, ecology, green sustainable science, and technology.

Table 3 Authors burst strength and duration time

Authors	Year	Strength	Begin	End	2012 - 2022	Time
Serrano, Oscar	2019	5.36	2019	2022		4
He, Jin-Sheng	2017	5.18	2017	2019		3
Duarte, Carlos M	2017	4.78	2017	2019		3
Bianchi, Thomas S	2012	4.72	2015	2017		3
Laudon, Hjalmar	2012	4.68	2012	2016		5
Guenet, Bertrand	2018	4.33	2018	2020		3
Baldock, Jeff	2014	4.19	2017	2019		3
Aiken, George R	2012	4.03	2012	2016		5
Macdonald, Robie W	2012	4.02	2015	2017		3
Macreadie, Peter I	2015	3.89	2017	2019		3

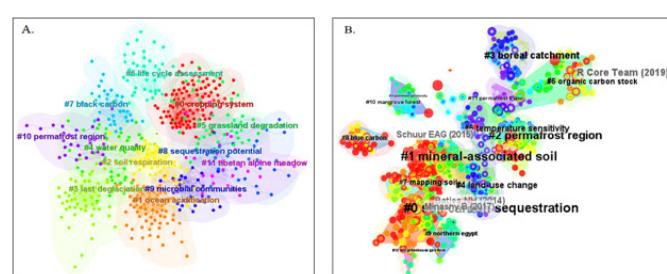
As previously stated, higher degree values indicated the novelty of publications.^{22,47,48} However, Oscar Serrano (2019) ranked first in bursts with 5.36 bursts (2019-2022), followed by Jin-Sheng He (2017) with 5.18 bursts (2017-2019). George R. Aiken (2012) had a burst of 4.03 over a five-year span (2012-2016), indicating the strength of his burst (Table 3).

A study predicts soil respiration rates based on moisture, air temperature, and rainfall, with resin-extractable phosphorus being the most accurate indicator.⁴⁹ Forest floor biomass increases soil respiration, indicating microbial deterioration. Retaining soil organic carbon can slow greenhouse gas emissions and global warming. Soil aggregates account for 90% of SOC sequestration. Reducing straw usage increases SOC absorption, decreases carbon mineralization, and increases efficiency (Figure 6, Table S4).⁵⁰

citations and links revealed that Schuur (2015) had the highest number of citations (1739) and links (40), followed by Minasny (2017) with 857 citations and 43 links, and Stockmann (2013) with 883 citations and 33 links. Other notable documents included Powlson (2014) with 464 citations and 37 links, Scharlemann (2014) with 659 citations and 31 links, and Bradford (2016) with 338 citations and 29 links. Emerging works such as Guenet (2021) and Chenu (2019) also demonstrated significant influence, with 77 citations and 28 links, and 229 citations and 22 links, respectively (Table S5).

The three largest clusters each had an activity span of approximately five years. In contrast, the smaller clusters had lifespans of only 1–4 years. Additionally, the blue carbon and mapping soil clusters started hosting from 2021 onwards. However, the boreal catchment and land use change team identified gaps in their cluster until 2015 (Figure 6b).

Keywords co-citation analysis


CiteSpace's analysis tool uses keywords to identify articles' topics, content, theories, techniques, and perspectives, aiding in subject grouping and understanding distribution, scope, and sub-clustering within research areas through high-frequency keyword extraction, co-occurrence analysis, and term identification.^{51,52}

The Web of Science (WoS) data, imported into CiteSpace, consisted of 471 nodes and 28,278 lines, forming a dense network with significant high-frequency keyword nodes. The main research hotspots were identified from keywords, with a focus on the impact of organic carbon on global warming or climate change from 2012 to 2022 (Figure 7a, b).

The most frequently used keywords were climate change, organic carbon, and soil organic carbon (Table S6). The organic carbon export was a highly studied cluster, while the organic carbon stock had a gap in study. The network, composed of eight clusters, displayed keyword bursts, with the most populous term cluster containing 135 members and classified as conservation agriculture, organic carbon, and summer bloom.⁵³

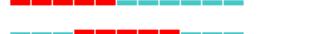
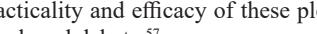
The most cited paper was “Global Soil Organic Carbon-Climate Interactions” by Jungkunst (2022). The keyword with the highest burst and size was “carbon budget” for 2014-2018, followed by “long-term experiment” for 2012-2018 (Figure 7a, b).⁵⁴

The highest-population cluster (#0) includes conservation agriculture, organic carbon, and summer bloom. Jungkunst, HF's 2022.0 paper on Global Soil Organic Carbon-Climate Interactions is

Figure 6 CiteSpace created a cluster view of the document co-citation analysis (DCA) network. A. Cluster of Document Co-Citation Analysis B. Tree time graph of authors. (N=717, E=2312, CC=625(87%), Density=0.009, modularity $O = 0.769$; average silhouette = 0.9183, OS=0.8371).

DCA (Document Co-Citation Analysis) references

The Document Co-Citation Analysis (DCA) provides a timeline and cluster view to understand the frequency and amplitude of citation bursts across 56 clusters. The largest clusters are soil carbon sequestration and mineral-associated soil, with a significant module split and decent heterogeneity, indicating high activity levels to the present (Figure 6a). The study emphasizes the need for continued research by highlighting foundational works in the field as well as gaps in smaller clusters, particularly in soil mapping and blue carbon studies.



The most cited reference was R Core Team (2019) with 424 citations, followed by Schuur EAG (2015) with 244 citations, a degree of 48, and a burst strength of 45.12, ranking it highest in both degree and burst metrics (Table 4).⁴⁵ Additional analysis of document

the most referenced. The keyword with the highest burst and largest size is “carbon budget” from 2014-2018 (Table 5).

Table 4 Top 10 References with the strongest citation bursts

References	Year	Strength	Begin	End	2012 - 2022	Degree
Schuur EAG (2015), <i>nature</i> , V520, P171, DOI 10.1038/nature14338, DOI	2015	45.12	2016	2020		48
Hugelius G (2014), <i>biogeosciences</i> , V11, P6573, DOI 10.5194/bg-11-6573-2014, DOI	2014	41.2	2015	2019		39
Batjes NH, (2014) <i>EUR J soil SCI</i> , V65, P10, DOI 10.1111/j.1365-2389.1996.tb01386.x, DOI	2014	34.27	2014	2019		<25
Stockmann U (2013), <i>agr ecosyst environ</i> , V164, P80, DOI 10.1016/j.agee.2012.10.001, DOI	2013	31.11	2014	2018		<25
Paustian K. (2016), <i>nature</i> , V532, P49, DOI 10.1038/nature17174, DOI	2016	25.54	2017	2022		29
Powlson DS. (2011), <i>eur j soil sci</i> , V62, P42, DOI 10.1111/j.1365-2389.2010.01342.x, DOI	2011	25.19	2012	2016		<25
Stocker TF. (2014), <i>CLIMATE CHANGE</i> 2013, V0, PP5, DOI 10.1017/CBO978107415324.004, DOI	2014	25.06	2015	2019		<25
Powlson DS (2014), <i>nat clim change</i> , V4, P678, DOI 10.1038/nclimate2292, DOI	2014	21.38	2015	2019		<25
Bond TC (2013), <i>J geophys res-atmos</i> , V118, P5380, DOI 10.1002/2012JD017171, DOI	2013	19.22	2014	2018		<25
Todd-Brown KEO (2013), <i>BIOGEOSCIENCES</i> , V10, P1717, DOI 10.5194/bg-10-1717-2013, DOI	2013	17.35	2014	2018		<25

Table 5 Sample keyword bursts computed via co-occurring author keywords analysis

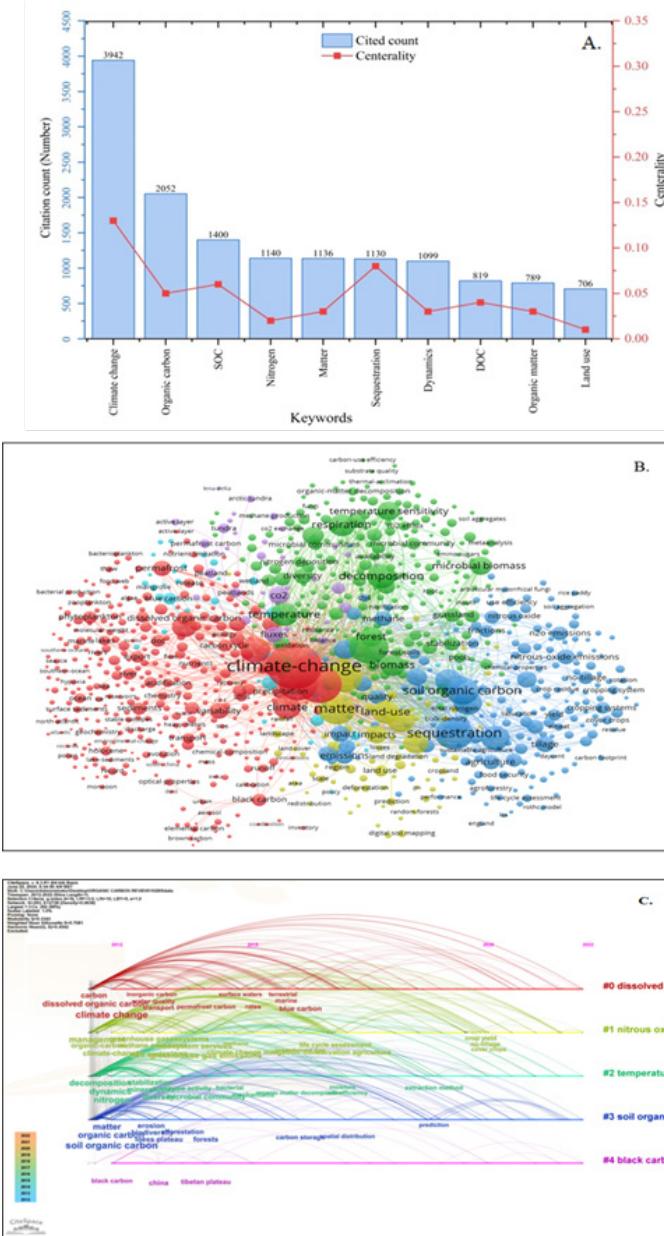
Rank	Keywords	Year	Strength	Begin	End	2012 - 2022
1.	Carbon budget	2014	7.85	2014	2018	
2.	Long term experiment	2012	7.39	2012	2018	
3.	Baltic sea	2014	6.59	2014	2018	
4.	Seawater	2012	6.38	2012	2016	
5.	Food web	2012	6.02	2015	2019	
6.	Acidification	2012	5.25	2012	2016	
7.	Benthic foraminifera	2012	5.18	2012	2016	
8.	Water table	2015	5.05	2015	2019	
9.	Bay	2013	4.96	2013	2018	
10.	Nutrient limitation	2015	4.29	2015	2019	

The CiteSpace analysis tool uses keywords to identify article topics, content, ideas, techniques, and points of view on the impact of organic carbon on global warming from 2012 to 2022. It organizes the network into eight clusters, with conservation agriculture, organic carbon, and summer bloom being the most popular (Figure 7).⁵³

The research explores the impact of climate change, organic carbon, and soil organic carbon on ecosystems. It uses terms like “climate change,” “organic carbon,” and “soil organic carbon” to measure carbon dynamics and understand their long-term effects. The focus is on sustainable practices and ecosystem-specific studies. However, gaps in research on organic carbon stocks and environmental variables suggest areas for future exploration.

Climate change and greenhouse gas emission

China and the US, the world’s largest carbon dioxide emitters, dominate global research on organic carbon and its relationship to global warming, but their academic impact may be limited by language barriers, uneven access, and research quality.^{55,56} Both nations have announced ambitious climate goals: China aims to achieve carbon


neutrality by 2060, while the U.S. targets net-zero emissions by 2050. However, the practicality and efficacy of these pledges remain subjects of active research and debate.⁵⁷

Citation trends in climate change research are influenced by factors like journal prestige, author prominence, and policy relevance.⁵⁸ China recorded the highest citation counts in 2012, likely due to its substantial research output and global urgency.⁵⁹ The U.S. followed closely, with sustained influence and robust research infrastructure. Citation bursts highlight shifting regional priorities, with Bangladesh and England experiencing sudden spikes in citation activity.⁶⁰ Rattan Lal and Yiqi Luo emerged as the most frequently cited authors in 2012 and 2015, highlighting their foundational contributions to climate science. Schuur E.A.G. also experienced a sharp rise in citations in 2015.

Soil organic carbon (SOC) retention

Climate change poses significant challenges to soil organic carbon retention, including knowledge gaps in ecosystems, Alaskan Arctic, temperature sensitivity, GHG stabilization, boreal catchments,

permafrost region, and mineral-associated soils.^{61,62} While rising global temperatures affect major river basins in different ways, the precise impacts remain unclear due to the complexity of these systems.⁶³ Climate change affects Arctic tundra and boreal forests, but hydrological models underestimate permafrost melting risks. Organic matter lability and temperature sensitivity debate, with chemically resistant carbon potentially more vulnerable.^{64,65} Research on greenhouse gas emissions from farming practices, including permafrost regions, is ongoing, with uncertainties surrounding thawing in warming environments and decomposition in fine-textured soils.^{62,66}

Figure 7 Keywords analysis, (a) Top rank cited keywords of countries publication (b) Tree time graph and Clusters.

Agricultural practices like tillage and crop rotation are causing uncertainty in long-term soil organic carbon storage and greenhouse gas emissions, while mineral-associated soils are under scrutiny due to warming.⁶⁷ The carbon release of permafrost thaw is uncertain due to insufficient data on hydrologic changes and microbial activity.

necessitating region-specific models, research in less-studied areas, and agricultural innovations.⁶⁸ Combining scientific understanding with policy efforts is crucial for mitigating climate risks.

Clustering organic carbon and global warming or climate change

Research has mainly concentrated on mangroves, organic matter, and seagrass meadows because of their crucial roles in carbon sequestration and climate regulation.⁶⁹ Mangroves are significant contributors to soil carbon storage and can transfer carbon to nearby ecosystems, including seagrass meadows.^{70,71} Seagrass meadows, occupying less than 1% of the ocean's surface, contribute to 10% of annual carbon sequestration, highlighting the importance of organic matter in soil health and ecosystem services.⁷² Research on tropical farmland's relationship with Organic Carbon and global warming is limited due to conflicting views on temperature sensitivity and carbon decomposition, and a complete transition could increase net emissions.

Key ecosystems and research gaps identified

Research on OC and its role in combating global warming has mainly focused on mangroves, seagrass meadows, and organic matter. Mangroves are key soil carbon reservoirs, while seagrass meadows contribute to 10% of marine carbon sequestration. Organic matter supports biodiversity and food security while stabilizing carbon stocks. However, uncertainties in OC dynamics, particularly in tropical farmlands and under different environmental conditions, make predictions challenging.

Research gaps in environmental science, geoscience, multidisciplinary studies, ecology, green sustainable science, and technology are significant, particularly in the context of organic carbon and global warming or climate change.^{73,74} Researchers identified key areas for future research, including integrating indigenous and local knowledge, understanding consumption patterns, effective governance systems, and equity in benefit distribution, to address climate change and sustainability challenges.⁷⁵ Multidisciplinary approaches are required to address these complex environmental problems, involving the integration of various disciplines including science, engineering, social science, and the humanities.⁷⁶

Knowledge gaps in understanding the impact of organic carbon on climate change include bore lakes, green and black carbon, ocean acidification, microbiological dynamics, and fen peat incubation. These areas require further research to improve our understanding. A global meta-analysis of soil organic carbon in the Anthropocene highlighted neglected ecosystems like wetlands as significant knowledge gaps requiring further research.⁷⁷

Factor of organic carbon and global warming

Green and black carbon

Black carbon, also known as soot, is a small particle discharged into the atmosphere by sources such as diesel engines, coal-fired power plants, and biomass burning.^{78,79} It absorbs sunlight and produces heat, similar to CO₂, a major GHG contributing to global warming.⁸⁰ Black carbon, despite its short lifespan, significantly contributes to global warming by absorbing solar radiation and generating heat, accelerating Arctic sea ice melting and potentially causing irreversible climate change.⁸¹

Ocean acidification, a 200-year-old process triggered by the industrial revolution, reduces ocean pH due to CO_2 uptake, impacting ecosystems, food supply, economy, tourism, and recreation.^{82,83} Low carbonate ions in oysters and clams hinder calcium carbonate

production, causing ocean acidification, damaging estuaries, affecting economies, and affecting nutrition. Mitigation efforts may reverse this process.⁸⁴

Microbiological dynamics

Microbiological dynamics refer to the changes in microbial communities due to environmental changes, and understanding these dynamics is crucial for forecasting the regional carbon cycle in the context of global warming.^{85,86} Climate change can affect microbial species distribution, variety, and abundance, potentially altering the trajectory of critical ecosystem processes, including the carbon and nitrogen cycles, which produce climatic gases like CO₂, CH₄, and N₂O.^{87,88}

Soil microbial communities have higher-order features due to their interactions, which are not present in individual microorganisms. Changes in the thermal state of the active layer, mostly bound in SOM, also impact the dynamics of soil organic carbon.⁸⁹

Climate change impacts microbial species distribution, abundance, and interactions, affecting their range and ecological contexts. Understanding Microbiological Dynamics and managing SOC is crucial for addressing climate change concerns and enhancing soil fertility.⁹⁰

Fen peat incubation

Fen Peat Incubation is a study that examines the decomposition rates of peat, especially in fen ecosystems, under different climatic conditions.⁹¹ Peatlands, which are major carbon sinks due to their soggy environment, are now becoming carbon sources due to decomposition and burning activities.⁹² This transition to renewable energy sources, such as rewetting drained peatlands and sustainable management strategies like paludiculture, is crucial for mitigating global warming.

Effective methods for mitigating greenhouse gas (GHG) emissions

The fight against climate change involves a multifaceted approach that includes reducing fossil fuel emissions, transitioning to cleaner energy sources, and promoting sustainable forest management.⁹³ Methane emissions are a significant part of human-caused emissions, and strategies like leak detection and repair can reduce them. Decarbonization aims to transition to zero-carbon renewable energy sources.⁹⁴ Strategic planning, stakeholder engagement, and policy alignment can accelerate renewable energy transition, with governments and organizations promoting forest conservation through legislation and economic incentives.⁹⁵

Forests act as carbon sinks, absorbing CO₂ from the atmosphere, and sustainable management ensures resources are managed to meet current demands and future generations' needs.⁹⁶ CH₄ capture is a crucial strategy for reducing greenhouse gas emissions, with a global warming potential more than 25 times greater than that of CO₂ over a 100-year period.⁹⁷ Market-based solutions like carbon credits and emission trading systems can incentivize companies to capture methane, earning credits by reducing emissions.

Climate change strategies include forestation, reforestation, soil carbon sequestration, organic farming, and direct air capture technology to enhance carbon sinks and store CO₂. Solar radiation management and adaptation strategies aim to counteract warming from GHGs through infrastructure construction or retrofitting.⁹⁸ Natural solutions involve restoring ecosystems, shifting agricultural practices, water management, and urban planning.

Advancing inclusive and collaborative climate research

Interdisciplinary collaboration

The research emphasizes the vital need of developing solid multidisciplinary alliances to handle complex climate concerns effectively. By incorporating knowledge from multiple domains such as ecology, economics, and technology, academics may build holistic approaches that address the multidimensional character of climate challenges.⁹⁹

Geographic Inclusivity

Currently, European and North American institutions dominate climate research. However, there is an urgent need to widen regional coverage, notably by including tropical and boreal ecosystems into scientific research.¹⁰⁰ These regions play critical roles in global carbon cycles and climate dynamics, yet they are underrepresented in research efforts.

Emerging themes

Recent trends in climate research show a move toward developing subjects including blue carbon, Arctic studies, and conservation agriculture. These domains reflect changing priorities among the scientific community.¹⁰¹ Future research should focus studying understudied places and including socioeconomic aspects to create a full knowledge of climate impacts and solutions.

Policy implications

The findings highlight the need for scalable policy solutions that match research efforts with global climate resilience goals. Mechanisms such as carbon trading systems and equitable partnerships can aid in the efficient implementation of climate policies while addressing imbalances between governments and communities.¹⁰² Policymakers must prioritize collaboration to ensure that these solutions benefit all stakeholders. By closing research gaps and encouraging collaboration, the scientific community can improve our understanding of organic carbon dynamics. This advancement will lead to the development of effective climate change mitigation techniques, paving the path for a more sustainable future.

Recommendations for future research and policy

Based on the comprehensive bibliometric analysis of global organic carbon research from 2012 to 2022, this study identifies critical gaps and emerging priorities. To bridge these gaps and align scientific efforts with the urgency of the climate crisis, the following recommendations are proposed for researchers, funding bodies, and policymakers:

Prioritize research in underrepresented ecosystems and regions

Focus on Vulnerable Carbon Sinks: Intensify research efforts in critical but understudied ecosystems, particularly northern peatlands, tropical forests, and coastal blue carbon ecosystems (mangroves, seagrasses, salt marshes) in the Global South. These regions are vital carbon sinks but are highly vulnerable to land-use change and climate impacts, as indicated by the clustering gaps in our analysis.

Address Geographic Imbalances: Actively promote and fund research led by institutions in the Global South (e.g., Bangladesh, Ethiopia, Nepal) to ensure context-specific solutions and equitable knowledge production. International grants should mandate equitable partnerships and capacity building, moving beyond the current dominance of China, the US, and European nations.

Foster interdisciplinary and transdisciplinary collaboration

Integrate Socioeconomic and Biophysical Sciences: Move beyond siloed environmental science by integrating economics, social sciences, and political science into OC research. This is essential for designing feasible carbon sequestration projects, understanding adoption barriers by farmers, and developing equitable carbon trading mechanisms. Strengthen Data and Model Integration: Encourage collaboration between field scientists, remote sensing experts, and modelers to improve the representation of complex OC dynamics (e.g., permafrost thaw, microbial processes) in Earth System Models, reducing uncertainties in climate projections highlighted in our document co-citation analysis.

Scale Up and deploy promising mitigation strategies

Accelerate Biochar Application: Support large-scale, long-term field trials to quantify the carbon sequestration potential and co-benefits (e.g., soil fertility, crop yield) of biochar across different soil types and agricultural systems. Develop cost-effective production technologies to enhance scalability. Incentivize Blue Carbon Conservation and Restoration: Implement policies that create financial incentives, such as verified carbon credits, for the protection and restoration of mangrove forests, seagrass meadows, and tidal marshes. Invest in mapping these ecosystems to accurately quantify their carbon stocks, addressing the research gaps identified in the keyword and cluster analysis.

Enhance policy-research alignment and knowledge transfer

Develop Robust Carbon Accounting Frameworks: Support research that improves the monitoring, reporting, and verification (MRV) of soil carbon stocks to underpin transparent and trustworthy carbon trading systems. Translate Research into Actionable Policy: Establish science-policy interfaces to ensure that the latest research on SOC management, sustainable agriculture, and nature-based solutions directly informs national climate action plans (NDCs) and land-use policies. Promote Knowledge Exchange: Create platforms for sharing best practices and research findings between leading research nations (e.g., China, USA, EU) and climate-vulnerable countries to foster global learning and implementation.

Target specific knowledge gaps through directed funding

Investigate Black Carbon and Ocean Interactions: Increase research on the role of black carbon in the carbon cycle and its impact on albedo, as well as the interactions between ocean acidification and marine carbon pumps. Elucidate Microbial Dynamics: Fund research to better understand how climate change alters soil microbial communities and their function in carbon mineralization and stabilization, which is critical for predicting carbon-climate feedbacks. Understand the Fate of Thawing Permafrost Carbon: Prioritize studies on the biogeochemistry of fen peat incubation and the hydrological controls on greenhouse gas emissions from thawing permafrost. By implementing these recommendations, the global scientific and policy community can transform the insights from a decade of OC research into tangible, effective, and equitable actions. This will be paramount for protecting existing carbon sinks, enhancing carbon sequestration, and ultimately achieving the goals of the Paris Agreement.

Summary

This decade-long bibliometric analysis of organic carbon (OC) research charts the field's evolution from foundational soil science to emerging frontiers in blue carbon and permafrost feedbacks, underscoring OC's central role in climate mitigation. While China and

the U.S. lead in publication volume, the analysis reveals that strategic international collaboration, exemplified by nations like Denmark, is the true multiplier of research impact. Critically, the study identifies not just geographical imbalances but fundamental knowledge gaps in key ecosystems—such as northern peatlands and tropical farmlands—and a persistent socio-technical divide. The robust understanding of biophysical solutions like biochar is starkly contrasted by a lack of research on the socioeconomic barriers to their implementation. Therefore, bridging this gap and addressing these blind spots through inclusive, transdisciplinary collaboration is the imperative next step to translate a decade of research into equitable and effective climate action aligned with the 1.5°C target.

Acknowledgments

The authors would like to express their gratitude to Prof. Zhi-Guo Yu and our collage for their encouragement for this work. The authors acknowledge Nanjing University of Information Science and Technology key members of the Laboratory of Hydro Meteorological Disaster Mechanism and Warning for their assistance in completing our research.

Data availability statement

The datasets generated during and/or analyzed during the current study are available upon request.

Competing interests and declarations

The authors have no conflicts of interest. All named authors have approved the manuscript. The order of authorship has been confirmed. The Corresponding Author is the sole contact for the editorial process, and no funds have been allocated for publication.

Author's contribution

- I. Kemal Adem Abdela:- Conceptualization, Software handling, Visualization, Data Curation, Writing original draft.
- II. Abdisa Abebe Gerbi, Conceptualization, Software handling, Visualization, Data Curation, reviewing.
- III. Endris Ali Mohammed: - Methodology, Formal analysis, Reviewing.
- IV. Bekalu Melis Alehegn- Methodology, Formal analysis, Reviewing
- V. Dereba Megersa:- Methodology, Editing.

References

1. Ciais P, Christopher Sabine. *Carbon and other biogeochemical cycles, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Change*. Cambridge University Press. 2014. p. 465–570.
2. Correddu F, Mondina Francesca Lunesu, Sara Sechi et al. *CO₂ removal to reach net zero warming of global methane and nitrous oxide emissions of livestock: Comparison of two metrics under different 2050 FAO scenarios*. *Plos one*. 2025;20(8):e0330379.
3. Nunes LJ, Catarina IR Meirele, Carlos J Pinto Gomes, et al. Forest contribution to climate change mitigation: Management oriented to carbon capture and storage. *Climate*. 2020;8(2):21.
4. Abdela KA, Divya Singh, Mohammed Endris Ali, et al. Greenhouse Gas Emission, and Mitigation Strategies in Africa: A Systematic Review. *Water, Air, & Soil Pollution*. 2024;235(10):613.

5. Anna Lourantou, Jošt V Lavrič, Peter Köhler, et al. Constraint of the CO₂ rise by new atmospheric carbon isotopic measurements during the last deglaciation. *Global Biogeochemical Cycles*. 2010;24(2).
6. Gür TM. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies. *Progress in Energy and Combustion Science*. 2022;89:100965.
7. Xiao H, Zhongwu Li, Xiaofeng Chang, et al. The mineralization and sequestration of organic carbon in relation to agricultural soil erosion. *Geoderma*. 2018;329:73–81.
8. Lal R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. *Global change biology*. 2018;24(8):3285–3301.
9. Lal R. Soil carbon sequestration to mitigate climate change. *Geoderma*. 2004;123(1-2):1–22.
10. Lal R, GV Subbarao, WL Berry, et al. Global potential of soil carbon sequestration to mitigate the greenhouse effect. *Critical reviews in plant sciences*. 2003;22(2):151–184.
11. Trumbore SE. Potential responses of soil organic carbon to global environmental change. *Proceedings of the National Academy of Sciences*. 1997;94(16):8284–8291.
12. Schmidt MW, Margaret S. Torn, Samuel Abiven, et al. Persistence of soil organic matter as an ecosystem property. *Nature*. 2011;478(7367):49–56.
13. Srivastava RK. Conservation Tillage Practices on GHG Emissions, Soil Health and Overall Agricultural Sustainability. *Soil Use and Management*. 2025;41(2):e70096.
14. Delucchi MA. Impacts of biofuels on climate change, water use, and land use. *Annals of the New York Academy of Sciences*. 2010;1195(1):28–45.
15. Alongi DM. *Blue carbon: Coastal sequestration for climate change mitigation*. Springer. 2018.
16. Qi S, Fengrui Hua, Zheng Zhou, et al. Trends of positive youth development publications (1995–2020): A scientometric review. *Applied Research in Quality of Life*. 2022;17(1):421–446.
17. Nezameslami R, Alireza Nezameslami, Bahareh Mehdikhani, et al. Adapting PRISMA Guidelines to Enhance Reporting Quality in Genetic Association Studies: A Framework Proposal. *Asian Pacific Journal of Cancer Prevention*. 2025;26(5):1641–1651.
18. Liang Y, J He, B Guo. Functional hydrogels as wound dressing to enhance wound healing. *ACS nano*. 2021;15(8):12687–12722.
19. Trujillo CM, TM Long. Document co-citation analysis to enhance transdisciplinary research. *Science advances*. 2018;4(1):e1701130.
20. Chen C, Ibekwe-SanJuan F, J Hou. The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. *Journal of the American Society for Information Science and Technology*. 2010;61(7):1386–1409.
21. Zou X, WL Yue, H Le Vu. Visualization and analysis of mapping knowledge domain of road safety studies. *Accident Analysis & Prevention*. 2018;118:131–145.
22. Guo YM, Zhen-Ling Huang, Ji Guo, et al. A bibliometric analysis and visualization of blockchain. *Future Generation Computer Systems*. 2021;116:316–332.
23. Van Eck NJ, L Waltman. *Visualizing bibliometric networks*, in *Measuring scholarly impact: Methods and practice*. Springer. 2014. p. 285–320.
24. Cheng P, Houtian Tang, Yue Dong, et al. Knowledge mapping of research on land use change and food security: a visual analysis using CiteSpace and VOSviewer. *International Journal of Environmental Research and Public Health*. 2021;18(24):13065.
25. Guo R, Fengrui Hua, Zheng Zhou, et al. Visualizing and analyzing global knowledge maps and emerging research trends in tumor-derived exosomes using CiteSpace. *Discover Oncology*. 2025;16(1):1–19.
26. Aryadoust V, HAH Tan, LY Ng. A Scientometric review of Rasch measurement: The rise and progress of a specialty. *Frontiers in psychology*. 2019;10:2197.
27. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. *Journal of computational and applied mathematics*. 1987;20:53–65.
28. Aytaç E. Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means clustering, a demonstration on Western Black Sea Region of Turkey. *International soil and water conservation research*. 2020;8(3):321–331.
29. Chen LC, George Papandreou, Iasonas Kokkinos, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs. *arXiv preprint arXiv:1412.7062*. 2014.
30. Malhi GS, M Kaur, P Kaushik. Impact of climate change on agriculture and its mitigation strategies: A review. *Sustainability*. 2021;13(3):1318.
31. Romanello M, Alice McGushin, Claudia Di Napoli, et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. *The Lancet*. 2021;398(10311):1619–1662.
32. Yang R, A Welch. A world-class university in China? The case of Tsinghua. *Higher education*. 2012;63:645–666.
33. Rodrigo-Comino J, Jeni Hart. Soil science challenges in a new era: a transdisciplinary overview of relevant topics. *Air, Soil and Water Research*. 2020;13:1178622120977491.
34. Bezak N, Manuel López-Vicente, Panos Panagos, et al. Soil erosion modeling: A bibliometric analysis. *Environmental research*. 2021;197:111087.
35. Briones-Bitar J, Matjaž Mikoš, Pasquale Borrelli, et al. Rockfall research: A bibliometric analysis and future trends. *Geosciences*. 2020;10(10):403.
36. Chen W, Yu-Chieh Huang, Klaudija Lebar, et al. A systematic review of the incorrect use of an empirical equation for the estimation of the rainfall erosivity around the globe. *Earth-Science Reviews*. 2023;104339.
37. Ferguson RJ. *Greening China's New Silk Roads: The Sustainable Governance of Belt and Road*. Edward Elgar Publishing. 2021.
38. Qin F, Jialing Li, Chen Zhang, et al. Biochar in the 21st century: A data-driven visualization of collaboration, frontier identification, and future trend. *Science of The Total Environment*. 2022;818:151774.
39. Xiang C, Wang Y, H Liu. A scientometrics review on nonpoint source pollution research. *Ecological Engineering*. 2017;99:400–408.
40. Chen H, Qian Zhu, Changhui Peng, et al. The impacts of climate change and human activities on biogeochemical cycles on the Q inghai-T ibetan P lateau. *Global change biology*. 2013;19(10):2940–2955.
41. Waltman L. A review of the literature on citation impact indicators. *Journal of informetrics*. 2016;10(2):365–391.
42. Liñán F, A Fayolle. A systematic literature review on entrepreneurial intentions: citation, thematic analyses, and research agenda. *International entrepreneurship and management journal*. 2015;11:907–933.
43. Chen C. Searching for intellectual turning points: Progressive knowledge domain visualization. *Proceedings of the National Academy of Sciences*. 2004;101(Suppl_1):5303–5310.
44. Guo F, Wei Lv, Li Liu, et al. Bibliometric analysis of affective computing researches during 1999– 2018. *International Journal of Human–Computer Interaction*. 2020;36(9):801–814.
45. Lynn M Shore, Jacqueline AM, Coyle-Shapiro, et al. Social exchange in work settings: Content, process, and mixed models. *Management and Organization Review*. 2009;5(3):289–302.

46. Yoon J, M Song. Comparison Analysis of Co-authorship Network and Citation Based Network for Author Research Similarity Exploration. *Journal of environmental management*. 2022;56(4):269–284.
47. Cusack DF, Lars Marksteijn, Richard Condit, et al. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots. *Biogeochemistry*. 2018;137:253–266.
48. Aryadoust V. A review of comprehension subskills: a scientometrics perspective. *System*. 2020;88:102180.
49. Zhang Q, et al. Outlining the keyword co-occurrence trends in Shuang-huanglian injection research: A bibliometric study using CiteSpace III. *Journal of traditional Chinese medical sciences*. 2020;7(2):189–198.
50. Xue W, Hua Li, Rizwan Ali, et al. Knowledge mapping of corporate financial performance research: a visual analysis using cite space and ucinet. *Sustainability*. 2020;12(9):3554.
51. Perie C, R Ouimet. Organic carbon, organic matter and bulk density relationships in boreal forest soils. *Canadian journal of soil science*. 2008;88(3):315–325.
52. Jungkunst HF, Jan Göpel, Thomas Horvath, et al. Global soil organic carbon–climate interactions: Why scales matter. *Wiley Interdisciplinary Reviews: Climate Change*. 2022;13(4):e780.
53. Li B, Thomas Gasser, Philippe Ciais, et al. The contribution of China's emissions to global climate forcing. *Nature*. 2016;531(7594):357–361.
54. Yang S, Dongzhao Yang, Wei Shi, et al. Global evaluation of carbon neutrality and peak carbon dioxide emissions: Current challenges and future outlook. *Environmental Science and Pollution Research*. 2023;30(34):81725–81744.
55. Zhao X, Xiaowei Ma, Boyang Chen, et al. Challenges toward carbon neutrality in China: Strategies and countermeasures. *Resources, Conservation and Recycling*. 2022;176:105959.
56. Roldan-Valadez E, Shirley Yoselin Salazar-Ruiz, Rafael Ibarra-Contreras, et al. Current concepts on bibliometrics: a brief review about impact factor, Eigenfactor score, CiteScore, SCImago Journal Rank, Source-Normalised Impact per Paper, H-index, and alternative metrics. *Irish Journal of Medical Science (1971-)*. 2019;188:939–951.
57. Dikgwaathe SB, Zhong-Du Chen, Rattan Lalet al. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain. *Soil and Tillage Research*. 2014;144:110–118.
58. Waikhom L, R Patgiri. Graph neural networks: Methods, applications, and opportunities. *arXiv preprint arXiv:2108.10733*. 2021.
59. Rouse WR, Marianne SV Douglas, Robert E Hecky, et al. Effects of climate change on the freshwaters of arctic and subarctic North America. *Hydrological processes*. 1997;11(8):873–902.
60. Vonk JE, SE Tank, WB Bowden, et al. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. *Biogeosciences*. 2015;12(23):7129–7167.
61. Lehner B, G Grill. Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems. *Hydrological Processes*. 2013;27(15):2171–2186.
62. Conant RT, Michael G Ryan, Göran I Ågren, et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. *Global change biology*. 2011;17(11):3392–3404.
63. Lefèvre R, Fernando E Moyano, Bent T Christensen, et al. Higher temperature sensitivity for stable than for labile soil organic carbon—Evidence from incubations of long-term bare fallow soils. *Global Change Biology*. 2014;20(2):633–640.
64. Panchasara H, NH Samrat, N Islam. Greenhouse gas emissions trends and mitigation measures in Australian agriculture sector—A review. *Agriculture*. 2021;11(2):85.
65. Abbas F, Hafiz Mohkum Hammad, Wajid Isha, et al. A review of soil carbon dynamics resulting from agricultural practices. *Journal of environmental management*. 2020;268:110319.
66. Walvoord MA, BL Kurylyk. Hydrologic impacts of thawing permafrost—A review. *Vadose Zone Journal*. 2016;15(6):1–20.
67. Mazarrasa I, Jimena Samper-Villarreal, Oscar Serrano, et al. Habitat characteristics provide insights of carbon storage in seagrass meadows. *Marine pollution bulletin*. 2018;134:106–117.
68. Gullström M, Martin Dahl, Olof Lindén, et al. *Coastal blue carbon stocks in Tanzania and Mozambique: support for climate adaptation and mitigation actions*. 2021, IUCN, International Union for Conservation of Nature. 2021. p. 1–80.
69. Saderne V, Michael Cusack, Hanan Almahasheer, et al. Accumulation of carbonates contributes to coastal vegetated ecosystems keeping pace with sea level rise in an arid region (Arabian Peninsula). *Journal of Geophysical Research: Biogeosciences*. 2018;123(5):1498–1510.
70. Miyajima T, M Hamaguchi. *Carbon sequestration in sediment as an ecosystem function of seagrass meadows*. Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation, 2019:33–71.
71. Roy P, Rabin Chakraborty, Asish Saha, et al. A systematic review on climate change and geo-environmental factors induced land degradation: Processes, policy-practice gap and its management strategies. *Geological Journal*. 2023;58(9):3487–3514.
72. Keesstra SD, Johan Bouma, Jakob Wallinga, et al. Forum paper: The significance of soils and soil science towards realization of the UN sustainable development goals (SDGS). *Soil Discussions*. 2016;2016:1–28.
73. Loch TK, M Riechers. Integrating indigenous and local knowledge in management and research on coastal ecosystems in the Global South: A literature review. *Ocean & Coastal Management*. 2021;212:105821.
74. Bennett NJ, Robin Roth, Sarah C. Klain, et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. *Biological conservation*. 2017;205:93–108.
75. Abdul-Aziz OI, et al. Environmental controls, emergent scaling, and predictions of greenhouse gas (GHG) fluxes in coastal salt marshes. *Journal of Geophysical Research: Biogeosciences*. 2018;123(7):2234–2256.
76. Ali MU, Li Balal Yousaf, Siyi, et al. Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: a review. *Critical Reviews in Environmental Science and Technology*. 2021;51(9):857–896.
77. Cheruiyot NK, Wen-Jhy Lee, John Kennedy Mwangi, et al. An overview: Polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air. *Aerosol and Air Quality Research*. 2015;15(7):2730–2762.
78. Ming T, Renaud de Richter, Sheng Shen, et al. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies. *Environmental Science and Pollution Research*. 2016;23:6119–6138.
79. Al-Abadleh HA. Aging of atmospheric aerosols and the role of iron in catalyzing brown carbon formation. *Environmental Science: Atmospheres*. 2021;1(6):297–345.
80. Khatiwala S, F Primeau, T Hall. Reconstruction of the history of anthropogenic CO_2 concentrations in the ocean. *Nature*. 2009;462(7271):346–349.
81. Zhang H, K Wang. Simulated CO_2 -induced ocean acidification for ocean in the East China: historical conditions since preindustrial time and future scenarios. *Scientific Reports*. 2019;9(1):18559.
82. Lerman A, FT Mackenzie. Carbonate minerals and the CO_2 -carbonic acid system. *Encyclopedia of Geochemistry; Encyclopedia of Earth Sciences Series*; Springer: Cham, Switzerland, 2018.

83. Konopka A, S Lindemann, J Fredrickson. Dynamics in microbial communities: unraveling mechanisms to identify principles. *The ISME journal*. 2015;9(7):1488–1495.
84. Gonze D, Katharine Z Coyte, Leo Lahti, et al. Microbial communities as dynamical systems. *Current opinion in microbiology*. 2018;44:41–49.
85. Coban O, De Deyn GB, M van der Ploeg. Soil microbiota as game-changers in restoration of degraded lands. *Science*. 2022;375(6584):abe0725.
86. Malhi Y, Janet F, Seddon N, et al. Climate change and ecosystems: Threats, opportunities and solutions. *Philos Trans R Soc Lond B Biol Sci*. 2020;375(1794):20190104.
87. Ramesh T, Bolan NS, Kirkham MB, et al. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. *Advances in agronomy*. 2019;156:1–107.
88. Trivedi P, Leach JE, Tringe SG, et al. Plant–microbiome interactions: from community assembly to plant health. *Nat Rev Microbiol*. 2020;18(11):607–621.
89. Mettrop IS, Cusell C, Kooijman Am, et al. Nutrient and carbon dynamics in peat from rich fens and Sphagnum-fens during different gradations of drought. *Soil Biology and Biochemistry*. 2014;68:317–328.
90. Kechavarzi C, Dawson Q, Bartlett M, et al. The role of soil moisture, temperature and nutrient amendment on CO₂ efflux from agricultural peat soil microcosms. *Geoderma*. 2010;154(3-4):203–210.
91. Nisbet EG, Fisher RE, Lowry D, et al. Methane mitigation: methods to reduce emissions, on the path to the Paris agreement. *Reviews of Geophysics*. 2020;58(1):e2019RG000675.
92. Kabeyi MJB, Olanrewaju OA. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. *Frontiers in Energy research*. 2022;9:743114.
93. Standal K, Leiren MD, Alonso I, et al. Can renewable energy communities enable a just energy transition? Exploring alignment between stakeholder motivations and needs and EU policy in Latvia, Norway, Portugal and Spain. *Energy Research & Social Science*. 2023;106:103326.
94. Nunes LJ, Meireles CIR, Gomes CJP, et al. Forest management and climate change mitigation: A review on carbon cycle flow models for the sustainability of resources. *Sustainability*. 2019;11(19):5276.
95. Balcombe P, Speris JF, Brandon NP, et al. Methane emissions: choosing the right climate metric and time horizon. *Environmental Science: Processes & Impacts*. 2018;20(10):1323–1339.
96. Fox TA, Chapman L. Engineering geo-engineering. *Meteorological Applications*. 2011;18(1):1–8.
97. Sauvé S, Bernard S, Sloan P. Environmental sciences, sustainable development and circular economy: Alternative concepts for trans-disciplinary research. *Environmental development*. 2016;17:48–56.
98. D'orangeville L, Duchesne L, Houle D, et al. Northeastern North America as a potential refugium for boreal forests in a warming climate. *Science*. 2016;352(6292):1452–1455.
99. Thomas S. Blue carbon: Knowledge gaps, critical issues, and novel approaches. *Ecological Economics*. 2014;107:22–38.
100. Tanveer U, Ishaq S, Hoang TG. Enhancing carbon trading mechanisms through innovative collaboration: Case studies from developing nations. *Journal of Cleaner Production*. 2024;482:144122.