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Abstract

Evapotranspiration (ET0) is a combined loss of water from surface of the earth and
vegetative surface to atmosphere under the influence of weather parameters. The weather
parameters that are influencing ETO are air temperature, solar radiation, relative humidity
and wind speed. Evapotranspiration (ET0) is the major loss of water received by the crop
through rainfall and irrigation and also it represents major portion of total water budget of
crop. The estimation of accurate value of ETO helps in irrigation scheduling at different
critical stages of crop for maximum crop production and also for hydrological and water
resource planning based on available weather data. This review discusses various methods
for estimating ET, including traditional empirical approaches and machine learning
techniques. Traditional methods, which are computationally simple and data demanding,
may fail to accurately estimate ET. Machine learning methods, SVM, ANN and RF increase
the precision of ET estimation by extracting features from all weather particularly in data-
rich regions. However, model complexity can lead to difficulties in interpretation the
performance of these methods may be limited in data-scarce areas. Collectively, future
research should aim to improve data quality, optimize model generalizability, and explore
methods that integrate physical processes with data-driven models. When selecting an ET
estimation method, considerations should include data availability, model adaptability,
estimation accuracy requirements, and technical operational complexity to meet the needs
of specific research areas and applications.
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Introduction

Evapotranspiration (ET) is the combined loss of water from a
vegetative surface and a soil surface via transpiration. This mechanism
is responsible for the water stored in the atmosphere and is affected by
a variety of climatic variables.! The most essential factor in irrigation
scheduling is the measurement of evapotranspiration. Timely
irrigation schedule boosts agricultural output while also boosting
farmer income through water conservation. As a result, conserving
water resources would improve soil and groundwater quality.
Temperature, solar radiation, relative humidity, and wind speed are
the main meteorological elements that influence evapotranspiration.

Accurate monitoring and modelling of evapotranspiration
processes are essential for advancing irrigation management and
land reclamation practices. Crop growth, development, and yield are
governed by a complex interplay of factors, including meteorological
variables (e.g., temperature, solar radiation, precipitation, and extreme
weather events), agronomic management, improved crop genotypes,
optimal fertilizer application, tillage operations, and the strategic use
of irrigation. Additionally, the influence of climate change introduces
further variability, underscoring the importance of adaptive and data-
driven approaches to crop production.’* Irrigation scheduling should
be synchronized with the crop’s dynamic water requirements. These
requirements vary substantially throughout the growth stages due to
fluctuations in canopy structure and climatic conditions.

On a global scale, nearly 80% of the water designated for
agricultural irrigation is lost through the process of evapotranspiration
(ET).>¢ The escalating demand for water is driven by both climate
change and rapid population growth. Reports from the United Nations
indicate that, over the past century, water usage has increased at twice

the rate of global population growth. If current trends persist, it is
projected that by 2025, approximately 1.8 billion people will be living
in regions facing severe water scarcity (National Geographic Society,
2016). In many areas, the decline in surface water availability and
recurring droughts have led to over-extraction of groundwater, with
around 10% of the world’s food now produced using unsustainable
groundwater pumping practices. Accurate estimation of ET is critical
for effective water resource management, including budgeting,
allocation, and irrigation planning. For growers to schedule irrigation
effectively, they must understand the atmospheric demand for water.
Several techniques are available for the direct measurement of ET.
One widely used method is the lysimeter, which estimates ET by
tracking soil moisture fluctuations within a known soil volume planted
with vegetation.® Although accurate, lysimeters are often costly and
labor-intensive to install and maintain. Another approach involves
the use of Evaporation pans to assess water loss through evaporation;
however, since they do not account for plant transpiration, the values
must be corrected using crop-specific coefficients to approximate total
evapotranspiration (ET).””

Alternatively, ET can be measured by quantifying the moisture
flux from the plant surface to the atmosphere using highly sensitive
instruments that detect variations in meteorological parameters
between the crop surface and a reference height above it. While these
techniques provide highly accurate ET estimates, they are generally
confined to research settings due to their high cost and complexity.”!
To make ET estimation more accessible, various predictive models
have been developed that estimate ET throughout the crop growth
period based on meteorological data. However, a significant challenge
in using these models lies in their dependence on detailed weather
information, which is not always readily available. This limitation
often necessitates the use of simpler models with fewer data
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requirements, even though more advanced models may offer greater
accuracy.

Reference evapotranspiration (ETo) represents the amount of
water lost through evaporation and transpiration from a standardized
crop surface—typically a well-watered, short, clipped grass—under
optimal conditions. This metric reflects the maximum atmospheric
demand for water on a given day. When adjusted using crop-specific
coefficients, ETo becomes a measure of the actual water requirement, or
consumptive use, for a particular crop. The portion of this requirement
not fulfilled by precipitation or soil moisture storage is termed the
water deficit, which must be compensated through irrigation to
ensure optimal crop performance.’ Accurate irrigation is essential,
as both excess and insufficient watering can negatively affect crop
health and yield. The economic significance of precise irrigation is
also substantial; for example, a | mm ET loss over 1 hectare equals
approximately 10 cubic meters (or 2,680 gallons) of water.” An
overestimation of ET by just | mm could lead to unnecessary use
of 2,680 gallons of water, incurring additional costs and contributing
to groundwater depletion. Efficient irrigation scheduling based on
accurate ET estimation can therefore lead to considerable savings in
both water and expenses.”!!

Due to the complexity of directly measuring ET, it is essential to
develop models that can provide reliable estimates for agricultural
water management. While lysimeters are a common tool for measuring
ET in field conditions, their readings are often limited to small-scale
areas and may not accurately represent broader landscapes because of
spatial variability and surface heterogeneity.'

In addition to the challenges associated with its complex
installation and maintenance, the lysimeter method is also unsuitable
for use in large areas with heterogeneous vegetation, as it cannot
provide a representative measurement for such diverse conditions.'
The Penman-Monteith FAO 56 method is widely recognized as the
international standard for calculating reference evapotranspiration
(ETo). However, its implementation is often constrained by the
extensive meteorological data it requires—data that are typically
available only at a limited number of weather stations—thus restricting
its applicability in many regions.’

To enhance the estimation of reference evapotranspiration
(ET), researchers have increasingly turned to machine learning,
a specialized branch of artificial intelligence. Machine learning
algorithms are capable of predicting future outcomes by learning
patterns from historical data and training on labeled datasets.
Among these, artificial neural networks (ANNs) have been widely
applied for evapotranspiration estimation.'*" Findings from these
studies demonstrate that ANN models outperform traditional
approaches, such as regression and empirical equations, in predicting
evapotranspiration. Another promising technique is the support vector
machine (SVM), a learning algorithm rooted in statistical learning
theory and the principle of structural risk minimization. SVM is
particularly well-suited for modeling nonlinear systems® and has
been shown to offer more consistent and accurate performance than
ANN under equivalent training conditions.?!

Several studies have explored the potential of SVM for ETo
modeling in various regions. For example,? applied SVM to estimate
ETo in central California, USA, while® evaluated its performance
in a semi-arid highland region of Iran. In another study, SVM was
used to estimate daily pan evaporation and compared against ANN
models, revealing the superior predictive capabilities of SVM.? These
investigations consistently suggest that SVM provides more accurate
and reliable ETo estimates than both ANN and empirical models.
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Additionally, the Random Forest algorithm has shown high accuracy
in estimating root zone soil moisture, further highlighting the value of
machine learning approaches in hydrological modeling.

ETo is estimated mostly by empirical equation but the use of
machine learning is lagging behind for ETo estimation. Estimation
of ETo by machine learning techniques using different weather input
combination has not been done in detail for some regions of India due
to lack of availability of all weather parameters for evapotranspiration
estimation..Among other machine learning models the promising
capabilities of SVM, Random Forest (RF), and Artificial Neural
Networks (ANN), the application of these machine learning techniques
for ETo estimation remains relatively limited—especially in semi-arid
regions where meteorological data are scarce.

Empirical methods for estimation of

evapotranspiration

Reference evapotranspiration (ETo) can be estimated using various
methods, ranging from complex energy balance equations’ to simpler
empirical formulas that require limited meteorological inputs.?*?’
The estimation of crop evapotranspiration (ETc) involves both direct
measurement techniques and indirect modelling approaches. Accurate
estimation of ETc is critical for efficient water resource management
in agriculture.”® When lysimeters are unavailable, the field water
balance method is commonly employed to estimate actual crop
evapotranspiration (ETa).?3° However, direct measurement methods
are labor-intensive, costly, and their results are often site-specific,
limiting broader applicability.

ETo plays a central role in regulating numerous hydrological
processes, and its accurate estimation is essential for water planning
and management strategies.’’ Quantifying ET typically begins with
determining reference evapotranspiration (ETo).”> Numerous empirical
models have been developed for this purpose using meteorological
data (Table 1). Among these, the FAO Penman-Monteith method has
been endorsed by the Food and Agriculture Organization (FAO) of the
United Nations as the global standard for ETo estimation. This method
defines the reference crop as a hypothetical grass surface with a height
of 0.12 m, a surface resistance of 70 s/m, and an albedo of 0.23—
representing a well-watered, actively growing, uniform grass cover.’
Compared to earlier models, such as the FAO-24 Penman method, the
FAO-56 Penman-Monteith formulation provides results that are more
consistent with observed crop water use worldwide.*

The scientific community widely accepts the Penman-Monteith
FAO-56 method due to its reliability and accuracy across diverse
climatic regions.** In contrast, calibration studies have shown that
the Hargreaves method tends to significantly overestimate ETo values
when compared to the Penman-Monteith method—by as much as
118-167% —making it less suitable for regional-scale applications.*¢
Given the critical role of ETo in influencing climate change, global
temperature trends, crop productivity, water availability, and runoff
dynamics, its prediction has been the focus of extensive research in
recent decades. 40

Although the Penman—-Monteith FAO-56 method is regarded as
a physically based model and the most accurate available—being an
approximate linear solution to equations governing energy balance,
thermodynamics, and vertical transport of heat and water vapor.3*4
The main limitation lies in its requirement for a comprehensive set of
meteorological data, which may not always be available in all regions
Table 1.4142
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Table | Empirical Models for estimation of reference evapotranspiration
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S.No  Model type Model Equation References
| Combination model ~ Penman-Monteith FAO-56 0.408A (R” 3 G) N @}/Lﬂﬁe 2
ET, = T
A+y(1+0.34u,)
2 Temperature based Hargreaves and Samani ET0=0.0023*Ra*(Tmax-Tmin)*(Tmean+17.8)/ A 2
3 Ritchie ET=a I[3.87%10-3 *Rs(0.6Tmax+0.4Tmin+29)] 7

Machine learning techniques

Machine learning methods are often known as data-driven
methods. It is a subset of computer science that is classified as an
artificial intelligence technique. It interferes with the perfection of
strategies that enable the computer to acquire. Simply put, algorithms
evolve so that the computer may learn, complete jobs, and perform
actions. Over time, numerous approaches for machine learning jobs
have been created. It can be used in a wide range of applications, and
this technique allows models to address challenges that are difficult to
represent mathematically.

Computer software for machine learning

Machine learning methods can be performed in MATLAB,
PYTHON, R software, but R is one of the most preferred. It makes
statistical computing and graphical representations very easy in R.
Advance statistical and machine learning packages are provided in
R software along with various other packages and in built functions
which greatly simplify statistical analysis. It supports efficient
data handling and storage, even for large datasets, and provides
versatile plotting capabilities tailored to various analytical needs. R
is particularly valuable for tasks such as predictive analytics, data
preprocessing, statistical modeling, data visualization, and model
deployment. The steps followed is represented in Figure 1.4

 Collection of weather data(Tmay, Tmin, RHILRH2 ,Rs
~ wind speed) R

¥

4

Fitting ML algorithm to the vanous combinations of the weather vanables as input
(SVR, RF reg . ANN reg)

y
Evaluating the models based on standard statistical measures
(RMSE. n RMSE. R*. MAE. MBE. NSE. RPD. d-INDEX. RPIQ. PD)

Comparing the performance of the ML models

4

Prediction of ET, using the best model for each location |

Figure | Flowchart for developing ET o estimation model.
Support vector machine

The Support Vector Machine (SVM) was firstintroduced in 1992 and
gained widespread recognition through the work of.** Support Vector
Machine are supervised learning techniques used in classification
and regression. They fall within the category of generalised linear
classifiers, or, to use more modern terminology, regression prediction
and classification methods that apply machine learning theory to
take advantage of analytical precision while naturally avoiding over-
fitting to the data Figure 2. Regression and grouping problems are

equally amenable to the SVM.* Support Vector Machine (SVM), a
modern learning algorithm based on statistical learning theory and the
principle of structural risk minimization, can be effectively used for
modeling nonlinear systems.*

Support Vector Regression (SVR)

Hype [plane

Support Vectors

". Maximum Margin

:, Maximum Margin

Figure 2 Schematic representation of support vector machine.
Artificial neural network

Artificial neural networks (ANN) are being employed extensively
these days because to their ease of usage in resolving complicated and
challenging interactions. ANN is used in numerous scientific domains.
In order to get good results, this method is also employed in hydrology
and hydraulics, among other scientific disciplines. Researchers have
calculated the application of Al techniques to forecast hydrological
phenomena like ETO or evaporation in recent years.*”* An Artificial
Neural Network (ANN) is composed of interconnected layers—input,
hidden, and output—each consisting of an array of artificial neurons
as shown in Figure 3. A completely connected neural network is
one in which every neurone in a layer is connected to every other
neurone in the layer above or below it. A mathematical model with
parts that are similar to those of an actual neurone is called an artificial
neurone. Over the past decade, artificial neural networks (ANNs)
have attracted significant attention for their application in estimating
evapotranspiration.

Hidden
Input
Output

Figure 3 Diagram showing input, hidden and output layers of an ANN.
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Random forest

RF, also referred to as bagging, is an ensemble technique that can
perform both regression and classification. It is considered the most
advantageous algorithms for forecasting. The core concept behind the
Random Forest (RF) algorithm is to combine the outputs of multiple
decision trees, rather than relying on a single tree for prediction Figure
4. During training, multiple decision trees are constructed, and the
final output is determined by aggregating their results—using the
mean prediction for regression tasks or the mode of the predicted
classes for classification .This ensemble approach mitigates the
tendency of individual decision trees to overfit the training data. In
the case of Extremely Randomized Trees (Extra Trees), each decision
tree is built from the initial training sample, and at each split node, the
tree selects the optimal feature from a randomly chosen subset of k
features based on a mathematical criterion, typically the Gini Index.

Training Training Training
Sampie Sample Sample
1 2 [N ] u
Training Set I l l
Decision Decision Decision
Tree Tree Tree
1 2 “ee n

|

Prediction

Figure 4 Schematic representation of Random Forest.

The model can be mathematically expressed as:
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supporting irrigators in managing water use efficiently. Today, CIMIS
oversees a network of over 120 automated weather stations across
the state.

The meteorological data used in this study were collected from
CIMIS stations and include measurements of key variables. Solar
radiation is measured using pyranometers installed at a height of
2.0 meters above ground level. Air temperature is recorded using
thermistors located at 1.5 meters, and relative humidity sensors are
co-located in the same enclosure at the same height. Wind speed is
measured by three-cup anemometers positioned at 2.0 meters above
the ground anemometers are employed to measure wind speed. The
daily meteorological data and corresponding ETo values, calculated
using the CIMIS Penman method, are obtained from the CIMIS
website (http://www.ipm.ucdavis.edu/ WEATHER /wxretrieve.
html). Seasonal variations in the surrounding environments of the
Windsor and Santa Rosa stations may occur, potentially influencing
the recorded data. This study utilizes ten years of meteorological
data (1998-2007), including daily observations of wind speed (U-),
relative humidity (RH), air temperature (T), and solar radiation (Rj).

For model development, Support Vector Regression (SVR) models
are calibrated using data from the first seven years (1998-2004),
while the remaining three years (2005-2007) are used for validation.
In Table 3, the statistical parameters X (mean), S« (standard deviation),
C, (coefficient of wvariation), Csx (skewness), Xmin (Minimum),
and Xmax (maximum) are presented. The wind speed data for each
station exhibit a skewed distribution, as indicated by the Csy values.
Correlation coefficients in Table 3 reveal that solar radiation (R;) has
the strongest relationship with ETo across all stations, followed by
air temperature (T), which also shows a significant correlation with
reference evapotranspiration.

Table 2 Abbreviation used

f(x) = fo(x) + fi(x) + £2(x) + ..., Notation Description Unit
where the final model f(x) is the sum of several simpler base ETO Refererﬁce. evapotranspiration mm day-|
models fi(x), each representing an individual decision tree regressor. Rn net radiation M) m-2 day-1
G soil heat flux density M) m-2 day-|
Case study T mean daily air temperature °C
This study utilizes daily meteorological data from three u2 wind speed m !
automated weather stations—Windsor (38°31'35"N, 122°49'42"W), es saturation vapour pressure kPa
Oakville (38°26'02"N, 122°24'35"W), and Santa Rosa (38°24'04"N, ea actual vapour pressure kPa
122°47'56"W)—operated by the California Irrigation Management es-ea saturation vapour pressure deficit ~ kPa
Information System (CIMIS). The Santa Rosa and Windsor stations A slope vapour pressure curve kPa °C-1
are located in Sonoma County, within the North Coast Valleys Region y psychrometric constant KkPa °C-1
of California, USA, while the Qakville station is situated in Napa 1 Latent heat of vaporization=2.45 Mj/kg
County, also within the same region. Ra extraterrestrial radiation mm/d
The CIMIS program was established in 1982 through a Tmax daily maximum temperature °C
collaboration between the University of California at Davis and the Tmin daily minimum temperature °C
California Department of Water Resources, with the objective of
Table 3 Daily statistical parameters of each data set
Station Variable xmean  Sx Cv (Sx/xmean) Csx xmin  xmax  Correlation with ET0
Rs 400 203 0.51 —-0.05 0 917 0.958
T 13.6 4.7 0.34 0.0l 0.31 29.6 0.788
Windsor RH 729 1.3 0.15 —-0.14 14.5 100 -0.757
u2 1.5 0.53 0.35 1.45 0.45 55 0.259
ETO 331 2.13 0.64 0.2 —-0.36 1.2 0
Oakville Rs 417 200 0.49 -0.11 0 920 0.955
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Table 3 Continued....
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T 14.8 4.94 0.33

RH 71 12.2 0.17
U2 1.6l 0.5 0.3

ETO 3.6 2.19 0.6l
Rs 12.7 205 0.5

T 410 4.48 0.35

Santa Rosa RH 77 10.3 0.13
U2 1.69 0.68 0.4

ETO 3.18 2.02 0.63

0.06 .11 31.6 0.814
-0.43 15.5 100 -0.715
1.1 0.54 4.83 0.35
0.1 -0.33 10.5 |
-0.04 0 1155 0.945
-0.06 -2.7 28.6 0.755
-0.28 19.5 100 -0.711
6.94 0.45 19.4 0.207
0.19 -0.34 9.67 |

Results

Initially, reference evapotranspiration (ETo) values for the
Windsor, Oakville, and Santa Rosa stations are calculated using the
Penman-Monteith FAO-56 method.” These ETo values, along with
the corresponding meteorological inputs—air temperature (T), solar
radiation (R;), relative humidity (RH), and wind speed at 2 meters
(Uz)—are used to calibrate the Support Vector Regression (SVR)
models.

Table 4 Performance statistics of the models in the test period

The performance of the SVR models is evaluated using three
statistical metrics: Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and the coefficient of determination (R?), as presented in
Table 4. The R? value indicates the strength of the linear relationship
between observed and predicted variables. RMSE and MAE, on
the other hand, provide complementary insights into the predictive
accuracy of the model. Specifically, RMSE emphasizes the model’s
performance in capturing higher ETo values, while MAE offers a more
general assessment of the model’s overall fitting accuracy across the
full range of ETo values.™

Models Model Inputs

RMSE (mm/d) MAE (mm/d)  R?

Windsor Station
SVRI (30,0.01,0.3)
CIMIS Penman

Rs,T,RH and U2
Rs,T,RH and U2

SVR2 (50,0.1,0.3) Rs,T
Hargreaves (1985) Rs,T
Ritchie (1990) Rs,T

Oakville Station
SVRI (60,0.01,0.3)
CIMIS Penman

Rs,T,RH and U2
Rs,T,RH and U2

SVR2 (60,0.01,0.08) Rs,T
Hargreaves (1985) Rs,T
Ritchie (1990) Rs,T

Santa Rosa Station
SVRI (15,0.003,0.05)
CIMIS Penman

Rs,T,RH and U2
Rs,T,RH and U2

SVR2 (20,0.01,0.07) Rs,T
Hargreaves (1985) Rs,T
Ritchie (1990) Rs,T

0.138 0.091 0.996
0.43 0.29 0.968
0.378 0.27 0.971
0.426 0.325 0.969
0418 0.321 0.969
0.114 0.081 0.997
0.367 0.274 0.975
0.445 0.321 0.953
0.488 0.358 0.948
0.485 0.351 0.948
0.155 0.099 0.994
0.402 0.272 0.958
0.493 0.332 0.948
0.466 0.347 0.947
0.446 0.341 0.952

The RMSE and MAE are calculated as follows:
RMSE=

Where, Pi is the estimated value, Oi is the observed value and N is
the number of observations

MAE=1\n
where yi = observed value, y" = estimated value, n = sample size

Two different Support Vector Regression (SVR) models were
developed in this study. To enable a valid comparison with the two-
variable empirical Hargreaves and Ritchie models, an SVR model
using only temperature (T) and solar radiation (Rs) as inputs was
constructed. Table 5 presents the Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and coefficient of determination (R?)
values for each model during the test period. R? indicates the strength
of the linear relationship between predicted and observed values.
RMSE is more sensitive to larger errors, particularly at high ETo

values, while MAE provides a balanced measure of overall prediction
accuracy.”

SVR training aims to find a nonlinear function that minimizes a
regularized risk function. This involves selecting appropriate values
for the penalty parameter (C), the e-insensitive loss function, and
the kernel function parameter (c), typically by minimizing RMSE.
A Fortran 90 program was used for model implementation and to
compute the Lagrange multipliers in Equation (7). The optimal SVR
model parameters—C, &, and c—are listed in Table 2. For instance,
SVR1(30, 0.01, 0.3) denotes a model with C = 30, £ = 0.01, and &
= 0.3.The SVR models are evaluated against the CIMIS Penman,*!
Hargreaves,” and Ritchie (Jones & Ritchie, 1990) methods. The
CIMIS Penman approach, based on a modified Penman equation,*
incorporates a wind function developed at the University of California,
Davis. It uses hourly average meteorological data to estimate hourly
ETo, which is then summed to calculate daily totals. This method
aligns with the FAO-56 guidelines.’
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Total Evapotranspiration(mm)

Relative error (%)

Models
Windsor Oakville Santa Rosa Windsor Oakville Santa Rosa

Penman-Monteith FAO 2494 2459 2232 - - -

SVRI 2517 2433 2250 0.9 -1 0.8

CIMIS Penman 2381 2337 2186 -4.5 -5 2.1

SVR2 2418 2410 2079 -3.1 -2 -6.9
Hargreaves(1985) 2412 2371 2182 -33 -3.6 -2.3
Ritchie(1990) 2455 2391 2239 -1.5 -2.8 0.3

Model performance was compared for the Windsor, Oakville,
and Santa Rosa stations using RMSE, MAE, and R? (Table 5). SVR1
includes four inputs—R;, T, RH, and U>—while SVR2 uses only T
and Ry, like the Hargreaves and Ritchie models. SVR1 outperforms
all other models across all evaluation metrics. The CIMIS Penman
method performs better than the simpler empirical models, and among
the two-parameter models, SVR2 shows superior accuracy except at
the Santa Rosa station. At Santa Rosa, the Ritchie model outperforms
SVR2 in terms of RMSE and R?, and the Hargreaves model shows a
lower RMSE than SVR2. The accuracies of Ritchie and Hargreaves
are relatively similar. Scatterplot analyses show that SVR1 predictions
are closer to FAO-56 ETo values than those from other models. In
regression plots (y = aox + ai), the slope (ao) for SVRI is closer to 1
and the R? values are higher, indicating better predictive alignment.

The total estimated ETo, relevant for irrigation planning, also
supports SVR1’s superiority. For Windsor, SVR1 estimates 2517 mm,
just 0.9% above the FAO-56 reference (2494 mm). CIMIS Penman,
SVR2, Hargreaves, and Ritchie methods predict 2381, 2418, 2412,
and 2455 mm, underestimating by 4.5%, 3.1%, 3.3%, and 1.5%,
respectively. Thus, SVR1 is the most accurate, followed by Ritchie.

At Oakville, SVRI estimates 2433 mm, close to the reference
2459 mm (1.1% underestimation), while CIMIS Penman, SVR2,
Hargreaves, and Ritchie estimate 2337, 2410, 2371, and 2390 mm,
underestimating by 5%, 2%, 3.6%, and 2.8%, respectively. Again,
SVR1 performs best, followed by SVR2.

At Santa Rosa, total ETo values predicted by SVR1 and Ritchie
are 0.8% and 0.3% below the reference value (2232 mm), whereas
CIMIS Penman, SVR2, and Hargreaves overestimate by 2.1%, 6.9%,
and 53.5%, respectively. In this case, the Ritchie model slightly
outperforms SVRI.

Figure 5 To provide a comparative analysis, a feed-forward
Artificial Neural Network (ANN) model was also used for the daily
estimation of reference evapotranspiration (ETo). The conjugate
gradient method, known for its higher efficiency and faster convergence
than the traditional gradient descent method, was adopted to optimize
the ANN weights.’> Sigmoid activation functions were applied to
both hidden and output layers. Since there is no established rule for
determining the optimal number of hidden nodes, different network
configurations were tested to identify the most effective structure.
Training was halted after 250 epochs, as suggested by Kisi O et al.>
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Figure 5 Relationship between evapotranspiration (ET o) and important weather parameters.
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After several trials, the most suitable ANN configurations for the
Windsor, Oakville, and Santa Rosa stations were identified and are
summarized in Table 4. For example, the structure ANN (4,8,1) refers
to a model with four input nodes, eight hidden nodes, and one output
node. When comparing the ANN and SVR models using RMSE,
MAE, and R? metrics, the SVR models generally showed better
performance (Table 6). This suggests that SVR is more effective in
modeling the relationship between ETo and meteorological parameters
compared to traditional models like CIMIS Penman, Hargreaves, and
Ritchie equation. The CIMIS Penman method combines two terms:
a radiative term representing the energy available for evaporation,
and an aerodynamic term accounting for the transport of water
vapor. Although widely used, the method’s primary drawback is its
reliance on extensive meteorological data. Despite this, the SVR2
model demonstrated that reliable ETo estimation is achievable with
fewer and simpler inputs. The Hargreaves and Ritchie equations,
derived from empirical relationships based on local meteorological
data, can be seen as simplified alternatives to the Penman approach.
These models focus mainly on the radiative term, which has a greater
influence on ETo than the aerodynamic component.?”’

Table 6 Performance statistics of the SVR and ANN models in the test period

RMSE  MAE ,
Models Model Inputs (mmid)  (mmid) R
Windsor Station

SVRI (30,0.01,0.3) ESZ‘T‘ RH and 0.138 0.091 0.996
ANN(4,8,1) E;‘T‘ RH and 0.142 0.103 0.996
SVR2 (50,0.1,0.3) Rs,T 0378 027 0971
ANN(2,4,1) Rs,T 0379 0.284 0.969
Qakville Station

SVR1 (60,001,035 PRAS 0 oo 0.997
ANN(4,4,1) ESZ‘T‘ RH and 0.166 0.122 0.994
SVR2 (60,0.01,0.08) Rs,T 0.445 0321 0.953
ANNQ2,7,1) Rs,T 0.45 0.347 0.952
Santa Rosa Station

SVRI (15,0.003, Rs,T,RH and

0.05) 02 0.155 0.099 0.994
ANN(4,6,1) ESZ‘T‘ RH and 0.202 0.155 0.99
SVR2 (20,0.01,0.07) Rs,T 0.493 0332 0.948
ANNQ2,2,1) Rs,T 0536 0.42 0931

SVR’s main strengths are its ability to model nonlinear relationships
and its flexibility. However, it also has limitations—most notably, it is
a data-driven “black-box” model without a physical basis and requires
sufficient training data for effective implementation. In contrast,
empirical models like Hargreaves and Ritchie are easier to interpret
and apply. Nonetheless, SVR models generally provide more accurate
ETo predictions than empirical approaches.

In hydrological modeling studies where direct estimates of
evapotranspiration are unavailable, the results of this study can
be highly valuable. SVR models can be integrated as a component
within traditional hydrological analysis frameworks to enhance their
predictive capabilities.
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Summary and conclusion

Accurate estimation of reference evapotranspiration (ETo) is
essential for efficient irrigation scheduling and effective water resource
management. In this study, ETo was calculated using three empirical
methods, and the results showed that the Penman—Monteith FAO-
56 method outperformed both the Ritchie and Hargreaves—Samani
approaches. When compared with lysimeter-based ET measurements,
the Penman—Monteith FAO-56 produced results that were more
closely aligned.” This method is widely acknowledged as the most
accurate for estimating ETo in various climatic regions around the
WOrld.52'|3’34

Numerous researchers have validated the reliability of the
Penman—Monteith (PM) method for ETo estimation.®! A
comparative analysis of 20 different models against lysimeter data
from 11 stations across different climatic zones confirmed that the
Penman—Monteith FAO-56 consistently provided the most accurate
estimates.>* Despite its strong performance and widespread use,”” one
of the main limitations of the PM FAO-56 method is its requirement
for a comprehensive set of meteorological inputs.*

To address this issue, machine learning techniques have been
explored as alternatives. For example, a study using SVM, M5P, and
RF models to estimate monthly ETo at two locations (Nagina and
Pantnagar) based on weather parameters (temperature, wind speed,
solar radiation, and relative humidity) found SVM to offer better
performance than empirical models.”® Similarly, SVM has been
shown to outperform ANN under similar training conditions,?' and in
the estimation of daily pan evaporation, SVM models also exceeded
ANN models in accuracy.?

In the Kosice City region of Slovakia, daily ETo was estimated using
MLP (multilayer perceptron), SVR (support vector regression), and
MLR (multiple linear regression) with inputs including wind speed,
relative humidity, temperature, and solar radiation. These machine
learning models outperformed traditional empirical methods such as
Hargreaves—Samani, Ritchie, and Turc.*® Another study demonstrated
that SVM models using Rs, T, RH, and wind speed provided more
reliable ETo estimates compared to empirical equations like Penman,
Hargreaves, and Priestley—Taylor.>

In a semi-arid region of Iran, various models including SVM,
ANFIS (adaptive neuro-fuzzy inference system), MLR, and MNLR
were evaluated against the Penman—Monteith FAO-56 method using
input parameters such as Tmax, Tmin, RH, wind speed, and Rs. The
findings showed that both SVM and ANFIS models, particularly
those using four input variables (Tmean, RH, Rs, and wind speed),
delivered higher accuracy.”® Similarly, in China’s Xinjiang region,
Least Squares SVM models using temperature, radiation, humidity,
and wind speed achieved strong accuracy for ETo estimation.’’
Another study conducted in the arid Ejina Basin of China found that
SVM models using Tmax, Tmin, U2, and Rs outperformed both ANN
and empirical methods in estimating daily ETo.®

In conclusion, machine learning models—especially SVM—
demonstrate significant potential for estimating ETo using fewer and
simpler input variables than traditional empirical methods. These
models can play a vital role in improving irrigation scheduling,
managing water resources more efficiently, and determining crop
water requirements based on local weather conditions.

Citation: Bhavya TR,Vashisth A, Krishnan P, et al. A review on developing machine learning techniques for estimation of reference evapotranspiration using
meteorological data. Int | Hydro. 2025;9(2):85-93. DOI: 10.15406/ijh.2025.09.00407


https://doi.org/10.15406/ijh.2025.09.00407

A review on developing machine learning techniques for estimation of reference evapotranspiration using

meteorological data

In the future, machine learning techniques can enable the estimation

of ETo using fewer input variables than traditional methods. This
approach can support more efficient irrigation scheduling at critical
crop growth stages, improve water resource management, and help
determine the optimal water requirements for crops based on available
weather data.™®
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