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Introduction
Arid and semi-arid areas (Figure 1), draining wide basins and 

overlying extensive aquifer(s), e.g., Iullemedden basin, West Africa,1,2 
Saladin Province, Iraq,3 Goshen Valley, UT, USA,4 Northwest 
China,5 and Hamedan-Bahar plain, Iran.6 These areas are largely 
fortified with irrigation facilities that, combined with the application 
of agrochemicals, make possible areas of intensive irrigation 
farming. The survival and throughput of these arid areas depend 
on the availability of water of acceptable quality. A decline in the 
accessibility or quality of water will consequently affect human health 
and wellbeing as well as agricultural output which, given the position 
of these areas for food production could have detrimental effects to the 
immediate environment and beyond.7 Arid and semi-arid areas cover 
approximately 40% of the global landmass and are occupied by 37% 
of the global population.7 Though there is no general definition of 
the term dryland, FAO8 classifies drylands into four categories based 
on their precipitation (p) and associated potential evapotranspiration 
(ETP). The four types of drylands are: (1) p/ETP below 0.03 (hyper-
arid), comprised of areas of barren land and precipitation below (pb) 
100 mm; (2) p/ETP varying between 0.03 to 0.2 mm (arid) and pb 
~300 mm; (3) p/ETP 0.2 to 0.5 (semi-arid) and p fluctuating between 
300 and 500 mm and rising to 800 mm in tropical regions with very 
short rain season; and (4) p/ETP oscillating between 0.5 to 0.75 mm 
- sub-humid.7 

In this review, all four subtypes of drylands are counted in within 
the term “semi-arid and arid areas” or drylands. The climatic 

features common to all drylands largely include uneven distribution 
of annual rainfall, drought phases, rate of evaporation greater than 
annual precipitation, a dry and wet season within a year, and scanty 
dispersal of native vegetation.9,10 Freshwater resources in these 
regions are over-exploited as a result of low rainfall and slight 
aquifer recharge consequent of the growing demand of water from 
industry, domestic water supply, and dry season farming.9,11,12 Water 
scarcity has become endemic in arid and semi-arid areas, particularly 
in developing countries.13–15 Thus, groundwater occupies a central 
role in the water supply of these areas and is increasingly gaining 
ground in the supply of water to both rural and urban centres.16,5 
For instance, estimates show that at least one-third of the global 
population relies on groundwater for drinking.17 Thus, understanding 
of the hydrogeochemical characteristics of sources of water supply 
plays a vital role in water resources management, especially as it 
relates to water quality from aquifers and streams. This allows for 
water classification for various uses. Thus, it is essential to understand 
the hydrochemical composition of streams and aquifers and its 
evolution under environmental processes for effective management 
and sustainable utilization of water resources. 

The quality of water basically depend on diverse hydrogeochemical 
and biological processes that take place over space and time in a stream 
or groundwater aquifer.18–20 The variation of stream or groundwater 
quality is the joint effect of anthropogenic and natural geogenic 
processes, such as leaching of organic and inorganic fertilizers, 
biogeochemical processes, mixing of surface and groundwater, 
dissolution of minerals/precipitation, cation exchange, reduction/
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Abstract

The objective of this review is to highlight the need for an integrated approach to the 
understanding of the major processes controlling the hydrochemical composition of water 
bodies in drylands using multivariate statistics, water quality index and heavy metal pollution 
index. The integrated approach to the hydrochemical investigation of streams and aquifers 
in drylands is essential owing to their distinctive climate, notably, low rainfall and high 
temperature. Studies on water quality in arid and semi-arid areas using multivariate analysis 
and water quality indices were scrutinized. Results showed that the hydrochemistry of 
streams and aquifers is controlled by both the natural geogenic processes and anthropogenic 
activities. However, in-depth understanding of geochemistry and land use types, as well as 
climatic vagaries, is required, to be able to discriminate these processes, since several ions 
of rock minerals origin are increasingly being added into the environment through human 
activities. While the sources of solutes and processes controlling the hydrochemistry of 
streams and aquifers can be established through application of multivariate analysis, this 
technique is limited in water quality investigations since it cannot measure the suitability 
of water for domestic, agriculture and industrial uses. Thus, an integrated approach 
incorporating water quality indices in conjunction with multivariate analysis is required. 
This is essential owing to the fact that the suitability of water for various uses is central 
to any hydrogeochemical investigation in arid and semi-arid environments. Thus, it is 
expected that future hydrochemical studies would apply this approach.

Keywords: natural geogenic and anthropogenic processes, correlation analysis, principal 
component analysis, hierarchical cluster analysis, water quality index, heavy metal 
pollution index
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oxidation, composition of precipitation and geological formation 
underlying groundwater aquifers or channels over which streams 
pass. Other anthropogenic activities affecting water quality include 
mining, urbanization, industry and improper sewage disposal (Figure 
2). Consequently, different water types are produced as a result of the 
interaction of these factors.17 Generally, studies on water quality of 
streams and aquifers are deemed beneficial in detecting processes that 
govern the hydrochemical composition of streams and groundwater 
aquifers.22–24,17

Figure 1 World map of aridity zones. Retrieved from http://www.unesco.org/
mab/ doc.html, 22/07/2019.

Figure 2 Geogenic and anthropogenic controls on water quality. After 
Andrade.21

Hydrochemical transformation in surface and groundwater in 
drylands present a thought-provoking topic,25–27 owing to difficulties 
involved in understanding the interaction between surface and 
groundwater. Though pollutant wash-off,28 municipal and industrial 
sewage,29,30 agriculture and mining dominate pollutants pools;31,32 
streams and catchments, floodplain inundation and infiltration of water 
during and after rainfall event, initiate pollutant load to groundwater 
aquifers.33–35 Therefore, understanding the factors controlling the 
hydrochemical composition of streams and aquifers is necessary for 
the overall management of water resources. This can be achieved 
by the application of simple statistical techniques, which enable 
understanding the types of natural and anthropogenic processes 
controlling water chemistry.36,22 Likewise, numerous indices such as 
water quality index (WQI) and heavy metal pollution index (HPI),37,38 
are used to evaluate the water quality and determine its suitability for 
drinking, agriculture and industrial uses. 

Conversely, simple statistical techniques such as correlation, PCA, 
FA and HCA,39,40 can be used to identify the origin of salinity in streams 
and aquifers (Table 1). The application of WQI and HPI in conjunction 
with multivariate statistics can provide vibrant evidence relating to 

the sources of solutes and the geochemical and/or anthropogenic 
processes related to water composition. These methods perhaps 
present simple analytical tools for the evaluation and management 
of water quality in drylands. Remarkably, a large portion of global 
arid areas occurs in an underdeveloped part of the world (e.g. North 
Africa, Middle East, West Africa), where resources needed for large 
scale water quality evaluation is seldom available. Consequently, the 
significance of these tools lies with the fact that they are easy to apply, 
cheap and are able to provide the needed results on the hydrochemical 
composition of streams and aquifers both at local and regional scales. 
It is against this background that this review aimed at designing an 
integrated approach to water quality investigation in arid and semi-
arid areas.

Water quality index 

Water quality index (WQI), is measured as a formidable technique 
that can offer a wide-ranging delineation of sources of potable water. 
The WQI is the degree that mirrors the combined effect of multiple 
water quality parameters.41–46,38 It is computed by assigning discrete 
weights (wi) to each chemical parameter in a scale of 1 (smallest 
impact on water quality) to 5 (greatest impact on water quality) 
founded on their supposed impact on human health and based on its 
relative significance in the quality of drinking water.47 Parameters that 
have grave health concerns and whose existence beyond the critical 
absorption limits could affect the usability of the water for domestic 
and drinking purposes (e.g. Cl, TDS, NO3

-, Pb, Cd, As and SO4
2-) 

were allotted highest weight of 5, whereas, parameters that have an 
inconsequential role in water quality evaluation like K were allotted 
the minimum weight of 1 (Table 2). The intermediate parameters, 
including pH, EC, TH, HCO3, Ca, Mg, were assigned weights between 
2 and 4 depending on their relative significance in the water quality 
evaluation. The relative weight (Wi) is calculated from Eq. 1

i
i n

ii

wW
w

=
∑                                                                        

Eq.1

where the relative weight = iW , the weight of each parameter = iw
, and n is the number of parameters. For instance, the 
calculated relative weight ( iW ) values of individual parameters can be 
given as in Table 2. 

Table 2 Example of the relative weight of chemical parameters

S/
no Parameters Unit

WHO 
Standards 
(2011)

Weight 
(Wi)

Relative 
weight (wi)

1 Al mg/l 0.1-0.2 2 0.029
2 B mg/l 0.5 2 0.029
3 Ba mg/l 0.7* 2 0.029
4 Ca mg/l 500 2 0.029
5 Cl mg/l 200 5 0.071
7 Cu mg/l 1 2 0.029

8 EC µS/
cm 1000 5 0.071

9 F mg/l 1.5* 2 0.029
11 Fe mg/l 0.3 2 0.029
11 HC03 mg/l 250 3 0.043
12 K mg/l 12 1 0.014
13 Li mg/l 0.7** 2 0.029
14 Mg mg/l 125 2 0.029

https://doi.org/10.15406/ijh.2023.07.00353
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S/
no Parameters Unit

WHO 
Standards 
(2011)

Weight 
(Wi)

Relative 
weight (wi)

15 Mn mg/l 0.4 2 0.029
16 Na mg/l 200 2 0.029
17 NO3 mg/l 50 5 0.071
18 Pb mg/l 0.01* 4 0.057
29 pH - 6.5-8.5 4 0.057
20 PO4 mg/l 0.2 5 0.071
21 SO4 mg/l 125-130 4 0.057
22 TDS mg/l 500 5 0.071
23 TH mg/l 200 3 0.043
24 Zn mg/l 3 2 0.029

*: WHO (2006); **EPA (2018); EC: Electrical Conductivity; TH: Total Hardness

The quality rating (qi) for individual parameters is allotted by 
dividing its concentration in each water sample by its reference values 
given by the World Health Organization (WHO), and the result is 
converted to a percentage (%) by multiplying 100:

1 00 Ciq xi Si

 
=   
                                                                  

Eq.2

where the quality rating is , the concentration of each chemical 
parameter in individual water samples in mg/l is iC , and the drinking 
water standard for the individual chemical parameter in mg/l 
based on the guidelines of the WHO, is iS . The SIi value is first 
computed using Eq. 3 before WQI is calculated. The 
equation is thus: 

    i i iSI W x q=
                                                                           

Eq.3

1

 
n

i

WQI SI
=

=∑
                                                                       

Eq.4

where, is the sub-index of the ith parameter; is the quality 
rating based on the concentration of the ith parameter. Accordingly, 
the calculated WQI values are normally grouped into five classes, viz: 
Excellent Water (<50); Good Water (50-100); Poor Water (100-200); 
Very Poor Water (200-300); and Unsuitable for Drinking (>300). 
Table 3 presents examples of literature reports on WQI in arid and 
semi-arid areas. Evaluation of WQI from 699 sampling sites (Table 
3) showed that 235 (33.62%) of water sources in arid and semi-arid 
areas fall in Excellent Class, 178 (25.46%) fall in Good Class, 235 
(33.62%) fall in Poor Class, 37 (5.29%) fall in Very Poor Class and 24 
(3.43%) fall in Unsuitable Class (Figure 3). 

68iw =∑ 1.00iw =∑

Table 3 Literature report using WQI in arid and semi-arid areas

S/no Study Region/ Country No. of 
sampling Range/Classification

Excellent 
(<50) 

Good 
(50-100)

Poor 
(100-200)

Very poor 
(200-300)

Unsuitable 
(>300)

1 Aminiyan et al.37 Karoon river, Iran 14 - 15 - - -

2 Bouteraa et al.38 Boumerzoug-El Khroub valley, NE 
Algeria 26 - 25 1 - -

3 Eslami et al.42 Jiroft, Iran 105 105 - - - -

4 Machiwal and Jha44 Udaipur district, Rajasthan, India 53 - 53 - - -

5 Mahfooz et al.45 Faisalabad, Pakistan 34 27 4 3

6 Subba Rao et al.46 Wanaparthy District, Telangana, 
India 15 7 8 1 - -

7 Ketata-Rokbani et al.104 El Khairat, Tunisian Sahel 17 1 2 10 4 -

8 Pei-yue et al.126 Ningxia, Northwest China 47 53 14 6 1 -

9 Rocha et al.130 Upper Jaguaribe River, Brazil 16 1 16 - - -

10 Sadat-Noori et al.131 Saveh-Nobaran aquifer, Iran 58 8 11 16 6 17

11 Vasanthavigar et al.140 Tamilnadu, India 148 5 45 84 15 -

12 Wilson et al.143 Mayo Tsanaga River Basin, 
Cameroon 100 30 - 70 - -

13 Xiao et al.145 Tarim River Basin, NW China 42 5 15 15 3 4

14 Singh et al.125 Bokaro, Central African Republic 14 - 4 6 4 -

15 Abbasnia et al.78 Sistan-Baluchistan, Iran 10 20 10 - - -

Total 699 235 178 235 37 24

Percentage - 33.62 25.46 33.62 5.29 3.43

Table 2 Continued...
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Figure 3 Literature reports of WQI from arid and semi-arid areas.

Heavy metal pollution index

The heavy metal pollution index (HPI) is an outstanding tool for 
the evaluation of general pollution of water bodies with respect to 
heavy metals.47 The HPI is built on weighted mathematical quality 
(Table 4). Weights ( iW ) between 0 and 1 were allocated for individual 
metals and the hazardous contamination index is 100 in this 
indexing.48–51,40,47 The ranking is built on individual quality concerns, 
the relative importance of parameters and delineated as inversely 
proportional to the recommended standards ( iS ) for the individual 
parameter. First of all, the HPI computation requires the 
calculation of weightage ( iW ) of thi  parameter employing the 
equation below:

Table 4 Example of the computation of relative weight of heavy metal pollution

S/n Heavy 
metals

Wi 
(k)

Mean 
concentration (Mi)

Unit weightage 
(Wi)

Standard 
permissible value 
(Si)

Wi x Qi Wi x Qi HPI (∑ Wi x Qi / ∑ Wi)

1 Ag 1 - 0.5 2 - - -

2 As 1 - 0.1 10 - - -

3 B 1 - 0.000417 2400 - - -

4 Ba 1 - 0.000769 1300 - - -

5 Cd 1 - 0.333333 3 - - -

6 Cr 1 - 0.02 50 - - -

7 Cu 1 - 0.0005 2000 - - -

8 Fe 1 - 0.0005 2000 - - -

9 Hg 1 - 0.166667 6 - - -

10 Mn 1 - 0.0025 400 - - -

11 Mo 1 - 0.05 20 - - -

12 Ni 1 - 0.014286 70 - - -

13 Pb 1 - 0.1 10 - - -

14 U 1 - 0.033333 30 - - -

15 Zn 1 - 0.000333 3000 - - -

∑ 15 ∑ 1.343

Note:        i iw n w xQi n= =∑ ∑  HPI= . . . ? i
i

Qiw x n
w

=∑
∑

i
i

kW
S

=
                                                                              

Eq.5

where the proportionality constant is k and the standard reference 
value of thi parameter (based on WHO reference standard) is iS . 
Secondly, the computation of water quality is ( iQ ) ranking for 
individual heavy metals:

 

100  i
i

i

xVQ
S

=
                                                                         Eq.6

where the sub-index is of thi  parameter is , the supervised value 
of the thi  parameter (µg/L) is iV and the permissible limit or 

standard value for the thi  parameter is iS . The concentrations of 
individual pollutants a f t e r calculation of the results 
can be converted into HPI using Eq. 6. The computed results will be 
presented as outlined in Table 4. 

1

1

n W Qi iiHPI n Wii

∑ ==
∑ =                                                                        

Eq.7

Like WQI, HPI also aids understanding of water quality by 
measuring the range into which water pollution is likely to fall. 
Conversely, it is important to note that, computation of HPI is not a 
substitute for poor field sampling or laboratory analyses. Therefore, 
appropriate field sampling and laboratory analyses are essential for 
accurate reporting of HPI. Example of literature reports on HPI in arid 
and semi-arid areas is summarized in Table 5. 

https://doi.org/10.15406/ijh.2023.07.00353
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Table 5 Example of literature report of water quality classification using HPI

S/no Study Region/ Country No. of 
Sampling Range/Classification

Excellent 
(0-25) 

Good 
(26-50)

Poor 
(51-75)

Very poor 
(76-100)

Unsuitable 
(>100)

1 Basahi et al.40 Wadi Baysh Basin, western Saudi Arabia 49 17 27 23 66
182

2 El-Ameir48 Damietta Branch of Nile River, Egypt 4 - - - - 4
3 Ma et al.150 Yellow River, Northern China 10 - - - - -
4 Maurya and Srivastava50 Agra districts of Uttar Pradesh, India 12 - - - -

12
5 Ehya and Marbouti55 Behbahan plain, SW Iran 30 - - - 1 29
6 Kumssa et al.110 North Rift - 7 2 - -

and North Eastern Kenya 9

7 Mehrabi et al.115 Ahangaran mining district, west of 
Iran 28 28 - - - -

8 Vesali Naseh et al.142 Ghaen Plain, Iran 16 16 - - - -
9 Yazidi et al.147 Ichkeul Lake, Northern Tunisia 20 20 - - - -
10 Abu Khatita et al.79 South Eastern Sinai, Egypt 35 5 4 2 4 20

11  Kwaya et al.49 Maru town and environs, NW, 
Nigeria 29 8 1 - - 20

12 Khazaala et al.105 Lake Habbaniyah, Al-Anbar, Iraq 50 32 8 5 5 -
Total 425 180 37 36 33 139

Percentage - 42.35 8.71 8.47 7.76 32.71

The computed HPI from the literature reports, showed that 
180/425(42.35%) of sources of water supply in drylands fall in 
Excellent Class, 37/425(8.71%) fall in Good Class, 36/425(8.47%) 
fall in Poor Class, 33/425(7.76%) fall in Very Poor Class and 
139/425(33.71%) fall in Unsuitable Class (Figure 4). Overall, 51.06% 
of sources of water supply fall in Excellent – Good Class, whereas, 
48.94% fall Poor-Unsuitable Class.

Figure 4 Literature reports of HPI from arid and semi-arid areas.

Understanding controls on water quality 

An integrated assessment of water quality using WQI and HPI, 
together with statistical techniques, notably Correlation (r), Principal 
Component Analysis (PCA), Factor Analysis (FA) and Hierarchical 
Cluster Analysis (HCA) in arid and semi-arid environments will aid 
understanding of the origin of solutes and processes controlling water 
composition in streams and aquifers. Assessment of water quality in 
drylands is essentially a multivariate problem owing to a wide range 
of physicochemical parameters (variables) related to several sampling 
locations (or observations).52–63,39,40 Consequently, Correlation (r), 
PCA/FA, and HCA are increasingly used to analyze hydrochemical 
data and have been recognized as suitable statistical techniques for the 
understanding hydrogeochemical composition of water bodies (Table 
1). 

Correlation analysis

Correlation analysis provides a basic tool for studying water/rock 
mineral interactions. Concentrations levels and relations between 
elements can expose the source of solutes and the processes that 
produced the detected water chemistry.64 It could be assumed that 
a substantial amount of HCO3 come from dissolution of carbonate 
minerals in streams and aquifers via the action of infiltering water 
(recharge) enhanced with CO2 after being in interaction with the 
atmosphere. Therefore, the dissolution of carbonates minerals releases 
Ca into solution, producing Ca-HCO3 water type.64 Calculation of the 
slops of Ca, Mg and Na with HCO3 give valuable evidence relating 
to the stoichiometry of the process. All these can be understood using 
correlation analysis. For instance, significant relationship (r = ≥0.50) 
between Ca and HCO3, suggests that Ca is derived from calcite.64 

However, poor correlation between these elements (r= ≤0.40) 
may suggest that Ca ions originate from the dissolution of gypsum 
which can contribute SO4 and Ca ions in streams and aquifers. 
Thus, significant correlations (r= ≥0.50) between Ca and SO4 may 
suggest that Ca is derived from Gypsum.64 If Ca and Mg correlates 
significantly (r= ≥0.50), it indicates that the two ions have the same 
origin. In the same vein, significant correlations (r= ≥0.50) between 
SO4 and Mg, is an indicator that parts of SO4 and Mg are derived from 
magnesium sulfate minerals.64 Conversely, if HCO3, SO4, Mg and Ca 
originate from the simple dissolution of gypsum, dolomite and calcite 
rocks, then a charge balance must exist between the cations and 
anions. In addition, if there is a deficiency of (Ca + Ma) in comparison 
with (HCO3 + SO4) and (HCO3 + SO4) relative to (Ca +Mg), then the 
excess positive charge of Ca and Mg would be balanced by Cl, the 
only major anion. This may further suggest that HCO3, SO4, Mg and 
Ca are not derived from gypsum, dolomite and calcite minerals.64 

Though anthropogenic inputs can be measured through variations 
in TDS between sampling locations, ions including Na, SO4, NO3, and 
Cl in streams and aquifers can also be derived from anthropogenic 
sources -municipal wastes, fertilizer application, and organic wastes. 
Thus, a significant correlation (r= ≥0.50) between TDS and these ions 

https://doi.org/10.15406/ijh.2023.07.00353
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is a strong indicator of water pollution from anthropogenic activities.64 
However, a significant correlation (r= ≥0.50) between ions derived 
from rock mineral and TDS, may suggest silicate weathering reaction. 
It is equally important to note that, some elements that are derived 
primarily from rock minerals such as Cd, Cr, and Pb can also be added 
into the environment through industrial sewage. For instance, Cd and 
Cr are added into surface waters from sewage ejections from dyeing 
plants, textile, paint, electroplating, and tanning industries. While Pb 
is primarily derived from ores, substantial amounts of Pb can enter 
surface and groundwater from effluent ejections.65 

Although correlations analysis can be used to establish the origin 
of ions in surface and groundwater, in-depth analyses of geology 
and land use is required. Otherwise, drawing conclusions relating 
to the origin of pollutants in streams and aquifer can be vague. In-
depth knowledge of geochemistry of study area and land use types in 
addition to correlations analysis will aid understanding of the origin 
of heavy metals such as Cd, Cr, and Pb in streams and aquifers. A 
significant correlation (r= ≥0.50) between TDS with ions that can 
be derived from anthropogenic sources such as NO3, Cl and Na 
can indicate water pollution from anthropogenic activities. Thus, 
significant correlation (r= ≥0.50) between NO3

 + Cl/Na+ molar ratio 
and NO3

 + Cl-/HCO3 molar ratio, can be used to further supports the 
anthropogenic inputs or impact of urbanization on water quality.64

Principal component analysis 

Among the leading multivariate statistical techniques applied 
in the interpretation of hydrochemical data is principal component 
analysis.65–69,38 The PCA which is multivariate statistical method is 
applied to reduce the size of hydrochemical data, which tend to be 
intercorrelated to a less important set of ‘principal components’ (PCs) 
which can be interpreted.44 Basically, PCA comprises of two steps, 
standardization of data and extraction of PCs.44 The data contained in 
a correlation matrix is taken by the PCA and reordered in a way that 
better explains the fundamental processes that produced the observed 
concentration of ions. The PCA starts by generating a new collection 
of hydrochemical variables from the original dataset (i.e. PCs) which 
are a linear arrangement of original parameters. The eigenvectors and 
eigenvalues are first extracted by the PCA of the correlation matrix 
and then remove the less significant observations. Subsequently, 
PCs of the dataset are transformed from eigenvectors. Therefore, the 
first PC describes the larger part of the variance, while subsequent 
PCs describe recurrently reduced parts of the variance. How the PCs 
illustrate significant relationships (negative or positive) between 
hydrochemical variables and PC relating the variable is revealed 
by the PC loadings. For instance, PCs with high positive loadings 
(r= ≥0.65) of ions such as NO3, Cl, PO4, and Na can be related to 
anthropogenic inputs, in the absence of geologic sources in the study 
area.70

In PCA, Kaiser Normalization Criterion,71 can be used to define 
the number of PCs to be extracted. This can best define the variance 
of analyzed hydrochemical data (i.e. eigenvalue >1), which can 
be used for additional analysis. How best the variance of a certain 
hydrochemical variable is explained by a specific set of factors 
is measured as ‘commonality’. Communalities retained in PCs or 
number of variables is derived by squaring the parameters in the 
PC matrix and adding the sum within each parameter. Preferably, 
if a PCA is effective, PCs will be easily interpretable in terms of 
specific processes influencing the hydrochemical composition of a 
stream or groundwater aquifer. Thus, commonalities will be high (~1) 
and number of PCs will be less. In water quality analysis, PCA is 
performed on a subset of selected variables (e.g. pH, EC, Temp., TDS, 

TSS, Ca, Mg, Na, K, HCO3, Cl, SO4, H4SiO4, Al, Ba, Be, Fe, Li, Mn, 
Pb, Se, and Sr), which may represent the overall water quality outline.

Though some related data on the variability between objects 
(parameters) or sampling locations (observation) may be lost 
via transformation, the explanation of the system is significantly 
abridged and it can be simply envisaged to derive suitable evidence 
on the relationship between parameters and observations.72 The PCA 
bilinear model can be rearranged following the matrix decomposition 
equation,72 thus;

TX TP E= +                                                                             Eq.8

where X represents a matrix of data which is compressed into T 
which is the scores of matrices, PT is a matrix of loadings and E is 
matrix residual.72 The scores of matrices provide information relating 
to the patterns of loadings or pollution sources between observations. 
Information about the influence of the original variables to each one 
of these physicochemical patterns or sources will usually provide the 
matrix of loadings. 

The principle of PCA 

For a better understanding of why PCA is commonly applied in 
water quality studies, the following principles should be noted:73

I.	 If the size or magnitude of the data is reduced devoid of any loss 
of info, i.e., lacking any loss of data variance, PCA can be of 
considerable advantage over other techniques; 

II.	 After the above task has been achieved, it would be valuable to 
present this data diagrammatically if only because persons are so 
approachable to pictorial exhibitions; 

III.	 At that point, it is necessary to have at least some pointers, which 
choose the likely central variables that influence the distribution 
of data in the diagram; and

IV.	 Lastly, it is exceptionally useful to spot the relationship between 
the samples and the variables jointly on the same diagram.

The data structure of the matrix is often revealed, once the 
boundaries of the PCA technique and the scores-scores illustration 
are detected. Even though, a mathematical or statistical technique will 
process a collection of figures whether they are analytically expressive 
or not; it is the duty of the user to make sure the suitable quality of the 
data. Although there may not be anything worthy to realize after the 
application of statistical analysis, PCA is a technique of transforming 
data, which simplifies four points (a-d) outlined above. Subsequent 
to this procedure, the new axes, termed principal components (or 
PCs), are selected based on a linear model (Eq. 9) so that PC1 defines 
the greatest variance in the data set; which is trailed by PC2, which 
defines the second greatest expanse of variance within the data set, but 
which is built orthogonally to PC1, and accordingly, is autonomous 
to the PC1. 

1 2 ... jnijk k knPC a x a x= + +                                                     Eq.9

where PCjk is the value of the principal component, j for object 
k (the score value for object j on component k), aj1 is the loading of 
variable 1 on component j, xk1 is the measurement value for variable 
1 on object k and n is the total number of variables studied. Such 
analysis can be repetitive until the number of PCs is equivalent to the 
number of the primary variables. The benefit of the PCA is that the 
variance in the data set is mostly confined in the first few PCs, hence 
the reduction in size or magnitude of the multivariate matrix.
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Interpretation of PC loadings

The extraction of certain components (often 1-5) is normally built 
on the proportion of variance accrued, which included a percentage 
greater than 80%.74,70 For instance, based on ‘scree test’, the certain 
defined PCs with typical PC loadings suggest different noticeable 
contributions were involved in controlling the hydrochemical 
composition of streams and aquifers. The PC 1 which explained the 
largest variance in the data matrix, may have high positive loadings 
on particular ions of either rock-mineral derivative or anthropogenic 
origin. If these ions are of rock mineral origin or anthropogenic 
sources, then the factor can be related to either of the two sources of 
solutes in streams and aquifers.

However, relating ions may require a thorough understanding of 
geochemistry and land use practice in the study area. For instance, 
if a particular factor is having high positive loadings (≥0.65) on 
physical parameters such as EC and Temperature, it could be deemed 
reasonable since Temperature level is closely associated with EC level 
in streams and groundwater aquifers. The later rises by 2% with an 
elevated temperature of 1oC. Temperature range between 5 to10˚C in 
gravity flow water also affects TDS levels, which eventually disturbs 
solubility of gasses, ion exchange capacity, redox reaction, sorption 
processes, complexation, speciation, and pH level (EPA, 2001).

 For a better interpretation of factor loadings and relating them to 
either rock mineral or anthropogenic activities in drylands, a seasonal 
sampling approach must be employed. Because the behavior of certain 
ions tends to be correlated with seasonal rainfall and/or recharge. For 
instance, negative loadings on pH in a particular PC(s) can be deemed 
reasonable since pH usually attained a converse relationship with ions 
of carbonate origin.74 The application of PCA can provide the needed 
information for the hydrochemical and geographical understanding of 
the data (Kokot and Stewart, 1995; Kokot et al., 1998; Olsen et al., 
2012).73,75 However, extracting this type of information may require 
submission of the PCA scores to another multivariate statistical tool 
for unverified classification analysis using hierarchical clustering 
analysis (HCA).

Hierarchical cluster analysis 

The objective of applying HCA in water quality studies is 
too grouped sampling locations that have similar hydrochemical 
attributes into classes (i.e. clusters). Such a clustering technique 
would help in recognizing hydrochemical data sets of the locations 
base on the sources of solutes, i.e. anthropogenic or natural.74,44 The 
HCA is an unverified outline identification method that exposes 
inherent assembly or pattern recognition of a dataset without a prior 
hypothesis with regards to the data so that the objects of the system 
can be classified into clusters based on their resemblances.74,44 

Basically, there are two major categories of HCA: (i) non-
hierarchical; and (ii) hierarchical. The former is a widely used 
technique which can form clusters consecutively, beginning with 
the most identical pair of parameters and forming complex clusters 
after each step which is repeated until a single cluster comprising 
all the observations is attained.74,44 The results are presented as a 
dendrogram, which offers a graphic summary presenting an image 
of the clusters and their closeness with a studied decrease in the 
dimensionality of original observations.74,44 In clustering, observations 
with similar characteristics or else observations with dissimilarity 
would be collected into an identical group.74,44 Often the Ward’s-
algorithmic clustering technique subsequent to the squared Euclidean 
distance, is applied. This is measured as the most influential means of 

clustering.74,44 Before the clustering analysis, the hydrochemical data, 
xji is standardized by Z-scale transformation, Eq. 10:

jJi X
X

Z
Sj

•−
=

                                                                             

Eq.10

where xji = value of the jth hydrochemical parameter measured 
at ith location, ẋj = mean (spatial) value of the jth parameter and Sj = 
standard deviation (spatial) of the jth parameter.

The clustering achieved with standardized data is anticipated to be 
influenced less by the large and/or small variance of the hydrochemical 
data. Also, the influence of diverse measurement units of the data can 
be removed by making the data dimensionless.44 In water quality 
studies HCA is performed on a subset of selected variables (e.g. pH, 
EC, Temp., TDS, TSS, Ca, Mg, Na, K, HCO3, Cl, SO4, H4SiO4, Al, 
Ba, Be, Fe, Li, Mn, Pb, Se, and Sr), which represented the overall 
water chemistry outline. Depending on geology, land use and the 
studied ions, individual clusters can be related to the natural geogenic 
processes or anthropogenic activities.

The need for integrated approach to water quality 
analyses in drylands

Comparison of studies in Table 1 showed that 15.57% of studies 
have measurements on WQI and 12.29% have measured HPI. This 
suggests that most of water quality studies in arid and semi-arid areas, 
do not have adequate reporting on the WQI and HPI. Thus, water 
suitability for drinking, agriculture, and industrial uses remained 
poorly known in arid areas (Figure 5). In contrast, 37.70%, 67.21%, 
and 64.75% have applied correlation analysis, PCA and HCA in water 
quality investigations, indicative of the wider extent to which processes 
controlling water chemistry is understood in global drylands (Figure 
6). However, the application of these statistical techniques alone is 
not enough, for the reason that the concentrations of ions in sources 
of water supply in relation to their suitability for drinking, agriculture, 
and industrial uses cannot be revealed by mere statistical applications; 
this calls for an integrated approach to water quality analysis. 

Figure 5 Example of studies on water quality using WQI, HPI, Correlation, 
PCA and HCA in arid and semi-arid environments.

Accordingly, it is imperative to note that, though the WQI, HPI, 
Correlation, PCA and HCA have provided simple tools for assessing 
water quality, especially in underdeveloped countries, where improved 
water supply is mostly lacking especially in remote areas, computation 
of WQI and HPI is not a substitute for poor field sampling or laboratory 
analyses. Therefore, appropriate field sampling and laboratory 
analyses are essential for accurate computation and reporting of WQI 
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and HPI. One of the best ways for testing the internal consistency of 
water quality data is by Chemical Balance Error (CBE), where the 
hydrochemical data can be subjected to internal consistency tests.24 
Thus, it is beneficial to apply CBE (Eq. 11), in order to test the internal 
consistency of hydrochemical data (Eq. 11). 

100Cations AnionsCBE x
Cations Anions

−
=

+
∑ ∑
∑ ∑                          

Eq.11.

where the entire absorptions of cations and anions are in meq/l.

Typically, the cations and anions must accurately balance, and under 
normal circumstances where the study recovers most of the elements, 
the cations and anions must not vary by more than 5%.24 Further, 
apart from the CBE, the absorptions of certain ions in comparison 
with the total dissolved ion content, the consistency between physical 
parameters (pH, EC, TDS) measured in situ and those determined in 
the laboratory can be used to aid in measuring internal consistency 
of the water quality data. 24 The TDS level for water in each sample, 
for example, can be checked by adding up the levels of the major 
ions. These concentration levels can then be related to the TDS levels 
determined in situ. These indices all imply that the data is essentially 
consistent internally and could be employed for further analyses. 24 

Though WQI, HPI, Correlation, PCA and HCA provide simple 
tools for assessment of water quality, yet an integrated model technique 
incorporating these tools is lacking. Thus, there is a dire need for joint 
application of water quality indices and multivariate statistics in future 
studies on water quality in drylands. In this review, we attempted 
a model design that can be used for water quality assessments in 
drylands (Figure 7). The need for the integrated conceptual model 
design is perhaps due to distinctive climatic conditions of arid and 
semi-arid environments, mainly high temperatures and low rainfall. 
The latter could affect the volume water received by streams and 
aquifers, whereas the former affects the solubility of gasses, ion 
exchange capacity, redox reaction, sorption processes, complexation, 
speciation and pH level in both streams and groundwater aquifers. 
However, several types of trace elements and heavy metals of rock 
origin are increasingly being added into streams and groundwater 
consequence of anthropogenic activities. Thus, defining the origin of 
these elements requires an integrated approach and in-depth analyses 
of the hydrogeochemical configurations the study area, as well as 
land use types. Overall, the natural geogenic processes, seasonality, 
environmental change (drought) appeared to exert more controls on 
water quality than human activities such as industry, agriculture, 
mining, and urbanization.

Figure 6 Example of literature reports on major processes controlling water 
quality in arid and semi-arid environments.

Figure 7 A conceptual model for water quality assessment in arid and semi-
arid environments.

Conclusion
The literature is unanimous about the need for understanding 

the natural geogenic and anthropogenic processes controlling water 
quality in arid and semi-arid areas. Drylands constitute a distinctive 
ecological system which is mainly characterized by low rainfall, 
high rate evaporation, and poor vegetation cover. These coupled with 
human activities such as mining, irrigation, municipal and industrial 
water demand and improper sewage discharge from urban and 
industrial sources, have threatened water quality. Relating literature 
reports with the aforementioned drivers of water use results in the 
following remarks:

i.	 There is a need for incorporating computation of WQI and HPI by 
studies on water quality using multivariate statistical techniques 
in global drylands. This is essential because the measure of 
suitability or otherwise of sources of fresh water for various 
uses is central to any form of water quality investigation and this 
cannot be revealed exclusively via application of multivariate 
analysis. 

ii.	 Arid and semi-arid areas constitute a distinctive ecosystem, 
mainly characterized by fluctuations in annual rainfall and 
high temperatures. Thus, water quality investigations must 
incorporate seasonal sampling of water bodies, owing to the 
fact that concentrations of ions may vary with precipitation and 
temperature changes.

iii.	During drought periods, the volume of water in streams and 
aquifers may be reduced, with its resultant consequence of 
ionic drag force. This coupled with high temperatures which 
eventually disturbs solubility of gasses, ion exchange capacity, 
redox reaction, sorption processes, complexation, speciation 
and pH level in the water, will no doubt have a direct bearing on 
ions concentrations in stream and aquifers. Thus, water quality 
analyses in drylands must be climate-sensitive.
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iv.	In-depth knowledge of geochemistry and land use types is 
required for proper identification of the origin of ions in water 
bodies. This is essential because, several ions of rock-mineral 
origin are increasingly being added into the environment through 
human activities, such as industry, urbanization, mining, and 
agriculture.

v.	 Also, consistent water quality records over wider spatial and 
temporal scales are necessary, for trend change detection analysis. 
This cannot be achieved by individual studies and/or syntheses of 
data from the literature. Observation boreholes must be provided, 
as this could enable the application of an integrated approach to 
water quality monitoring over a long period of time. 

vi.	Consequently, annual and/or decadal data can be obtainable 
which can be employed for policy recommendations pertaining 
to water quality management in arid and semi-arid environments.

While there is significant reporting on water quality in arid and 
semi-arid areas around the world, water quality investigations are 
largely influenced by the prevailing environmental conditions as well 
as anthropogenic activities. These factors are also highly varied in 
arid and semi-arid environments. Thus, the rationality for establishing 
controls on water quality may be very difficult. Hence, water quality 
reports must be interpreted within the framework of the existing 
environmental conditions, time and regularly essential standard 
application for reporting water quality in the literature. 
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