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Introduction
Evapotranspiration (ET) is the combined loss of water from a 

vegetative surface and a soil surface via transpiration. This mechanism 
is responsible for the water stored in the atmosphere and is affected by 
a variety of climatic variables.1 The most essential factor in irrigation 
scheduling is the measurement of evapotranspiration. Timely 
irrigation schedule boosts agricultural output while also boosting 
farmer income through water conservation. As a result, conserving 
water resources would improve soil and groundwater quality. 
Temperature, solar radiation, relative humidity, and wind speed are 
the main meteorological elements that influence evapotranspiration.

Accurate monitoring and modelling of evapotranspiration 
processes are essential for advancing irrigation management and 
land reclamation practices. Crop growth, development, and yield are 
governed by a complex interplay of factors, including meteorological 
variables (e.g., temperature, solar radiation, precipitation, and extreme 
weather events), agronomic management, improved crop genotypes, 
optimal fertilizer application, tillage operations, and the strategic use 
of irrigation. Additionally, the influence of climate change introduces 
further variability, underscoring the importance of adaptive and data-
driven approaches to crop production.2–4 Irrigation scheduling should 
be synchronized with the crop’s dynamic water requirements. These 
requirements vary substantially throughout the growth stages due to 
fluctuations in canopy structure and climatic conditions.

On a global scale, nearly 80% of the water designated for 
agricultural irrigation is lost through the process of evapotranspiration 
(ET).5,6 The escalating demand for water is driven by both climate 
change and rapid population growth. Reports from the United Nations 
indicate that, over the past century, water usage has increased at twice 

the rate of global population growth. If current trends persist, it is 
projected that by 2025, approximately 1.8 billion people will be living 
in regions facing severe water scarcity (National Geographic Society, 
2016). In many areas, the decline in surface water availability and 
recurring droughts have led to over-extraction of groundwater, with 
around 10% of the world’s food now produced using unsustainable 
groundwater pumping practices. Accurate estimation of ET is critical 
for effective water resource management, including budgeting, 
allocation, and irrigation planning. For growers to schedule irrigation 
effectively, they must understand the atmospheric demand for water. 
Several techniques are available for the direct measurement of ET. 
One widely used method is the lysimeter, which estimates ET by 
tracking soil moisture fluctuations within a known soil volume planted 
with vegetation.6 Although accurate, lysimeters are often costly and 
labor-intensive to install and maintain. Another approach involves 
the use of Evaporation pans to assess water loss through evaporation; 
however, since they do not account for plant transpiration, the values 
must be corrected using crop-specific coefficients to approximate total 
evapotranspiration (ET).7–9

Alternatively, ET can be measured by quantifying the moisture 
flux from the plant surface to the atmosphere using highly sensitive 
instruments that detect variations in meteorological parameters 
between the crop surface and a reference height above it. While these 
techniques provide highly accurate ET estimates, they are generally 
confined to research settings due to their high cost and complexity.7,10 
To make ET estimation more accessible, various predictive models 
have been developed that estimate ET throughout the crop growth 
period based on meteorological data. However, a significant challenge 
in using these models lies in their dependence on detailed weather 
information, which is not always readily available. This limitation 
often necessitates the use of simpler models with fewer data 
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Abstract

Evapotranspiration (ET0) is a combined loss of water from surface of the earth and 
vegetative surface to atmosphere under the influence of weather parameters. The weather 
parameters that are influencing ET0 are air temperature, solar radiation, relative humidity 
and wind speed. Evapotranspiration (ET0) is the major loss of water received by the crop 
through rainfall and irrigation and also it represents major portion of total water budget of 
crop. The estimation of accurate value of ET0 helps in irrigation scheduling at different 
critical stages of crop for maximum crop production and also for hydrological and water 
resource planning based on available weather data. This review discusses various methods 
for estimating ET, including traditional empirical approaches and machine learning 
techniques. Traditional methods, which are computationally simple and data demanding, 
may fail to accurately estimate ET. Machine learning methods, SVM, ANN and RF increase 
the precision of ET estimation by extracting features from all weather particularly in data-
rich regions. However, model complexity can lead to difficulties in interpretation the 
performance of these methods may be limited in data-scarce areas. Collectively, future 
research should aim to improve data quality, optimize model generalizability, and explore 
methods that integrate physical processes with data-driven models. When selecting an ET 
estimation method, considerations should include data availability, model adaptability, 
estimation accuracy requirements, and technical operational complexity to meet the needs 
of specific research areas and applications.
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requirements, even though more advanced models may offer greater 
accuracy.

Reference evapotranspiration (ET₀) represents the amount of 
water lost through evaporation and transpiration from a standardized 
crop surface—typically a well-watered, short, clipped grass—under 
optimal conditions. This metric reflects the maximum atmospheric 
demand for water on a given day. When adjusted using crop-specific 
coefficients, ET₀ becomes a measure of the actual water requirement, or 
consumptive use, for a particular crop. The portion of this requirement 
not fulfilled by precipitation or soil moisture storage is termed the 
water deficit, which must be compensated through irrigation to 
ensure optimal crop performance.9 Accurate irrigation is essential, 
as both excess and insufficient watering can negatively affect crop 
health and yield. The economic significance of precise irrigation is 
also substantial; for example, a 1 mm ET loss over 1 hectare equals 
approximately 10 cubic meters (or 2,680 gallons) of water.7 An 
overestimation of ET by just 1 mm could lead to unnecessary use 
of 2,680 gallons of water, incurring additional costs and contributing 
to groundwater depletion. Efficient irrigation scheduling based on 
accurate ET estimation can therefore lead to considerable savings in 
both water and expenses.7,11

Due to the complexity of directly measuring ET, it is essential to 
develop models that can provide reliable estimates for agricultural 
water management. While lysimeters are a common tool for measuring 
ET in field conditions, their readings are often limited to small-scale 
areas and may not accurately represent broader landscapes because of 
spatial variability and surface heterogeneity.12

In addition to the challenges associated with its complex 
installation and maintenance, the lysimeter method is also unsuitable 
for use in large areas with heterogeneous vegetation, as it cannot 
provide a representative measurement for such diverse conditions.13 
The Penman-Monteith FAO 56 method is widely recognized as the 
international standard for calculating reference evapotranspiration 
(ET₀). However, its implementation is often constrained by the 
extensive meteorological data it requires—data that are typically 
available only at a limited number of weather stations—thus restricting 
its applicability in many regions.7

To enhance the estimation of reference evapotranspiration 
(ET), researchers have increasingly turned to machine learning, 
a specialized branch of artificial intelligence. Machine learning 
algorithms are capable of predicting future outcomes by learning 
patterns from historical data and training on labeled datasets. 
Among these, artificial neural networks (ANNs) have been widely 
applied for evapotranspiration estimation.14–19 Findings from these 
studies demonstrate that ANN models outperform traditional 
approaches, such as regression and empirical equations, in predicting 
evapotranspiration. Another promising technique is the support vector 
machine (SVM), a learning algorithm rooted in statistical learning 
theory and the principle of structural risk minimization. SVM is 
particularly well-suited for modeling nonlinear systems20 and has 
been shown to offer more consistent and accurate performance than 
ANN under equivalent training conditions.21

Several studies have explored the potential of SVM for ET₀ 
modeling in various regions. For example,22 applied SVM to estimate 
ET₀ in central California, USA, while23 evaluated its performance 
in a semi-arid highland region of Iran. In another study, SVM was 
used to estimate daily pan evaporation and compared against ANN 
models, revealing the superior predictive capabilities of SVM.24 These 
investigations consistently suggest that SVM provides more accurate 
and reliable ET₀ estimates than both ANN and empirical models. 

Additionally, the Random Forest algorithm has shown high accuracy 
in estimating root zone soil moisture, further highlighting the value of 
machine learning approaches in hydrological modeling.25

ET₀ is estimated mostly by empirical equation but the use of 
machine learning is lagging behind for ET₀ estimation. Estimation 
of ET₀ by machine learning techniques using different weather input 
combination has not been done in detail for some regions of India due 
to lack of availability of all weather parameters for evapotranspiration 
estimation..Among other machine learning models the promising 
capabilities of SVM, Random Forest (RF), and Artificial Neural 
Networks (ANN), the application of these machine learning techniques 
for ET₀ estimation remains relatively limited—especially in semi-arid 
regions where meteorological data are scarce.

Empirical methods for estimation of 
evapotranspiration

Reference evapotranspiration (ET₀) can be estimated using various 
methods, ranging from complex energy balance equations7 to simpler 
empirical formulas that require limited meteorological inputs.26,27 
The estimation of crop evapotranspiration (ETc) involves both direct 
measurement techniques and indirect modelling approaches. Accurate 
estimation of ETc is critical for efficient water resource management 
in agriculture.23 When lysimeters are unavailable, the field water 
balance method is commonly employed to estimate actual crop 
evapotranspiration (ETa).28–30 However, direct measurement methods 
are labor-intensive, costly, and their results are often site-specific, 
limiting broader applicability.

ET₀ plays a central role in regulating numerous hydrological 
processes, and its accurate estimation is essential for water planning 
and management strategies.31 Quantifying ET typically begins with 
determining reference evapotranspiration (ET₀).32 Numerous empirical 
models have been developed for this purpose using meteorological 
data (Table 1). Among these, the FAO Penman-Monteith method has 
been endorsed by the Food and Agriculture Organization (FAO) of the 
United Nations as the global standard for ET₀ estimation. This method 
defines the reference crop as a hypothetical grass surface with a height 
of 0.12 m, a surface resistance of 70 s/m, and an albedo of 0.23—
representing a well-watered, actively growing, uniform grass cover.7 
Compared to earlier models, such as the FAO-24 Penman method, the 
FAO-56 Penman-Monteith formulation provides results that are more 
consistent with observed crop water use worldwide.33

The scientific community widely accepts the Penman-Monteith 
FAO-56 method due to its reliability and accuracy across diverse 
climatic regions.34,35 In contrast, calibration studies have shown that 
the Hargreaves method tends to significantly overestimate ET₀ values 
when compared to the Penman-Monteith method—by as much as 
118–167%—making it less suitable for regional-scale applications.36,37 
Given the critical role of ET₀ in influencing climate change, global 
temperature trends, crop productivity, water availability, and runoff 
dynamics, its prediction has been the focus of extensive research in 
recent decades.38–40

Although the Penman–Monteith FAO-56 method is regarded as 
a physically based model and the most accurate available—being an 
approximate linear solution to equations governing energy balance, 
thermodynamics, and vertical transport of heat and water vapor.38,40 
The main limitation lies in its requirement for a comprehensive set of 
meteorological data, which may not always be available in all regions 
Table 1.41,42
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Table 1 Empirical Models for estimation of reference evapotranspiration

S. No Model type Model Equation References

1 Combination model Penman-Monteith FAO-56 ( )
( )0
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9000.408 2

1 0.34

nR G u e
TET
u

γ δ

γ

∆ − +
=

∆ + +

 2

2 Temperature based Hargreaves and Samani  ET0=0.0023*Ra*√(Tmax-Tmin)*(Tmean+17.8)/λ   21

3 Ritchie ET=α1[3.87*10-3 *Rs(0.6Tmax+0.4Tmin+29)] 27

Machine learning techniques

Machine learning methods are often known as data-driven 
methods. It is a subset of computer science that is classified as an 
artificial intelligence technique. It interferes with the perfection of 
strategies that enable the computer to acquire. Simply put, algorithms 
evolve so that the computer may learn, complete jobs, and perform 
actions. Over time, numerous approaches for machine learning jobs 
have been created. It can be used in a wide range of applications, and 
this technique allows models to address challenges that are difficult to 
represent mathematically. 

Computer software for machine learning 

Machine learning methods can be performed in MATLAB, 
PYTHON, R software, but R is one of the most preferred. It makes 
statistical computing and graphical representations very easy in R. 
Advance statistical and machine learning packages are provided in 
R software along with various other packages and in built functions 
which greatly simplify statistical analysis. It supports efficient 
data handling and storage, even for large datasets, and provides 
versatile plotting capabilities tailored to various analytical needs. R 
is particularly valuable for tasks such as predictive analytics, data 
preprocessing, statistical modeling, data visualization, and model 
deployment. The steps followed is represented in Figure 1.43

Figure 1 Flowchart for developing ET₀ estimation model.

Support vector machine

The Support Vector Machine (SVM) was first introduced in 1992 and 
gained widespread recognition through the work of.44 Support Vector 
Machine are supervised learning techniques used in classification 
and regression. They fall within the category of generalised linear 
classifiers, or, to use more modern terminology, regression prediction 
and classification methods that apply machine learning theory to 
take advantage of analytical precision while naturally avoiding over-
fitting to the data Figure 2. Regression and grouping problems are 

equally amenable to the SVM.45 Support Vector Machine (SVM), a 
modern learning algorithm based on statistical learning theory and the 
principle of structural risk minimization, can be effectively used for 
modeling nonlinear systems.46

Figure 2 Schematic representation of support vector machine.

Artificial neural network

Artificial neural networks (ANN) are being employed extensively 
these days because to their ease of usage in resolving complicated and 
challenging interactions. ANN is used in numerous scientific domains. 
In order to get good results, this method is also employed in hydrology 
and hydraulics, among other scientific disciplines. Researchers have 
calculated the application of AI techniques to forecast hydrological 
phenomena like ET0 or evaporation in recent years.47–49 An Artificial 
Neural Network (ANN) is composed of interconnected layers—input, 
hidden, and output—each consisting of an array of artificial neurons 
as shown in Figure 3. A completely connected neural network is 
one in which every neurone in a layer is connected to every other 
neurone in the layer above or below it. A mathematical model with 
parts that are similar to those of an actual neurone is called an artificial 
neurone. Over the past decade, artificial neural networks (ANNs) 
have attracted significant attention for their application in estimating 
evapotranspiration.

Figure 3 Diagram showing input, hidden and output layers of an ANN.
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Random forest

RF, also referred to as bagging, is an ensemble technique that can 
perform both regression and classification. It is considered the most 
advantageous algorithms for forecasting. The core concept behind the 
Random Forest (RF) algorithm is to combine the outputs of multiple 
decision trees, rather than relying on a single tree for prediction Figure 
4. During training, multiple decision trees are constructed, and the 
final output is determined by aggregating their results—using the 
mean prediction for regression tasks or the mode of the predicted 
classes for classification .This ensemble approach mitigates the 
tendency of individual decision trees to overfit the training data. In 
the case of Extremely Randomized Trees (Extra Trees), each decision 
tree is built from the initial training sample, and at each split node, the 
tree selects the optimal feature from a randomly chosen subset of k 
features based on a mathematical criterion, typically the Gini Index.

Figure 4 Schematic representation of Random Forest.

The model can be mathematically expressed as:

f(x) = f₀(x) + f₁(x) + f₂(x) + ...,

where the final model f(x) is the sum of several simpler base 
models fᵢ(x), each representing an individual decision tree regressor.

Case study

This study utilizes daily meteorological data from three 
automated weather stations—Windsor (38°31′35″N, 122°49′42″W), 
Oakville (38°26′02″N, 122°24′35″W), and Santa Rosa (38°24′04″N, 
122°47′56″W)—operated by the California Irrigation Management 
Information System (CIMIS). The Santa Rosa and Windsor stations 
are located in Sonoma County, within the North Coast Valleys Region 
of California, USA, while the Oakville station is situated in Napa 
County, also within the same region.

The CIMIS program was established in 1982 through a 
collaboration between the University of California at Davis and the 
California Department of Water Resources, with the objective of 

supporting irrigators in managing water use efficiently. Today, CIMIS 
oversees a network of over 120 automated weather stations across 
the state.

The meteorological data used in this study were collected from 
CIMIS stations and include measurements of key variables. Solar 
radiation is measured using pyranometers installed at a height of 
2.0 meters above ground level. Air temperature is recorded using 
thermistors located at 1.5 meters, and relative humidity sensors are 
co-located in the same enclosure at the same height. Wind speed is 
measured by three-cup anemometers positioned at 2.0 meters above 
the ground anemometers are employed to measure wind speed. The 
daily meteorological data and corresponding ET₀ values, calculated 
using the CIMIS Penman method, are obtained from the CIMIS 
website (http://www.ipm.ucdavis.edu/WEATHER/wxretrieve.
html). Seasonal variations in the surrounding environments of the 
Windsor and Santa Rosa stations may occur, potentially influencing 
the recorded data. This study utilizes ten years of meteorological 
data (1998–2007), including daily observations of wind speed (U₂), 
relative humidity (RH), air temperature (T), and solar radiation (Rₛ).

For model development, Support Vector Regression (SVR) models 
are calibrated using data from the first seven years (1998–2004), 
while the remaining three years (2005–2007) are used for validation. 
In Table 3, the statistical parameters x̄ (mean), Sₓ (standard deviation), 
Cᵥ (coefficient of variation), Csₓ (skewness), xₘᵢₙ (minimum), 
and xₘₐₓ (maximum) are presented. The wind speed data for each 
station exhibit a skewed distribution, as indicated by the Csₓ values. 
Correlation coefficients in Table 3 reveal that solar radiation (Rₛ) has 
the strongest relationship with ET₀ across all stations, followed by 
air temperature (T), which also shows a significant correlation with 
reference evapotranspiration.

Table 2 Abbreviation used

Notation Description Unit
ET0 Reference evapotranspiration mm day-1
Rn net radiation MJ m-2 day-1
G soil heat flux density MJ m-2 day-1
T mean daily air temperature °C
u2 wind speed m s-1

es saturation vapour pressure kPa
ea actual vapour pressure kPa
es-ea saturation vapour pressure deficit kPa
Δ slope vapour pressure curve kPa °C-1

γ psychrometric constant kPa °C-1

λ Latent heat of vaporization=2.45 MJ/kg
Ra extraterrestrial radiation mm/d

Tmax daily maximum temperature °C
Tmin daily  minimum  temperature °C

Table 3 Daily statistical parameters of each data set

Station Variable xmean Sx Cv (Sx/xmean) Csx xmin xmax Correlation with ET0

Windsor

Rs 400 203 0.51 –0.05 0 917 0.958
T 13.6 4.7 0.34 0.01 0.31 29.6 0.788
RH 72.9 11.3 0.15 –0.14 14.5 100 –0.757
U2 1.5 0.53 0.35 1.45 0.45 5.5 0.259
 ET0 3.31 2.13 0.64 0.2 –0.36 11.2 0

Oakville Rs 417 200 0.49 -0.11 0 920 0.955
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T 14.8 4.94 0.33 0.06 1.11 31.6 0.814
RH 71 12.2 0.17 -0.43 15.5 100 -0.715
U2 1.61 0.5 0.3 1.1 0.54 4.83 0.35
 ET0 3.6 2.19 0.61 0.1 -0.33 10.5 1

Santa Rosa

Rs 12.7 205 0.5 -0.04 0 1155 0.945
T 410 4.48 0.35 -0.06 -2.7 28.6 0.755
RH 77 10.3 0.13 -0.28 19.5 100 -0.711
U2 1.69 0.68 0.4 6.94 0.45 19.4 0.207
 ET0 3.18 2.02 0.63 0.19 -0.34 9.67 1

Results 
Initially, reference evapotranspiration (ET₀) values for the 

Windsor, Oakville, and Santa Rosa stations are calculated using the 
Penman-Monteith FAO-56 method.7 These ET₀ values, along with 
the corresponding meteorological inputs—air temperature (T), solar 
radiation (Rₛ), relative humidity (RH), and wind speed at 2 meters 
(U₂)—are used to calibrate the Support Vector Regression (SVR) 
models.

The performance of the SVR models is evaluated using three 
statistical metrics: Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), and the coefficient of determination (R²), as presented in 
Table 4. The R² value indicates the strength of the linear relationship 
between observed and predicted variables. RMSE and MAE, on 
the other hand, provide complementary insights into the predictive 
accuracy of the model. Specifically, RMSE emphasizes the model’s 
performance in capturing higher ET₀ values, while MAE offers a more 
general assessment of the model’s overall fitting accuracy across the 
full range of ET₀ values.50

Table 4 Performance statistics of the models in the test period

Models Model Inputs RMSE (mm/d) MAE (mm/d) R2

Windsor Station
SVR1 (30, 0.01, 0.3) Rs , T, RH and U2 0.138 0.091 0.996
CIMIS Penman Rs , T, RH and U2 0.43 0.29 0.968
SVR2 (50, 0.1, 0.3) Rs , T 0.378 0.27 0.971
Hargreaves (1985) Rs , T 0.426 0.325 0.969
Ritchie (1990) Rs , T 0.418 0.321 0.969
Oakville Station
SVR1 (60, 0.01, 0.3) Rs , T, RH and U2 0.114 0.081 0.997
CIMIS Penman Rs , T, RH and U2 0.367 0.274 0.975
SVR2 (60, 0.01, 0.08) Rs , T 0.445 0.321 0.953
Hargreaves (1985) Rs , T 0.488 0.358 0.948
Ritchie (1990) Rs , T 0.485 0.351 0.948
Santa Rosa Station
SVR1 (15, 0.003, 0.05) Rs , T, RH and U2 0.155 0.099 0.994
CIMIS Penman Rs , T, RH and U2 0.402 0.272 0.958
SVR2 (20, 0.01, 0.07) Rs , T 0.493 0.332 0.948
Hargreaves (1985) Rs , T 0.466 0.347 0.947
Ritchie (1990) Rs , T 0.446 0.341 0.952

The RMSE and MAE are calculated as follows:

RMSE=

Where, Pi is the estimated value, Oi is the observed value and N is 
the number of observations 

MAE=1\n 

where yi = observed value, y^i = estimated value, n = sample size

Two different Support Vector Regression (SVR) models were 
developed in this study. To enable a valid comparison with the two-
variable empirical Hargreaves and Ritchie models, an SVR model 
using only temperature (T) and solar radiation (Rₛ) as inputs was 
constructed. Table 5 presents the Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and coefficient of determination (R²) 
values for each model during the test period. R² indicates the strength 
of the linear relationship between predicted and observed values. 
RMSE is more sensitive to larger errors, particularly at high ET₀ 

values, while MAE provides a balanced measure of overall prediction 
accuracy.50

SVR training aims to find a nonlinear function that minimizes a 
regularized risk function. This involves selecting appropriate values 
for the penalty parameter (C), the ε-insensitive loss function, and 
the kernel function parameter (σ), typically by minimizing RMSE. 
A Fortran 90 program was used for model implementation and to 
compute the Lagrange multipliers in Equation (7). The optimal SVR 
model parameters—C, ε, and σ—are listed in Table 2. For instance, 
SVR1(30, 0.01, 0.3) denotes a model with C = 30, ε = 0.01, and σ 
= 0.3.The SVR models are evaluated against the CIMIS Penman,51 
Hargreaves,26 and Ritchie (Jones & Ritchie, 1990) methods. The 
CIMIS Penman approach, based on a modified Penman equation,33 
incorporates a wind function developed at the University of California, 
Davis. It uses hourly average meteorological data to estimate hourly 
ET₀, which is then summed to calculate daily totals. This method 
aligns with the FAO-56 guidelines.7

Table 3 Continued....
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Table 5 Total estimated evapotranspiration in test period

Models
Total Evapotranspiration(mm) Relative error (%)

Windsor Oakville Santa Rosa Windsor Oakville Santa Rosa
Penman-Monteith FAO 2494 2459 2232 - - -
SVR1 2517 2433 2250 0.9 -1.1 0.8
CIMIS Penman 2381 2337 2186 -4.5 -5 -2.1
SVR2 2418 2410 2079 -3.1 -2 -6.9
Hargreaves(1985) 2412 2371 2182 -3.3 -3.6 -2.3
Ritchie(1990) 2455 2391 2239 -1.5 -2.8 0.3

Model performance was compared for the Windsor, Oakville, 
and Santa Rosa stations using RMSE, MAE, and R² (Table 5). SVR1 
includes four inputs—Rₛ, T, RH, and U₂—while SVR2 uses only T 
and Rₛ, like the Hargreaves and Ritchie models. SVR1 outperforms 
all other models across all evaluation metrics. The CIMIS Penman 
method performs better than the simpler empirical models, and among 
the two-parameter models, SVR2 shows superior accuracy except at 
the Santa Rosa station. At Santa Rosa, the Ritchie model outperforms 
SVR2 in terms of RMSE and R², and the Hargreaves model shows a 
lower RMSE than SVR2. The accuracies of Ritchie and Hargreaves 
are relatively similar. Scatterplot analyses show that SVR1 predictions 
are closer to FAO-56 ET₀ values than those from other models. In 
regression plots (y = a₀x + a₁), the slope (a₀) for SVR1 is closer to 1 
and the R² values are higher, indicating better predictive alignment.

The total estimated ET₀, relevant for irrigation planning, also 
supports SVR1’s superiority. For Windsor, SVR1 estimates 2517 mm, 
just 0.9% above the FAO-56 reference (2494 mm). CIMIS Penman, 
SVR2, Hargreaves, and Ritchie methods predict 2381, 2418, 2412, 
and 2455 mm, underestimating by 4.5%, 3.1%, 3.3%, and 1.5%, 
respectively. Thus, SVR1 is the most accurate, followed by Ritchie.

At Oakville, SVR1 estimates 2433 mm, close to the reference 
2459 mm (1.1% underestimation), while CIMIS Penman, SVR2, 
Hargreaves, and Ritchie estimate 2337, 2410, 2371, and 2390 mm, 
underestimating by 5%, 2%, 3.6%, and 2.8%, respectively. Again, 
SVR1 performs best, followed by SVR2.

At Santa Rosa, total ET₀ values predicted by SVR1 and Ritchie 
are 0.8% and 0.3% below the reference value (2232 mm), whereas 
CIMIS Penman, SVR2, and Hargreaves overestimate by 2.1%, 6.9%, 
and 53.5%, respectively. In this case, the Ritchie model slightly 
outperforms SVR1.

Figure 5 To provide a comparative analysis, a feed-forward 
Artificial Neural Network (ANN) model was also used for the daily 
estimation of reference evapotranspiration (ET₀). The conjugate 
gradient method, known for its higher efficiency and faster convergence 
than the traditional gradient descent method, was adopted to optimize 
the ANN weights.52 Sigmoid activation functions were applied to 
both hidden and output layers. Since there is no established rule for 
determining the optimal number of hidden nodes, different network 
configurations were tested to identify the most effective structure. 
Training was halted after 250 epochs, as suggested by Kisi O et al.52

Figure 5 Relationship between evapotranspiration (ET₀) and important weather parameters.
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After several trials, the most suitable ANN configurations for the 
Windsor, Oakville, and Santa Rosa stations were identified and are 
summarized in Table 4. For example, the structure ANN (4,8,1) refers 
to a model with four input nodes, eight hidden nodes, and one output 
node. When comparing the ANN and SVR models using RMSE, 
MAE, and R² metrics, the SVR models generally showed better 
performance (Table 6). This suggests that SVR is more effective in 
modeling the relationship between ET₀ and meteorological parameters 
compared to traditional models like CIMIS Penman, Hargreaves, and 
Ritchie equation. The CIMIS Penman method combines two terms: 
a radiative term representing the energy available for evaporation, 
and an aerodynamic term accounting for the transport of water 
vapor. Although widely used, the method’s primary drawback is its 
reliance on extensive meteorological data. Despite this, the SVR2 
model demonstrated that reliable ET₀ estimation is achievable with 
fewer and simpler inputs. The Hargreaves and Ritchie equations, 
derived from empirical relationships based on local meteorological 
data, can be seen as simplified alternatives to the Penman approach. 
These models focus mainly on the radiative term, which has a greater 
influence on ET₀ than the aerodynamic component.27

Table 6 Performance statistics of the SVR and ANN models in the test period

Models Model Inputs RMSE 
(mm/d)

MAE 
(mm/d) R2

Windsor Station

SVR1 (30, 0.01, 0.3) Rs , T, RH and 
U2

0.138 0.091 0.996

ANN(4,8,1) Rs , T, RH and 
U2 0.142 0.103 0.996

SVR2 (50, 0.1, 0.3) Rs , T 0.378 0.27 0.971
ANN(2,4,1) Rs , T 0.379 0.284 0.969
Oakville Station

SVR1 (60, 0.01, 0.3)
Rs , T, RH and 
U2 0.114 0.081 0.997

ANN(4,4,1) Rs , T, RH and 
U2

0.166 0.122 0.994

SVR2 (60, 0.01, 0.08) Rs , T 0.445 0.321 0.953
ANN(2,7,1) Rs , T 0.45 0.347 0.952
Santa Rosa Station

SVR1 (15, 0.003, 
0.05)

Rs , T, RH and 
U2 0.155 0.099 0.994

ANN(4,6,1) Rs , T, RH and 
U2

0.202 0.155 0.99

SVR2 (20, 0.01, 0.07) Rs , T 0.493 0.332 0.948
ANN(2,2,1) Rs , T 0.536 0.42 0.931

SVR’s main strengths are its ability to model nonlinear relationships 
and its flexibility. However, it also has limitations—most notably, it is 
a data-driven “black-box” model without a physical basis and requires 
sufficient training data for effective implementation. In contrast, 
empirical models like Hargreaves and Ritchie are easier to interpret 
and apply. Nonetheless, SVR models generally provide more accurate 
ET₀ predictions than empirical approaches.

In hydrological modeling studies where direct estimates of 
evapotranspiration are unavailable, the results of this study can 
be highly valuable. SVR models can be integrated as a component 
within traditional hydrological analysis frameworks to enhance their 
predictive capabilities.

Summary and conclusion
Accurate estimation of reference evapotranspiration (ET₀) is 

essential for efficient irrigation scheduling and effective water resource 
management. In this study, ET₀ was calculated using three empirical 
methods, and the results showed that the Penman–Monteith FAO-
56 method outperformed both the Ritchie and Hargreaves–Samani 
approaches. When compared with lysimeter-based ET measurements, 
the Penman–Monteith FAO-56 produced results that were more 
closely aligned.7 This method is widely acknowledged as the most 
accurate for estimating ET₀ in various climatic regions around the 
world.52,13,34

Numerous researchers have validated the reliability of the 
Penman–Monteith (PM) method for ET₀ estimation.53,52,31 A 
comparative analysis of 20 different models against lysimeter data 
from 11 stations across different climatic zones confirmed that the 
Penman–Monteith FAO-56 consistently provided the most accurate 
estimates.54 Despite its strong performance and widespread use,37 one 
of the main limitations of the PM FAO-56 method is its requirement 
for a comprehensive set of meteorological inputs.40

To address this issue, machine learning techniques have been 
explored as alternatives. For example, a study using SVM, M5P, and 
RF models to estimate monthly ET₀ at two locations (Nagina and 
Pantnagar) based on weather parameters (temperature, wind speed, 
solar radiation, and relative humidity) found SVM to offer better 
performance than empirical models.55 Similarly, SVM has been 
shown to outperform ANN under similar training conditions,21 and in 
the estimation of daily pan evaporation, SVM models also exceeded 
ANN models in accuracy.24

In the Kosice City region of Slovakia, daily ET₀ was estimated using 
MLP (multilayer perceptron), SVR (support vector regression), and 
MLR (multiple linear regression) with inputs including wind speed, 
relative humidity, temperature, and solar radiation. These machine 
learning models outperformed traditional empirical methods such as 
Hargreaves–Samani, Ritchie, and Turc.56 Another study demonstrated 
that SVM models using Rs, T, RH, and wind speed provided more 
reliable ET₀ estimates compared to empirical equations like Penman, 
Hargreaves, and Priestley–Taylor.22

In a semi-arid region of Iran, various models including SVM, 
ANFIS (adaptive neuro-fuzzy inference system), MLR, and MNLR 
were evaluated against the Penman–Monteith FAO-56 method using 
input parameters such as Tmax, Tmin, RH, wind speed, and Rs. The 
findings showed that both SVM and ANFIS models, particularly 
those using four input variables (Tmean, RH, Rs, and wind speed), 
delivered higher accuracy.23 Similarly, in China’s Xinjiang region, 
Least Squares SVM models using temperature, radiation, humidity, 
and wind speed achieved strong accuracy for ET₀ estimation.57 
Another study conducted in the arid Ejina Basin of China found that 
SVM models using Tmax, Tmin, U2, and Rs outperformed both ANN 
and empirical methods in estimating daily ET₀.6

In conclusion, machine learning models—especially SVM—
demonstrate significant potential for estimating ET₀ using fewer and 
simpler input variables than traditional empirical methods. These 
models can play a vital role in improving irrigation scheduling, 
managing water resources more efficiently, and determining crop 
water requirements based on local weather conditions.
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In the future, machine learning techniques can enable the estimation 
of ET₀ using fewer input variables than traditional methods. This 
approach can support more efficient irrigation scheduling at critical 
crop growth stages, improve water resource management, and help 
determine the optimal water requirements for crops based on available 
weather data.58
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