
Submit Manuscript | http://medcraveonline.com

Introduction
In recent years, the problems associated with water use have 

increased dramatically worldwide. These problems include such 
environmental issues as the purification of natural and wastewater 
from various polluting components. Also, such areas as extracting rare, 
trace elements and other valuable components from waters associated 
with surface and underground sources began to develop intensively. 
These factors contributed to the development of research on seawater 
processing - its desalination and used as an inexhaustible source of 
various mineral resources. One of the main methods used for these 
purposes is ion exchange. In turn, the most promising ion-exchange 
materials are inorganic ion exchangers - substances with exceptionally 
high selectivity for ions of certain elements. The phenomenon of ion 
exchange is widespread in animate and inanimate nature. In turn, ion 
exchange processes play a significant role in chemical technology, 
hydrometallurgy, and industrial ecology.1,2 Recently, inorganic ion 
exchangers have been increasingly used in ion exchange technologies. 
In contrast to organic ion exchange resins, inorganic ion exchangers 
have increased radiation and chemical resistance, high selectivity, 
and low cost. Effective use of any ion exchangers in technology is 
impossible without knowledge of their sorption-kinetic properties. 
Currently, ion exchange kinetics for organic ion exchange resins 
has been studied much more than inorganic ion exchangers. The 
current situation is because organic ion exchangers have better kinetic 
properties than known inorganic ion exchangers and are more widely 
used in modern technological processes.1,2,3–29 The main reason for the 
poor kinetic properties of inorganic ion exchangers is most often the 
slow diffusion of ions in crystallites.30,31 In this case, the features of 
the exchange of ions inside the crystallites are primarily responsible 
for the high selectivity of inorganic ion exchangers.

However, by now, the situation is improving. Inorganic sorbents32 
with small crystalline blocks have been created, making it possible to 
raise their functional properties to the required level. But many essential 
characteristics are missing for the synthesized ion exchangers: the 
sorption-kinetic properties have not been quantitatively characterized, 
the influence of various factors on the ion exchange kinetics has not 
been determined, and the optimal operating conditions have not been 
established. The variety of ion exchange mechanisms and their inherent 
kinetic features are not sufficiently studied. The need for systematic 
information on these issues becomes a severe obstacle in applying 
existing and developing new inorganic ion exchange materials. 
During the exchange of various ions, the course of the process in time 
depends on factors: the electric field (diffusion potential), changes in 
the separation factor, and gradients of the activity coefficients. Proper 
consideration of these factors seems impossible. Considering these 
systems, we must assume that even the most significant effects lead to 
nonlinear differential equations; such equations’ analytical solutions 
are found only in individual cases. Nevertheless, these solutions make 
it possible to reveal regularities, the qualitative conclusions of which 
can also be applied to other issues. Of the above effects, the electric 
field has the most significant effect. Maintaining electrical neutrality 
in the system requires a “stoichiometric” flow of the exchange 
process, i.e., the counterflows of both counterions participating in the 
exchange (in equivalents) must always be equal in total. 

The “stoichiometric” exchange required by the condition of 
electrical neutrality means that the counter diffusion fluxes (in 
equivalents) of counterions A and B are equal in magnitude at 
any time and in any section of the ion exchanger. For quantitative 
consideration, studying how flow equalization occurs is especially 
important. If one of the two counterions is more mobile, then its flux 
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Abstract

In recent years, the problems associated with water use have sharply escalated 
worldwide. One of the main methods used for these purposes is ion exchange. In turn, 
the most promising ion-exchange materials are inorganic ion exchangers - substances with 
exceptionally high selectivity concerning ions of certain elements. In connection with 
life, it is necessary to understand ion exchange mechanisms on inorganic ion exchangers 
since they have significant differences in the unit vector of classical ion exchange resins. 
A theoretical analysis was conducted, which made it possible to reveal some features of 
the sorption kinetics of inorganic ion exchange materials. It has been found that when 
working in the region of concave isotherms, a significant slowdown of the mass transfer 
process is possible even on very sorbent granulates. This effect is associated with reversing 
sorption processes involving highly selective sorbents. In this regard, difficulties can be 
encountered when using displacement desorption, which is associated with maintaining 
high concentrations of the displacing agent and the low rate of the ion exchange process. 
The rate of sorption on inorganic ion exchange materials depends in a certain way on the 
concentration of sorbed ions in an external solution. This dependence manifests itself even 
in the absence of external diffusion inhibition. In this case, the determining factor is the 
distribution of electrolytes between the pore space of the granule and the free volume of the 
solution. The rate of mass transfer processes with the participation of inorganic sorbents can 
be affected not only by the permeability of granulates but also by inhibition at the level of 
homogeneous sections of the solid phase. The simplest way to detect such deceleration is to 
compare the data of the kinetic experiment with the theoretical results related to the model 
that ignores deceleration at the level of homogeneous sections of the solid phase. In such a 
comparison, it is necessary to consider possible distortions due to the finite width of particle 
size fractions, the discrepancy between the particle shape and the calculated one, etc.
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must initially be large; due to this, a short-term space charge arises 
and creates an electric field (diffusion potential), slows down the 
faster ion, and accelerates the slower one. Thus, there is an alignment 
of flows. The fluxes of both types of counterions are related to each 
other by electrical neutrality, just as the fluxes of cations and anions 
are connected during the diffusion of electrolytes in a free solution. 
The appearance of a space charge is equivalent to the violation of 
electrical neutrality. Therefore, in the literal sense, it is illogical to 
explain the conservation of electrical neutrality, as was done above, by 
the influence of space charges. As an additional condition, one should 
not consider electrical neutrality in all system parts but apply the 
Poisson-Boltzmann equation, which establishes the relation between 
the space charge and the electric field.32–61,62 But it turns out that even 
a minor violation of electrical neutrality leads to a powerful electric 
field, which, by the above considerations, counteracts this violation. 
An accurate calculation shows that the deviations from electrical 
neutrality cannot be so large that they can be determined analytically. 
In addition to the space charge, there are only electric double layers at 
the ion exchanger/solution interface, which do not affect the kinetics 
since they are purely equilibrium phenomena. We can assume that 
applying the electrical neutrality condition as an additional condition 
is also valid when diffusion potentials arise.

As a “force” (in the meaning used by the thermodynamics of non-
equilibrium processes), the ions are affected by the concentration 
gradient and the electric field resulting from diffusion processes. It 
follows that the electric field is an essential property of the system, 
which any theory should not neglect. Calculations that consider the 
influence of the electric field differ significantly from views in which 
this effect was not considered.63 We restrict ourselves to quantitatively 
considering the effect of the electric field as the principal factor and 
consider the ideal limiting cases for ion exchange. Discussing other 
aspects should be conducted qualitatively since the corresponding 
theories still do not exist. In this regard, an important task is to 
study the kinetic properties of inorganic ion-exchange materials. 
The complexity of solving this problem is related to the peculiarities 
of their structure. Such materials have a rigid crystalline structure 
of primary particles forming granules. They are characterized by 
a specific pore space, the void between the particles that form the 
material’s structure. These pores are filled with a solution under ion 
exchange conditions. In this regard, inorganic ion exchangers can be 
classified as biporous sorbents.1 A mathematical apparatus has been 
developed to describe the kinetics of ion exchange on such materials. 
However, the application of this apparatus to natural ion-exchange 
systems is currently limited because of its complexity and difficulties 
in obtaining initial data.

The main difference between inorganic and organic ion exchangers 
is manifested in the crystal structure and, consequently, the presence 
of the stage of ion effluent into the solid phase of crystallites. Inorganic 
ion exchangers, in this case, can be divided into the following three 
groups according to the location of ion-exchange centers in crystallites 
and, accordingly, the implemented mechanism:33,34

I. Ion exchangers whose sorption centers are located only on the 
surface of crystallites. There is no stage of ion sink into the solid 
phase. Kinetic difficulties associated with the process of sorption 
of ions on the surface of crystallites are most likely absent or are 
due to the chemical exchange reaction.

II. Ion exchangers that have sorption centers are distributed in the 
volume of crystallites. In this case, during ion exchange, there is 
a stage of diffusion of ions deep into the crystallites; if it is slow, 
it should manifest itself kinetically.

III. Ion exchangers, where sorption centers are located on the phase 
interface. During the ion exchange process, a new phase is formed 
on these materials through a heterogeneous exchange reaction.

In general terms, the ion exchange kinetics for ion exchangers of 
all presented groups will be described by the mathematical model 
described below, supplemented by various initial and boundary 
conditions for different types of external diffusion. The stage of 
internal diffusion is the transfer of ions inside the granule from ion-
exchange centers to its surface and vice versa. Since inorganic ion 
exchangers are usually used in granular form, ion exchange processes 
on inorganic ion exchangers controlled by internal diffusion are 
relatively common, for example, in.25,26 Granules of crystalline 
inorganic ion exchangers are agglomerates of primary crystallites, the 
space between which is filled with a liquid solution. This pore space 
plays an essential role in ion-exchange processes on these materials 
since almost the entire transport of ions deep into the granule occurs 
through it. Consequently, the granules’ pore structure will significantly 
affect the rate of diffusion processes.35–38

If we assume that the solution in the pores of the granule has the 
same properties as in the free volume, then the observed diffusion 
coefficients related to the volume of the granule decrease due to 
geometric factors. For a granule with a known structure, a decrease 
in the value of the diffusion coefficient can be estimated both purely 
mathematically41,42 and based on statistical modeling methods,43 
among which the random walk method44,45 is most widely used. 
These studies have shown that the diffusion coefficient decreases 
with a decrease in the specific pore volume. In loose structures, the 
diffusion coefficient decreases mainly due to the limited volume 
available for diffusion. In denser structures, the diffusion coefficient 
also decreases due to the tortuosity of the channels and the appearance 
of closed pores. However, in natural porous systems, the properties 
of the solution differ from the free volume. The smaller the pore 
size, this difference is more significant, which was experimentally 
shown in46 using NaCl diffusion in glass as an example. The main 
reason for the unique properties of the solution in the pores is the 
formation of an electrical double layer. In the electric double layer, 
the ion concentration is increased, but its viscosity also increases, 
which can lead to an increase in the observed diffusion coefficient and 
its decrease. Thus, comparing the values of the diffusion coefficients 
of ions in solution and ion exchanger granules can provide a lot of 
information about the pore structure of granules and the mechanism 
of transfer within them.

In addition, there is information about the possibility of the 
diffusion mechanism of ions in the adsorbed state over the surface 
of crystallites.47–49 Although the diffusion coefficients of ions, in this 
case, should be much smaller than in the free volume of the solution, 
a large concentration of ions on the surface can provide sufficient 
driving force for this process. Granules of ion exchangers with a 
fractal pore structure have unique properties. In these systems, the 
diffusion equations contain fractional derivatives,50 and their solutions 
can lead to the so-called cases of anomalous diffusion51 when the 
Einstein-Smoluchowski equation is violated. This circumstance must 
be considered when analyzing experimental data on the kinetics 
of ion exchange in ion exchangers with a fractal structure. The 
observed fractal effects for inorganic ion exchangers are described 
in.51 In this work, we exclusively analyze the kinetic regularities of 
ion exchange processes on inorganic ion-exchange materials. Since 
these regularities, we do not consider the dynamics of ion-exchange 
sorption in column-type apparatuses. However, related sorption 
kinetics are associated explicitly with their technological design.
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Some information from the theory of 
exchange kinetics on ion-exchange resins 
and the possibility of their application to 
inorganic ion-exchange materials
Statement and solution of diffusion problems of ion 
exchange

The object closest to inorganic ion-exchange materials, for which 
the theoretical issues of the kinetics of mass-transfer processes have 
been studied sufficiently, are ion-exchange resins. For these objects, 
the mass transfer process is described as a nonstationary diffusion 
of several charged particles.57 The flux ( )i elΦ of ions of the ith 
type, created in a homogeneous solution due to the applied electric 
field, is proportional to the gradient of the electric potential ϕ , the 
concentration Ci, and the electrochemical charge of the ion zi:

( )   grad  i i i iel
u Z C ϕΦ = −



                                                                
(1)

The coefficient of proportionality u is the electrochemical mobility 
of the ion. When deriving the equation for the ideal limiting case, we 
apply the Einstein relation, which gives the relationship between the 
electrochemical mobility and the individual diffusion coefficient Di 
of the ion:

i
i

Du
RT

=


                                                                                     
(2)

Where:   — Faraday number, R — gas constant, T — absolute 
temperature. Equation (2) is strictly applicable only to ideal systems. 
However, from the experimental material, it is also suitable with some 
approximation to ion exchange. This situation is likely due to the ion 
exchanger having narrow pores that prevent the formation of ion 
clouds, and their deformation does not play a significant role.

If, in addition to the electric field, there is an ion i-th kind 
concentration gradient in the solution, then the pure diffusion flux 

( ) ,i diff
Φ


described by first Fick’s law, is superimposed on the 

transfer of electricity (1). According to this law, the diffusion flux iΦ


 
of particles of the i-th kind is expressed as follows (3):

( )  grad  i idif if
D CΦ = −


                                                                            (3)

The resulting flow will be described by the Nernst-Planck 
equation:58,60,61

( ) ( ) 
 grad  grad i ii i i idi ff el iC z C

RT
D ϕ Φ = Φ Φ = − + −+ 
 

   
           (4)

Equation (4) does not consider convection phenomena, the 
influence of activity and pressure gradients, and the mutual influence 
of ion fluxes, except for what is considered by the term describing 
the electric field. Equation (4) applies to mobile ions of all available 
varieties. The system of such equations that appears instead of 
equation (3) must be solved under the appropriate boundary and 
additional conditions.

A rigorous description of such a problem is given by the system 
of equations (5):39

( ) ( )

( ) ( )

1 1
1 1

1

1 div

......................................................................

d

   

 i  v  i i
i

i

z FCD grad C grad
RT

z FCD grad C grad
R

t

C
T

C

t

ϕ

ϕ

  +    

  +  
  

∂
= ∂


∂ =
 ∂                                               

(5)

Where: Ci and z - concentration and charge of ions, respectively; 
Di - diffusion coefficient; φ - potential.

To determine the potential, we used the Poisson-Boltzmann 
equation (6)

( )( ) 4div i igrad z Cϕ π
ε

= − ∑
                                                           

(6)

Where: ε - dielectric constant of the medium.

When solving this problem, a simplifying assumption is used that 
there is no spatial separation of electric charges during ion exchange 
(7):

( ) 0i igradz C =∑                                                                                    (7)

This equation allows us to express the potential gradient in terms 
of ion concentration gradients (8):

( ) ( ) grad
 

i i i

i i i

Z D CRTgrad
F Z D C

ϕ =
∑

∑
                                                  (8)

The value of the gradient of the electric potential in equation (8) 
is determined based on the Poisson-Boltzmann equation; however, if 
we accept the conditions of electrical neutrality of the granule and 
the absence of an electric current in it, then the electric potential 
can be excluded from equation (8) by introducing the interdiffusion 
coefficient. This value is not constant during the ion exchange process. 

Kinetic model of the ion exchange process in a gel 
matrix

First, we will again consider the case of ideal gel kinetics. In an 
idealized consideration, the presence of coions in the ion exchanger 
is neglected, the concentration and flow of which are, as a rule, 
negligible compared to the concentration and flow of counterions. In 
addition, the concentration of fixed ions and the individual diffusion 
coefficients are taken constantly DA  and BD . Additional conditions 
will be the following:

A A B Bz C z C C constω+ = − =      electrical neutrality

0A A B Bz zΦ + Φ =
 

   no     electric current

Where: iz — i-th ion charge value, ω  — fixed ion charge sign. 
After combining these equations and equations (4) for counterions A 
and B,2 we obtain:

( )2 2

2 2   
A B A A B B

A A
A A A B B B

D D z C z C
grad C

z C D z C D

 +
 Φ = −
 +
 


                                       (9)

The expression in square brackets, as shown by comparison with 
equation (7), is the interdiffusion coefficient for the ion exchange 
process. As applied to the problem of the simplest case of exchanging 
a pair of ions, this approach makes it possible to determine the 
interdiffusion coefficient by an expression determined from the 
equation obtained by Tunitsky and Helfferich (10).2,59 This process is 
also called coion diffusion.

( )2 2

2 2  
A B A A B B

AB
A A A B B B

D D z C z C
D

z D C z D C

 +
 = −
 +
                                                 

(10)

Where: D - diffusion coefficient of diffusing ions; C - diffusing ion 
concentration; z - charge of diffusing ions.

However, it is by no means a constant value but depends on 
the individual diffusion coefficients DA and BD , on the ratio of the 
concentration of ions A and B (Figure 1) and therefore is a function 
of time and distance from the center of the grain. For A BC C� , the 
parenthesized expression becomes DA , for A BC C�  is equal to BD
. As can be seen from formula (10), the value of the interdiffusion 
coefficient turns out to be dependent on the concentrations of 
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diffusing ions. Coionic diffusion can influence the rate or even be the 
only step in controlling the ion exchange rate. Many existing theories 
of ion exchange kinetics assume that exchanged ions retain their 
identity and are not consumed in accompanying chemical reactions. 
This fundamental assumption is hardly acceptable, especially if the 
ions undergo neutralization reactions, association, complexation, or 
changes in the state of hydration during the ion exchange. The value 
of the interdiffusion coefficient is strongly influenced by an ion whose 
concentration is lower. This general rule2 follows directly from the 
Nernst-Planck equation (4), in which the concentration of the i-th 
ion is included in the term containing the electric potential gradient. 
This rule can be easily explained: the electric field acts on each ion 
separately; it, therefore, causes a significant transport of ions present 
in a higher concentration and, at the same time, has little effect on ions 
present in a lower concentration. Analytical solutions to the problems 
of ion exchange kinetics have been obtained only for the case of a 
constant diffusion coefficient. These solutions correspond to a partial 
differential equation of the form (11):

2 2 2

2 2 2
C C C CD
t x y z

 ∂ ∂ ∂ ∂
= + + 

∂ ∂ ∂ ∂ 

                                                              (11)

Where: C - concentration of a sorbed ion in the ion exchanger 
phase.

Figure 1 Dependence of the interdiffusion coefficient in the ion exchanger on 
the relative content of ion A during the exchange of ions of the same charge. 
The family of curves calculated by equation (9) corresponds to different 
values of the mobility ratio /B AD D . At vanishingly low ion concentrations 
A, the interdiffusion coefficient is equal to AD , and at vanishingly small ion 
concentrations B, to BD .2 

Equation (11) is a boundary value problem, and the initial and 
boundary conditions must be determined for its solution. As the initial 
conditions, expression (12) is usually used, the meaning of which is 
that the concentration of the sorbed ion at the initial moment is equal 
to zero at all internal points of the granule:

( ), , ,0 0C x y z =                                                                              (12)

The so-called conditions of the first and third kinds are considered 
boundary conditions.4,19 Conditions of the first kind are determined by 
expression (13), the meaning of which is that the capacitance at points 
belonging to the surface of the granule remains unchanged during the 
entire time of the sorption process:

( )0 0 0, , ,0 0C x y z C=                                                                     (13)

Where: ( )0 0 0, , , 0C x y z - capacitance at the points of the granule 
belonging to its surface.

This definition of boundary conditions corresponds to the so-
called problem of internal diffusion kinetics. Conditions of the third 
kind are determined by expression (14), the meaning of which is that 
the magnitude of the ion flux through the boundary layer that occurs at 
the interface between the grain of the ion exchanger and the solution is 
equal to the flux of these ions through the outer surface of the granule.

( )0 n
CD C C
l

β∂
= −

∂                                                                        
(14)

Where: D - diffusion coefficient; β - external mass transfer 

coefficient; 
C
l

∂
∂

 - capacitance gradient on the surface of the granule 

in the direction normal to this surface; C0 - sorbed ion concentration 
in the free volume of the solution; Cn - sorbed ion concentration at the 
surface of the granule.

This definition of boundary conditions corresponds to the so-
called problem of mixed diffusion kinetics, which makes it possible to 
consider the influence of hydrodynamic conditions on the rate of the 
mass transfer process. Several empirical dependencies are proposed 
to determine the value of the external mass transfer coefficient. For 
example, in,61 it is suggested to use formula (15):

0.53

1.47
10.00  9

sec
V

d
ωβ  =                                                                     

(15)

Where: β - mass transfer coefficient; ω - individual constant for 
each pair of exchanging ions; V - filtration rate; d - granule diameter.

In,6,20 a more general equation (16) is proposed:

( )
2

1.53 3
0.47

1.53

0.141
5.3  9

k D V
k d

ρβ
µ

−
=

 
 
                                            

(16)

Where: k - filter layer porosity; D - diffusion coefficient; ρ - liquid 
density; μ - fluid viscosity. Other notations in equations (15) and (16) 
are the same.

The self-diffusion coefficient is a constant value inside the ion 
exchanger and the film. It does not depend on time and distance since 
the concentration of ions in both phases does not change depending 
on time or distance. Time changes in the concentration of the i-th ion 
are related to its flow by the continuity condition (second Fick’s law):

i
i

C div
t

∂
= − Φ

∂



                                                                                 
(17)

For the system of interest to us with spherical symmetry and the 
case of constant diffusion coefficients, from equations (3) and (17), 
we can derive the following equation:

2

2
2 i i i

i
C C CD
t r rr

 ∂ ∂ ∂
= +  ∂ ∂∂ 

                                                           (18)

To understand the process of filling primary particles in a sorbent 
granule, let us consider the approximation of this problem in the 
version of spherically symmetric particles. For this case, equation 
(18) can be simplified by reducing it to form (19), with boundary 
conditions (20) for dimensionless time (t) and unit scattering (l) from 
the surface to the center of a spherical particle:

( ) ( )2

2
, ,

 
C l t C l t

D
t l

 ∂ ∂
=   ∂ ∂                                                              

(19)

( )0, 1C t =

( ), 0 0C l =

( )1, 0C t
l
∂

=
∂                                                                                 

(20)
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The equation (19) solution for various diffusion coefficients D will 
have the form shown in Figure 2.

The equation (19) solution for a fixed diffusion coefficient can also 
be represented in the 3D form in Figure 3.

Figure 2 Dependence of the concentration profile of the degree of filling of 
the primary particles in the sorbent granule for cases of different diffusion 
coefficients calculated following the model (19).

Figure 3 Change in time of the concentration profile of the degree of filling of 
the primary particles in the sorbent granule following equation (19). l - is the 
dimensionless coordinate of a point inside a spherical particle.

From the data presented in Figure 2 and 3, there is no front of its 
filling inside the particle. There is a gradual filling of ion-exchange 
positions inside the primary particle, and the rate of this filling 
increases with an increase in the diffusion coefficient. In this case, 
inside the particle, the degree of its filling has an S-shaped character 
and is like a second-order reaction. The solution of equations (18) 
and (19) determines the dependence of the capacitance on the contact 
time and spatial coordinates inside the granule. In the practical use 
of solutions of this equation, the sorbent’s integral capacity or the 
conversion’s degree is usually determined since it is this value; as 
a rule, that is the result of a kinetic experiment. These quantities 
are determined by expressions (21) and (22), respectively, and in 
expression (21), integration is carried out over the entire volume of 
the granule at a fixed contact time.

( ) ( ), , ,
v

C t C x y z t dv= ∫
                                                                  

(21)

( )
( )

C t
C

α =
∞                                                                                     

(22)

Where: ( )C t  - integrated capacitance; ( )C ∞  - capacitance at 
infinite contact time; α - degree of conversion. 

This problem formulation obtained analytical solutions for several 
bodies of a simple geometric configuration, for example, a ball, a 
cylinder, and a parallelepiped.7,19 We present the solutions obtained for 
a sphere with a linear sorption isotherm as examples of such solutions. 
By substituting equation (9) into the continuity condition (17), one 
more differential equation describes the mutual diffusion of ions A 
and B in the ion exchanger. For a system with spherical symmetry, 
the equation written in dimensionless form has the following form:2

2
2

11
1

A A A

A

b
a

γ γ γρ
τ ρ γ ρρ

  ∂ + ∂∂
  ∂ ∂ + ∂                                                        

(23)

It contains the following variables:

2
00

 ;;  AA A
A

Dz C t r
rC r

τγ ρ≡ ≡≡

and (constant) parameters

1;  1A A

B B

A

B

z Ca b
zC
z

z
≡ ≡ −−

For ions with the same mobility a=b, equation (23) goes into 
equation (18). Analytical solutions of Eq. (23) have not yet been 
obtained. Numerical solutions are available only for the case of 
the exchange of ions with different mobility ratios /A BD D  under 
the initial and boundary conditions corresponding to the exchange 
between an ion exchanger completely saturated with A ions and a 
solution containing no ions A and in which the concentration of ions 
A can be neglected at all times compared to the concentration of ions 
B (a large volume of solution that satisfies the condition CV CV�
, or a constantly renewing flowing solution). Figure 4 shows the 
dependence of the conversion fraction U on the dimensionless time 
parameter \tau for various values of the ratio /A BD D . The process 
completion measure is the dimensionless Fourier criterion (Fo) 
defined by expression (24):

2
  DFo

r
t⋅

=
                                                                                          

(24)

Where: D - diffusion coefficient; t - contact time; r - granule radius.

Figure 4 Exchange of ions with different mobility in the case of pure gel 
kinetics. The figure shows the dependence of the conversion fraction on 
the logarithm of the dimensionless time parameter of the Fourier criterion 

2
0

AD tFo
r

= . The family of curves calculated by equation (23) corresponds to 

different values of the mobility ratio /A BD D . The ions are assumed to have the 
same charge, and the solution is constantly renewed. The red line marks the 
boundary case for ions with the same mobility.2

The dependence shown in Figure 4 with some approximation can 
be expressed as follows:2

( ) ( ) ( )
1

2 3 21 2 31
f f f

U e
α τ α τ α τ 

 
 

+ +  
 
  

= −

                                                          

(25)

https://doi.org/10.15406/ijh.2023.07.00345


Kinetics of ion exchange on inorganic sorbents 98
Copyright:

©2023 Kudryavtsev et al.

Citation: Kudryavtsev P, Zilberman M. Kinetics of ion exchange on inorganic sorbents. Int J Hydro. 2023;7(3):91‒117. DOI: 10.15406/ijh.2023.07.00345

Moreover, for ions with the same number of charges, the 
coefficients have the following values:

( )
0.775

1

1 0.570 0.  430
f

α
α

= − −

( )2

1 0.260  0.782
f

α
α

= − −        A

B

D
D

α =

( )3

1 0.165  0.177
f

α
α

= − −       0.1 10α≤ ≤

The conversion fraction depends only on the dimensionless time 

parameter 
2

0

AD tFo
r

τ = = and mobility ratios A

B

D
D

α = . As can be seen 

from Figure 4, the curves for different values of /A BD D  cannot be 
aligned when the time axis is stretched linearly. Consequently, with 
a decrease in the concentration of ions A during the exchange, the 
interdiffusion coefficient increases if A is a faster ion and decreases if 
A is a slower ion. Since m contains the value AD , a direct comparison 
of the curves in Figure 4 is possible only if the ion A initially located 
in the ion exchanger is the same in all cases. For the case of internal 
diffusion kinetics, the dependence of the degree of transformation 
on the contact time is determined by expression (26), and for mixed 
diffusion kinetics, by expression (27).

2 2 Fo

2 2
1

61  
n

n

e
n

π
α

π

− ⋅ ⋅∞

=
= − ∑

                                                                  
(26)

( )

2

21

21
3.

.

1
9. . 1

d

i

i i

d d

K
e Fo

K K

α µ
µ

∞

=
= −

−

+
+

∑

                                                

(27)

Where: α - conversion degree; iµ - parameter represents the roots 
of the solution of the transcendental equation (28) and (29); dK – 
distribution ratio.

2( )( ) 1 0
3.i i

d

ictg
k
µµ µ − − =

                                                            
(28)

2( ) 0
3( ( ) 1) d

i i

i K
ctg
µ

µ µ
− =

−
                                                                (29)

Dependence graphs (26) for granules of various sizes are shown 
in Figure 5.

Figure 5 Dependence of the degree of conversion in equation (26) on √t at 
different values of the diameter of the sorbent granules (d, m).

The initial sections of the kinetic curves have noticeable linearity 
1a tα =  in the coordinates ,tα ∝ , which is typical for internal 

diffusion processes. To test this assumption, the first derivatives of the 

degree of conversion concerning the parameter t  were calculated. 
The resulting dependencies are shown in Figure 6. The data obtained 
show that this assumption is valid to a certain extent for sorbent 
granules of large sizes d > 2 mm. However, this dependence is not 
correct for sorbent granules of smaller sizes. In this case, deceleration 
of the rate of the exchange process is observed, although, in the initial 
sections of the curves, the decrease in the process also has a linear 

character 1 0.da b t b
d t

= +  This inhibition is due to deeper factors, 

such as internal diffusion within the crystallites that form the overall 
structure of the sorbent granule. Note that in solutions (26) and (27), 
the diffusion coefficient is determined only by the ion exchange 
properties and is not related to the concentration of ions in the external 
solution. To carry out calculations using equation (26), it is necessary 
to find the roots of the transcendental equation (28). To understand 
what roots equation (28) can have, it is essential to transform it into 
form (29) and analyze its behavior. This function is shown in Figure 7.

Figure 6 Time dependence of the first derivative d
dt
α 

 
 

 of the conversion 

degree (Eq. (26)) on t  for various sorbent granule diameters (d, m).

Figure 7 View of function (29).

Based on the form of function (29), one can approximately estimate 
the value of an infinite number of its roots. In the case of a concave 
isotherm, that is, for small values of the exchange constants, they are 
respectively approximately equal to [..., 2 , , , 2 ,...].iµ π π π π− −�  With 
an increase in the exchange constant, the values of the roots shift in 
absolute value upwards. This makes it possible to estimate them for 
the subsequent calculation of the degree of exchange according to 
equation (26). The results of these calculations are presented in Figure 
8. From the data obtained, in the exchange process, an induction period 
occurs, which increases with a decrease in the exchange constant. In 
addition, the exchange process proceeds to the end only at very large 
exchange constants. All the solutions presented above correspond 
well to the physical situation for organic ion exchangers, which can 
be considered homogeneous polyelectrolytes; however, for inorganic 
ion-exchange materials, the physical representations underlying 
the original model are far from fully fulfilled. Mass transfer within 
a granule of inorganic ion-exchange materials can occur through 
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the solid phase’s pore space and homogeneous areas. In working 
conditions, the pore space of the sorbent is filled with a solution. 
Given that the diffusion coefficients in solutions are much higher 
than in the solid phase, it seems logical to assume that the transfer 
of ions over relatively long distances (within the granule) is carried 
out through the solution. However, in the end, sorbed ions are placed 
in homogeneous areas of the solid phase. The mass transfer equation 
takes the form (30) in this case. To solve equation (30), as in the case 
of equation (11), it is necessary to determine the initial and boundary 
conditions; however, in this case, they will concern not the capacity 
of the sorbent but the concentration of the sorbate in the pore space:

2 2 2

2 2 2. ( , , , )C C C CD F x y z t
t x y z

 ∂ ∂ ∂ ∂
= + + + 

∂ ∂ ∂ ∂                           
(30)

Where: C - concentration of the collected ion in the pore space of 
the granule; D - diffusion coefficient; F(x,y,z,t) - the intensity of ion 
transfer from the pore space to the solid phase.

Figure 8 Dependence of the degree of conversion for mixed-diffusion 
kinetics in equation (26) on t for various values of the exchange constant (Kd).

Let us consider one case of solving Eq. (30), namely, a solution 
based on the assumption that the rate of ion transfer from the pore 
space of the granule to homogeneous areas of the solid phase is much 
faster than the process as a whole. With a known concentration of ions 
at a certain point in the pore space, the capacity of the homogeneous 
section of the solid phase conjugated with this point can be determined 
through the isotherm equation (31):

[ ]( , , ) G C ( , , )F x y z x y z=                                                          (31)

Where: C - concentration of the collected ion in the pore space of 
the granule; E - capacity of a homogeneous section of the solid phase 
of the sorbent at a point with coordinates inside the granule x, y, z. 
Suppose the distribution of a substance between two liquid phases is 
a purely physical process and is not accompanied by other physical 
or chemical processes. In that case, it obeys the Nernst law: “at 
equilibrium, the ratio of the concentrations of a component contained 
in two liquid states is a constant value”.40 A similar situation is typical 
for the equilibrium between the liquid and solid phases:

E K const
C
= =

                                                                             
(32)

Where: C – the equilibrium concentration of an ion in the liquid 
phase; E – the equilibrium capacity of the solid phase of the sorbent. 
K – called the distribution coefficient or exchange constant. Equation 
(32) is correct, provided that the concentrations are small, and one 
can ignore the interactions of molecules and ions with each other. 
Therefore, for most real conditions in equation (32), the distribution 
coefficient becomes dependent on concentration, i.e., the isotherm 

becomes non-linear. Strictly speaking, the exchange constant K 
depends on temperature, the exchanging ions, on the concentration of 
counterions; it can change with a change in the concentration of the 
gathering ions themselves, and it can also change with a difference in 
the degree of filling of the sorbent with sorbent ions and is determined 
by the properties of the sorbent itself. During sorption from complex 
solutions, the exchange constant can also be affected by other ions in 
the solution, both due to the buffering of the solution, the formation 
of complex ions, and changes in the structure of water in the solution 
because of salting in and salting out. The main types of isotherms are 
shown in Figure 9. The behavior of the concentration curve in the 
sorbent in dynamics depends on the type of isotherms. Studies in the 
field of kinetics have shown a predominantly diffusion character with 
the influence of the hydrodynamics of the porous layer of the sorbent. 
Four stages were identified that limit mass transfer: external diffusion 
is the flow of a substance to the surface of a sorbent granule; internal 
diffusion is a flow of a substance inside the pore space of a grain; 
diffusion of ions through a double electric layer near the surface of a 
crystallite in the sorbent phase; crystal chemistry positions. The last 
three types of diffusion processors are often considered integrally as 
one interdiffusion process.

Figure 9 The main types of ion exchange isotherms depend on the value 
of the exchange constant by the Langmuir equation for exchanging equally 
charged ions (equation (36)). Capacity (E) and concentration (C) are relative 
values. The numerical values correspond to the exchange constant (K) value.

The flow rate in equation (30) is the rate of change in the capacity 
of a homogeneous section of the solid phase (33).

( , , , ) EF x y z t
t

∂
=
∂                                                                      

(33)

Since the isotherm equation relates the values of capacitance and 
concentration, the change in capacitance can be expressed in terms of 
the change in concentration (34).

( )
.

dG CE C
t dC t

∂ ∂
=

∂ ∂                                                                         
(34)

Expression (34) allows us to write equation (30) in the following 
form (35)

2 2 2

2 2 21 . .dE C C C CD
dC t x y z

 ∂ ∂ ∂ ∂ + = + +   ∂ ∂ ∂ ∂                                        
(35)

For the convenience of understanding and simplification of 
mathematical transformations, (36) can be used as an isotherm (the 
Langmuir equation for the exchange of equally charged ions):

0. .
1 ( 1).C

E K CE
K

=
+ −                                                                           

(36)

Where: E0 - maximum exchange capacity; K - exchange constant; 
C - concentration of sorbed ions.
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In this case, equation (35) is transformed into (37):
2 2 2

0
2 2 2 2

.1 . .
(1 ( 1).C)

E K C C C CD
tK x y z

   ∂ ∂ ∂ ∂
+ = + +  

∂+ − ∂ ∂ ∂                 
(37)

In particular, at K=1 (linear exchange isotherm), equation (37) 
is reduced to the form (38), that is, to an equation with a constant 
diffusion coefficient:

2 2 2

2 2 2
0

.
1

C D C C C
t E x y z

 ∂ ∂ ∂ ∂
= + + 

∂ + ∂ ∂ ∂                                                
(38)

The solutions of equations (38) and (11) are identical; however, 
in the case of equation (38), the value of the Fourier criterion is 
determined by expression (39)

2

 . 

1 . r

D tF
E
C
ο

ο

ο =
 
+ 

                                                                    

(39)

Where: E0 - maximum exchange capacity; C0 - total concentration 
of exchanging ions in the pore space.

Thus, the rate of mass transfer processes on porous ion-exchange 
granules is dependent not only on the geometric dimensions of the 
granule and the diffusion coefficient but also on the sorbent capacity’s 
ratio to the exchangeable concentration ions in the pore space. We 
note one more solution to the problem of mixed diffusion on porous 
ion-exchange materials, related to the case of an L-shaped isotherm 
defined by expression (40):

,   C > 0
0,    C = 0

E E
E

ο=
 =                                                                        

(40)

Where: E - exchange capacity; E0 - maximum exchange capacity; 
C - concentration of sorbed ions.

In this case, the sorbent granule is divided into two zones - the 
outer one, where the sorbent is completely saturated with the absorbed 
ion, and the inner one, completely free from these ions. In this case, 
the rate of the process is determined by the diffusion of sorbed ions 
through the growing layer of the reaction product. According to,8 for 
spherical particles, the solution to this problem has the form (41):

2
33 3(1 ) 2

 .
Et
C D K
ο

ο

α α α
β

− − −
= + ⋅

                                               
(41)

Where: t - the time required to reach the degree of conversion equal 
to α; β - external mass transfer coefficient; E0 - ion exchanger capacity; 
C0 - concentration of sorbed ions in the free volume of the solution; 
D - diffusion coefficient; K - coefficient of distribution of sorbed ions 
between the pore space and the free volume of the solution. 

Note that for the problem of internal diffusion with an L-shaped 
isotherm, there is an explicit solution that determines the dependence 
of the degree of transformation on the Fourier criterion (42):9

( ) 3 11 ,     
6

1                                          

arcsin

      

1 12.
0

     ,         

.5 sin

 
6

3

     

Fo

Fo

Fo

α

   
− <  

−
+  

    =


≥           

(42)

As follows from expression (42), in the case of an L-shaped 
isotherm, the process of internal diffusion is completed in a finite 
period. Solutions to the problem of internal diffusion for Eq. (37) were 
numerically obtained for various values of the exchange constants. 
These solutions, as dependences of the degree of transformation 
on the Fourier criterion calculated by the formula (39), are shown 
in Figure 10. As the calculation results showed, at the value of the 

exchange constant equal to unity, the obtained dependence of the 
degree of conversion on the Fourier criterion coincided with the 
support determined by the formula (26). With an increase in the 
values of the exchange constants, it asymptotically approached 
the dependence determined by the formula (42). Thus, there was a 
significant slowdown in the exchange process for exchange constants 
less than unity. These differences in the rate of techniques for the 
convex and concave isotherms are explained by the different speeds 
of the concentration fronts and the degree of conversion inside the 
granule, as seen in Figure 11. From the data analysis presented in 
Figure 11, with convex sorption isotherms, the front of the conversion 
degree (E/E0) lags the concentration front (C/C0). With concave ones, 
on the contrary, it is ahead of it. This effect is due to the higher rate 
of transition of sorbate ions from the liquid phase to the solid phase 
at convex isotherms, that is, at Kij=10. On the contrary, with concave 
isotherms at Kij=0.1, the transition of sorbed ions into the solid phase 
from the liquid slows down due to the shift of the corresponding 
equilibrium.

Figure 10 Kinetic curves at various exchange constants, as solutions of 
equation (26) in the form of dependences of the degree of conversion (α) on 
the root of the Fourier square criterion (Fo), calculated by the formula (39).

Figure 11 Fronts of the degree of conversion and concentration at 50% 
capacity development.

Kinetic model of the ion exchange process with the 
transfer of matter through the surface film of the 
liquid phase

Pure film kinetics should be considered in a slightly different way. 
In the case of pure gel kinetics, the selectivity of the ion exchanger 
does not play a role since only the B ion is constantly supplied to 
the phase boundary. In film kinetics, this does not happen even if the 
solution does not contain A ions; these ions will appear at the ion 
exchanger/film interface. They leave the ion exchanger and diffuse 
very slowly through the film. In addition, the presence of coions in the 
film cannot be neglected. Only two solutions exist for the ideal limiting 
cases for pure film kinetics. One of them allows the presence of ions 
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with different mobilities, but it is assumed that the ion exchanger does 
not have selectivity and that the ions have the same charge. In another 
case, selectivity is considered, but the ions are considered to have the 
same mobility. Interdiffusion in a film is considered a quasi-stationary 
process in a flat layer. For the case of ions with different mobilities, it 
is necessary to solve the Nernst–Planck equations (4) for counterions 
of both types A and B and coions of type Y. Additional conditions in 
the film can be expressed as follows (for ions with the same charge):

A B YC C C+ =  Electrical neutrality                                           (43)

0A B YΦ +Φ = Φ =
  

 No electric current                                    (44)

The condition 0YΦ =


 follows from the assumption of the 
existence of a quasi-stationary state. In contrast to gel kinetics, the 
film’s total concentration is not constant with film kinetics. The 
electric field acts on the coions in the film (the concentration of 
coions is equal to the total concentration), increasing or decreasing 
the number of coions until a quasi-stationary state is reached, in which 
the “force” of the electric field acting on the coions is balanced by the 
resulting concentration gradient. An analytical solution was found for 
ions with the same number of charges (zA=zB=-zY) with a boundary 
condition corresponding to the condition of a constantly renewing 
solution. In addition, it is limited to an ion exchanger that does not 

have selectivity ( )1 .A
BT =  For this case, the following condition is 

satisfied at the phase boundary:

A
A

C CC
C

′
′ =

                                                                                     
(45)

The time dependence of the interdiffusion flux is also described 
here by equation (46).

3A
A

dC C
dt r Cο

′
− = Φ                                                                             (46)

Where: F — total grain surface of the ion exchanger; 'AC — 
ion concentration A at the ion exchanger/film interface. Equation 
(46) includes the equilibrium condition at the phase boundary

/ ' / .AC C C C=  As the initial conditions, we choose an ion 
exchanger completely saturated with A ions and a solution containing 
no A ions; the concentration of A ions in the ion exchanger is equal to 

0.AC  In general, for film kinetics, the initial conditions are formulated 
as follows:

; 0;  A
A

C Cr r t C
C

ο

ο ′= = =

; 0; ( ) 0Ar r t C rο≥ = =                                                               (47)

For the case under consideration, an additional condition is 
introduced

( )A' 0 'C t C= =

Since the value of ( )'C t  is unknown from the beginning, the initial 
and boundary conditions at the phase boundary cannot be precisely 
specified. The joint solution of three equations (4) for particles of 
types A, B, and Y under the indicated conditions has the form:2

( )2
B A

B A

D y t D
U

D D
−

=
+

( ) ( ) ( )
1

2
2

1
2 0

1 31ln
2

1

A A A

B B
A

B

y t D D D Cy t y t t
D D r CD

D

δ

 
 
 −      + − + − = −     

     
−  

                    

(48)

U and t are related by a common dependence on the mathematical 
parameter y(t). The parameter y(t) is defined as follows:

( )
( ) ( ) (t)A A B B

B

D C t D C t Cy t
D C C

′ ′ + ′ ≡ =
                                         

(49)

Where ', 'AC C and B'C  refer to the ion exchanger/film interface, 
and C denotes the total concentration in the solution.

If the ion exchanger is initially saturated not only with A ions but 
with a mixture of A and B ions, then the conversion fraction can be 
expressed as follows:

( )
( )' 0

0
0

'

1
B

B

U t t
U t

γ

γ

+ −
=

−                                                                  
(50)

Where 'U  denotes the function (6.40) and 0
Bγ  — an equivalent 

fraction of ions B for time t=0, t0 — the time required, according to 
equation (48), to saturate the ion exchanger (containing initially only 
A ions) with B ions to an equivalent fraction 0.Bγ  When exchanging 
ions with the same mobility, an electric field does not arise. Therefore, 
instead of the Nernst–Planck equation (4), the first Fick law (3) can 
be used. The consideration of isotopic exchange differs from the latter 
only in that, due to the selectivity of the ion exchanger, the equilibrium 
condition at the phase boundary has the following form:

' '

'
AB B

B
AA

C C T
CC

=
                                                                               

(51)

In this case, the separation factor A
BT  is assumed to be constant. 

In connection with this, equation (46) and the boundary condition at 
the phase boundary will be modified. For a solution of limited volume 
between U and t, the following relation is obtained:

( ) ( ) ( )1 ln 1 1 ln
1

UaN U aN ab ctb
N

 
 

− − − − − = − 
 + 
                      

(51)
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QabVD CV ba T b c Nb r V CV Q a
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ω ωω
δ ω

∞

  
  + + ≡ − ≡ ≡ ≡ ≡ = − 
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(52)

Where N – is the relative content of the ion B in the ion exchanger 
after equilibrium has been established. For a flowing solution or a 
solution whose volume satisfies the condition ( )1CV CV ω� � , 
connection (51) occurs, and the form (53) occurs.

( )
0

1 3ln 1 1 A A
B B

DCU U t
T r CTδ

 
− + − = −  

                                          
(53)

Equation (53) is a limiting case in the theory developed by 
Adamson,57 assuming ions of specific mobility and not considering 
the occurring field. Equation (51) is also a limiting case of the Dickel 
theory,59 a development of the Adamson theory. The Dickel relation 
is restricted to the state .CV CV=  Equation (53) yields the given 
expression for the half-time exchange:

( ) 0
1

2
0.167 0.067 A

B
r Ct T
DC
δ

= +
                                                     

(54)

Thus, the exchange is slower the more selective the ion exchanger 
about the ion A initially located in the ion exchanger compared to 
the ion B. This fact is obvious. As expected, Deviations are most 
important in exchanging two ions with different mobilities (for 
example, Li+/H+).
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Comparison of sorption and desorption processes

Based on general considerations, it can be assumed that the rates 
of ion-exchange reactions depend on the mobility of the ions involved 
in them. Data on the mobility of the primary ions in aqueous solutions 
are presented in Table 1. As can be seen from the data presented, for 
example, in the series Li+, Na+, and K+, the actual radii of the ions 
increase, and the mobilities should decrease. However, the mobilities 
increase by almost a factor of two when going from Li+ to K+. This 
effect is because ions in the solution and the ionic lattice have different 
radii. In this case, the smaller the ion’s crystal-chemical radius, the 
larger the effective radius in the electrolyte. The current situation is 
because the ions are not free but are hydrated in solution. Then the 
effective radius of an ion moving in an electric field will be determined 
mainly by the degree of its hydration, i.e., by the number of water 
molecules associated with the ion. In turn, at the interface between 
the surface of the sorbent and the solution, due to the presence of 
uncompensated charges on the surface of the crystalline phase of the 
sorbent, a specific electric field strength arises, which in turn is the 
driving force for the movement of the corresponding cations.

Table 1 The limiting mobilities of ions in water at 25 64 

Ion U∞ Ion V∞

H3O
+ 349.8 OH- 197.6

Li+ 38.6 F- 55.4
Na+ 50.1 Cl- 76.4
K+ 73.5 Br- 78.1
Mg2+ 53 NO3

- 71.4
Ca2+ 59.5 SO4

2- 80

U∞ and V∞  - limiting mobilities of cations and anions, respectively. 

The bond of an ion with solvent molecules, particularly water 
molecules, is ion-dipole since the field strength on the surface of a 
lithium-ion is much greater than on the surface of a potassium ion. 
This effect is because the surface of the former is smaller than the 
surface of the latter, and the radius, i.e., the distance of the water 
dipoles from the practical point charge at the center of the ion, is 
smaller. Thus, the degree of hydration of the lithium-ion is greater 
than the degree of hydration of the potassium ion. Based on these 
considerations, multiply-charged ions should have greater mobility 
than singly-charged ones. As can be seen in Table 1, the movement 
rates of multiply charged ions differ little from the movement of 
singly charged ions, obviously due to the greater degree of their 
hydration due to the greater field strength created by the multiply 
charged ions. This table also shows the anomalously high mobility 
of hydronium and hydroxyl ions. Since the solution contains not 
hydrogen ions H+, but hydroxonium ions H3O

+, like all ions, they are 
hydrated, and their effective radii are in the same order as the radii 
of other ions. Consequently, if the mechanism of charge transfer by 
these ions were expected, then their mobility would not even differ 
significantly from the mobilities of other ions. The anomalously 
high mobility of H3O

+ and OH־ manifests itself mainly in aqueous 
solutions, which is associated with the features of charge transfer by 
these ions. They differ from other ions because they are ions formed 
by the solvent - water. Thus, the charge is transferred mainly not by 
hydronium ions. However, they also participate in the charge transfer 
by protons jumping from one water molecule to another along the 
field lines at the interface between the sorbent and solution. It is 
also necessary to consider the need to rotate the newly formed water 
molecule, which has an orientation that does not allow it to accept, 
in turn, the hydronium ion’s proton from the molecule’s other side. 

Kohlrausch derived an empirical equation relating the equivalent 
electrical conductivity (λ) of strong electrolytes to concentration (c):

A cλ λ∞= −                                                                               (55)

Where U Vλ∞ ∞ ∞= + ; A – constant.

Debye and Hueckel attributed the decrease in ion mobility 
and equivalent electrical conductivity for strong electrolytes with 
increasing concentration to the presence of an ionic atmosphere. 
Indeed, each ion is surrounded by an ionic atmosphere, consisting 
mainly of ions of the opposite sign to the central ion, the density of 
which increases with increasing electrolyte concentration. When an 
electric field is applied, the ion moves in one direction, and the ionic 
atmosphere in the opposite direction. The movement of ions of different 
charges, at the same time solvated, in opposite directions creates, as 
it were, additional friction, which reduces the absolute speed of ion 
movement. This braking effect is called the electrophoretic effect. 
As the concentration increases, the density of the ionic atmosphere 
rises; therefore, the inhibitory electrophoretic effect also increases. 
It should not be thought that during the random motion of an ion, 
its ionic atmosphere moves along with it. When moving, the ion 
leaves its ionic atmosphere and continuously creates a new one in 
the way of its movement. This process of destruction of the old and 
formation of new ionic atmosphere proceeds, although rapidly, but not 
instantaneously; because of this, when the ion moves, the symmetry 
of the ionic atmosphere is violated, and its density is more significant 
behind the moving ion. The appearance of an asymmetry in the ionic 
atmosphere also causes some deceleration of the translational motion 
of the ion, which is called the effect of asymmetry or relaxation. Thus, 
due to the presence of an ionic atmosphere, two decelerating effects 
arise during the movement of an ion: an electrophoretic effect, due 
to the action of the ionic atmosphere in the direction opposite to the 
direction of movement of the ion, and a relaxation effect, due to the 
asymmetry of the ionic atmosphere.

Similar effects are also observed when ions enter the crystal 
structure of an inorganic ion exchanger. However, no electrophoretic 
effect occurs in the ion exchanger’s solid phase due to the ionic 
atmosphere’s stability, which is the polyanionic framework of the 
crystal lattice of the ion exchanger. When an ion moves in the ion 
exchanger phase, only relaxation effects are observed when the ion 
jumps from one position to another. In this case, the driving force 
determining its movement is the osmotic pressure due to the difference 
in ion concentrations in different parts of the ion exchanger phase. 
The transfer of ions from the liquid phase to the solid phase of the ion 
exchanger is due to the so-called Wien effect. Therefore, the decrease 
in the mobility of ions with increasing concentration is explained by 
an ionic atmosphere. Then, the latter’s destruction should lead to an 
increase in the mobility of ions to a limiting value. Since the speed of 
the ion movement is proportional to the voltage. The rate of formation 
of the ionic atmosphere is a finite value; then, with an increase in 
the electric field strength, it is possible to achieve such a high speed 
of movement of the ions, at which the ionic atmosphere will no 
longer have time to form. In this case, the ions, having left their ionic 
atmospheres, will move without them and, consequently, will have 
the maximum speed of movement and mobility. Considerable field 
strengths arise at the interface between the sorbent’s solid phase and 
the solution’s liquid phase in contact with it due to uncompensated 
charges on the surface of the crystalline phase sorbent. Thus, the ions 
shed their ionic atmosphere and pass into the solid phase of the sorbent. 
In this regard, the effect of the difference in the rates of the sorption 
and desorption processes should arise, especially for hydrated oxides 
of polyvalent metals, which act as inorganic ion exchangers and on 
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which a reversible exchange reaction occurs between hydronium ions 
and ions of the exchanged metal in solution.

Based on equation (9) and equation (17), which describe 
the interdiffusion of ions A and B in the grain of an inorganic ion 
exchanger:
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The equation (56) solution for various diffusion coefficients D will 
have the form shown in Figure 12.

The solution to equation (19) for fixed diffusion coefficients can 
also be represented in the 3D form in Figure 13.

Figure 12 Dependence of the concentration profile of the degree of filling 
of the sorbent granule for cases of different diffusion coefficients calculated 
following the model (56). x - is the dimensionless coordinate of a point inside 
a spherical particle. t - is the dimensionless time according to equation (62).

Figure 13 Change in time of the concentration profile of the degree of filling 
of the sorbent granule by equation (56). l - is the dimensionless coordinate of 
a point inside a spherical particle.

10. 1A A

B B

D DA B
D D

− = − =

From the presented data, a decrease in the ratio of the diffusion 
coefficients of the ions involved in the process of mutual diffusion 
leads to an increase in the saturation rate of the granule of the 
inorganic ion exchanger. As an example of direct and reverse ion 
exchange processes, consider the following process, which is of great 
practical importance: 

H Li Ll H+ + + ++ → +

Ll H H Li+ + + ++ →

and

A comparison of these processes is shown in Figure 14, which 
offers both curves for the same time parameter, expressed through 
the Fourier criterion Fo. Based on the data presented in Table 1, it 
can be assumed that the ratio of the diffusion coefficients of hydrogen 
and lithium ions will be approximately equal to the ratio of their 
limiting mobilities in water Li/ / D 9.06H Li

HU U D∞ ∞ ≈ = . Figure 
14 shows that the exchange occurs faster if there are more mobile 
ions in the ion exchanger; the time of their half-exchange differs by 
about a factor of two, while the time required for the exchange by 
90% varies by more than three times. Also, essential conclusions can 
be drawn when considering the radial concentration profiles in the 
grain, which are presented in Figure 12–14 for two extreme values 
of the mobility ratios and, accordingly, the diffusion coefficients 
( )B/ D 1  0 / 1 A A BD H D D= = . 

And it follows from Figure 12–14 that if the A ions initially located 
in the ion exchanger move much faster than the B ions, then a rather 
sharp front moves to the center of the grain in the exchange process. 
In another case, the front is rapidly washed out, and the grain is 
relatively uniformly depleted of A ions. This phenomenon can also be 
easily explained by the fact that the diffusion coefficient of an ion in 
a lower concentration has a more substantial effect on the value of the 
interdiffusion coefficient. In the first case, the interdiffusion coefficient 
in the outer shells of the grain is significant and decreases towards 
the middle; therefore, the outer shell is rapidly depleted, while closer 
to the center of the grain, the exchange remains slow. In the second 
case, the interdiffusion coefficient in the outer shells of the granule 
is minimal and increases towards the middle of the sorbent particle; 
therefore, after the depletion of the outer layers, the process rapidly 
propagates toward the center of the grain. Let us again compare the 
exchange of H Li Ll H+ + + ++ → +  ions with the reverse process. 
Calculation by equation (56), like pure gel kinetics, leads to different 
exchange rates for both processes. However, with film kinetics, in 
contrast to gel kinetics, the exchange in the initial stage proceeds 
faster if the ion exchanger initially contains a slower ion. It seems it 
is easy to explain. During interdiffusion, an electric field arises in the 
film. Suppose initially. The ion exchanger contained only the more 
mobile H+ ion. In that case, the electric potential at the film/solution 
interface will be more positive than the potential at the ion exchanger/
film interface. The electric field, therefore, causes the coions to move 
from the film into the solution until the electric force balances the 
concentration gradient of the coions. Since the ion exchanger cannot 
replace the departed coions, the film becomes depleted in electrolytes 
compared to the solution. The electric field has the opposite sign if the 
ion exchanger initially contains only Li+ ions. As a result, an excess of 
coions is created at the phase boundary, and the film becomes richer 
in electrolyte than the solution. The concentration gradients are, 
therefore, more significant in the second case than in the first. For the 
H+/Li+ exchange and the reverse process, the initial mutual diffusion 
fluxes differ by about a factor of three, while the half-exchange time 
differs by only about 3%.
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Figure 14 Comparison of direct and reverse processes of exchange of ions 
with different mobility. The exchange rate of H+/Li+ and Li+/H+ was calculated 
using equation (23) for the case of pure gel kinetics and the mobility ratio 

/ / 9.06H Li
H LiU U D D∞ ∞ ≈ = . The exchange is faster if there is a speedier ion 

initially H+.2

Ion exchange steps

Ion exchange is a heterogeneous process associated with 
transferring ions from a liquid phase to a solid one. Therefore, ion 
exchange kinetics can be described regarding the mechanism of 
heterogeneous processes.1,2,14,20–22,39,40 For any heterogeneous process, 
two stages are characteristic: the transfer of a substance to the 
reaction zone and the actual chemical reaction. When describing the 
kinetics of heterogeneous processes, it is necessary to consider both 
stages simultaneously. In natural systems, each step is complex, and 
although it can often be represented in terms of simpler components, 
describing the kinetics of ion exchange is a rather difficult task. Thus, 
as a rule, the chemical stage of ion exchange consists sequentially 
of the desorption of one ion and the sorption of another. It is often 
complicated by the influence of coions and the solvent on the process, 
such as the pH value. The transfer of a substance from the solution 
to the ion exchanger phase can be represented as a sequence of the 
following stages:1

I. Diffusion of ions from the depth of the solution to the granule.

II. Diffusion through a fixed film near the surface of the granule, the 
so-called. External diffusion.

III. Entry of ions into the pore space of the granule.

IV. Internal diffusion - the transfer of ions in the pore space of the 
granule.

V. For biporous sorbents, the following stages are possible:35,40

VI. Adsorption of ions on the surface of crystalline blocks

VII. Diffusion of ions deep into crystallites.

A chemical exchange reaction completes the transfer process, and 
the same stages, only in reverse order, are characteristic of desorbed 
ions. It should be noted that when describing the processes of ion 
transfer, it is necessary to consider the emerging electric potential 
due to the difference in the mobilities of the exchanged ions.23,24 
Introducing the electrodiffusion potential into the transport equations 
leads to their non-linearity concerning the value of the interdiffusion 
coefficient. The diffusion problem becomes even more complicated 
in the case of multicomponent exchange.25 Considering that, in most 
cases, the equilibrium of ion exchange processes is also non-linear, 
their exact mathematical description encounters specific difficulties. 

Thus, attempts to construct a mathematical ion exchange model 
that considers all the features of the ion exchange process lead to a 
complex system of differential equations, often nonlinear, with many 
parameters that are sometimes difficult to determine experimentally. 
Therefore, the mathematical description of ion exchange processes 
is usually carried out, assuming some stages do not significantly 
affect the process’s kinetics. The kinetics of organic gel sorbents has 
been relatively well studied.1 The ion exchange processes on these 
materials are usually satisfactorily described within the framework of 
internal diffusion kinetics; the solution of inverse kinetic problems 
makes it possible to find the effective diffusion coefficient of ions in 
the ion exchanger gel matrix.26 Nevertheless, even to describe these 
processes, approximate equations are often used, mainly those of Boyd-
Adamson.2 The kinetics of ion exchange on inorganic ion exchangers 
has been studied in less detail. In many ways, this situation is because 
the crystalline nature of inorganic ion exchangers27 manifests itself in 
low rates of ion exchange processes.22,28,29 Therefore, there is a need 
for a more detailed consideration of the stages of ion exchange on 
inorganic ion exchangers, their possible mathematical description, 
and methods for their study.

Experimental study of sorption kinetics under 
conditions of rapid equilibrium between pore solution 
and homogeneous regions of the solid phase

An experimental study of the sorption kinetics under conditions 
of rapid establishment of equilibrium between the pore solution and 
homogeneous areas of the solid phase was carried out on granular 
samples of various inorganic sorption materials. These sorbents 
seemed to be very convenient objects for studying those features of 
the kinetic characteristics of inorganic ion-exchange materials that 
were considered above. In particular, the effects associated with the 
influence of the type of isotherm on the rate of sorption processes, the 
rate’s dependence on the sorbate’s concentration, and the granules’ 
size were studied. An experimental setup was created to conduct 
kinetic experiments, the schematic diagram of which is shown in 
Figure 15. The operation of the installation was carried out as follows. 
The test solution and the weighed portion of the sorbent were placed 
in a reaction vessel (1) equipped with a mechanical stirrer (2). Air 
purified from carbon dioxide was supplied above the solution layer to 
avoid the latter’s influence on the pH of the solution. The same vessel 
contained an electrode system (3) consisting of a measuring electrode 
(glass or ion-selective), an auxiliary electrode (calomel), and a 
resistance thermometer. The signal from the ion-selective electrode, 
containing information about the pH (pX) and the temperature of 
the solution, was processed by a measuring transducer (pH meter) 
(4) and fed to the control computer (5). An experimental setup for 
studying the sorption kinetics was created based on TitroLine-7000 
from SI Analytics, using a thermostated cell TZ 1759. The view of 
the experimental setup is shown in Figure 15 B and C. A computer 
operating under the control of a pre-created program, depending on 
the data coming from the pH meter, can send a signal to turn on the 
heater (7) to the temperature control unit (6) or a signal to turn on the 
automatic titration burette (8). Thus, it is possible to maintain quasi-
constant conditions in the solution during the kinetic experiment. 
The accuracy of maintaining the temperature on this installation is 
±0.2°C. The error in maintaining the pH depends on its value, and at 
pH>10 does not exceed ±0.1 of the pH unit. The data on the duration 
of titrations and their distribution over the time of the experiment 
makes it possible to judge the rate of the ion exchange process. Thus, 
kinetics studies were carried out under a constant concentration of 
ions (sorption from a solution of infinite volume).

https://doi.org/10.15406/ijh.2023.07.00345


Kinetics of ion exchange on inorganic sorbents 105
Copyright:

©2023 Kudryavtsev et al.

Citation: Kudryavtsev P, Zilberman M. Kinetics of ion exchange on inorganic sorbents. Int J Hydro. 2023;7(3):91‒117. DOI: 10.15406/ijh.2023.07.00345

Figure 15 Experimental setup for studying the kinetics of ion exchange. A - 
general installation scheme; C – TitroLine-7000 titrator from SI Analytics; C 
- temperature-controlled cell TZ 1759. 1 - reaction vessel; 2 - the mechanical 
stirrer; 3 - electrode system with temperature compensator; 4 - measuring 
transducer (pH meter); 5 - control computer; 6 - thermostat control unit; 7 – 
thermometric measuring element; 8 - automatic titration burette.

Influence of the type of isotherm on the rate of mass 
transfer processes

The influence of the type of isotherm on the rate of mass transfer 
processes was studied using the example of an inorganic ion exchanger 
FS-3,10 a composite material based on mixed zinc-potassium 
hexacyanoferrate and silica gel. The exchange rate was studied for 
the following pairs of K-H, Cs-K, and Li-H ions. A granulate fraction 
with sizes from 0.6 to 0.75 mm was used in all cases. The sorbtive 
concentration was 0.025 mol/dm3. The experiments were carried out 
on an automated setup that maintains a constant sorbate concentration 
in the reaction volume and fixes the reagent consumption over time. 
The results of these experiments are shown in Figure 16.  As can be 
seen from Figure 16, the exchange process in the Li-H system is much 
slower than in the Cs-K and K-H systems. In the case of Li-H, the value 
of the exchange constant was K=0.11, and in the cases of exchange in 
the Cs-K and K-H systems, the importance of the exchange constants 
exceeded the value K>10. Thus, the exchange constants are directly 
related to the kinetics of the ion exchange process. Considering the 
difference in exchange isotherms, processing experimental data led 
to relative values of the diffusion coefficients presented in Table 2.

Figure 16 Kinetics of ion exchange on the FS-3 sorbent.

Table 2 Diffusion coefficients during ion exchange on the FS-3 sorbent

Exchange pair of ions Diffusion coefficient

K-H 6.3∙10-9

Cs-K 9.3∙10-9

Li-H 7.2∙10-9

Thus, the difference in the rates of the processes is explained 
not by the difference in the permeability of the granulates (the same 
sorbent was used in all experiments) but by the difference in the 
isotherms. The influence of the sorbent concentration on the rate of 
ion-exchange processes involving inorganic sorbents was also studied 
using the FS-3 sorbent as an example. Before experiments, the sorbent 
was converted into a hydrogen ion-exchange form by washing with 
a sulfuric acid solution with a concentration of 12 mol/dm3 under 
dynamic conditions until the filtrate was free of potassium ions. For 
experiments, a sorbent fraction with granule sizes from 0.6 to 0.75 
mm was taken. Potassium chloride was used as a sorbate, and the 
concentration in various experiments varied from 0.00125 to 0.0125 
mol/dm3. The kinetic curves were recorded on the automatic setup 
described at the beginning of this section. Since, in this case, the 
sorption isotherm had a strongly convex character, equation (63) was 
used to process the results.
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The result of this processing was the estimation of the mass 
transfer coefficient (15) and the product of the diffusion coefficient, 
and the coefficient of electrolyte distribution between the pore space 
of the granule and the free volume of the solution (K×D). The time of 
full completion of the sorption process was calculated from the value 
of the last parameter. Figure 17 shows the dependence of the time 
for the full completion of the internal diffusion process, calculated 
from estimates of the K×D values obtained by processing the kinetic 
curves of sorption of cesium ions on the composite ferrocyanide-
silica gel sorbent FS-3. The experiments were carried out at 
various concentrations of the sorbate. As seen in Figure 17, as the 
concentration of the sorbate increases, the time for the full completion 
of the internal diffusion process decreases. A characteristic feature is 
that the process rate was much higher than follows from the general 
theoretical concepts.11 These ideas assume that the transfer of ions 
inside the granule occurs through the volume of the pore space and 
lead to the following expression for the diffusion coefficient (64).

1
1

e

d
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ε

=
+

−                                                                                 

(64)

Figure 17 Effect of sorbent concentration on the completion time of the 
internal diffusion process. Dots are experimental data. The red curve is the 
calculated dependence according to formulas (32) and (33).

Where: D - diffusion coefficient in the ion exchanger; De - diffusion 
coefficient in water; Kd - coefficient of distribution of the sorbed ion 
between the ion exchanger and the solution; ε - sorbent layer porosity. 
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Note that this approach to determining the diffusion coefficient is based 
on the hypothesis that the properties of the solution in the free volume 
and the pore space of the granule are identical. In addition, the above 
data indicate that the ions adsorbed on the pore surface determine the 
rate of mass transfer processes on inorganic ion exchange materials.

The dependence of the process completion time on the concentration 
of the sorbate, calculated by the formula (64) for the value De=10-9 
m2/sec, which seems to be a somewhat overestimated estimate for the 
diffusion coefficient of monovalent ions in an aqueous solution and 
ε=0.5, is shown in Figure 17 together with the experimental data. As 
can be seen, these dependencies differ in order of magnitude. Based 
on this, the hypothesis about the identity of the properties of the 
solution in the free volume and the pore space of the granule cannot be 
considered correct. The higher rates of mass transfer processes can be 
explained based on the assumption that the sorbed ions concentration 
in the sorbent’s pore space exceeds the concentration of these ions 
in the free volume of the solution due to adsorption in the double 
electric layer. If we proceed from the fact that the concentration of the 
electrolyte in the pore space occurs due to adsorption on the surface 
of the pores and the isotherm of this adsorption has the character 
of the Langmuir isotherm, then the dependence of the distribution 
coefficient on concentration can be represented by the expression (65)

( ) 0K DK C D
b C

⋅
⋅ =

+                                                                       
(65)

Where: K0 - partition coefficient at infinite dilution; C - electrolyte 
concentration; b - isotherm parameter having the dimension of 
concentration. Experimental estimates of the parameter K×D on the 
concentration of the sorbate and their approximation by expression 
(65) are shown in Figure 18. As can be seen from the data presented 
in Figure 18, the K×D product decreases with increasing sorbate 
concentration. We attribute this decrease to a change in the electrolyte 
distribution coefficient between the pore space and the free volume 
of the solution. The curve in Figure 18 corresponds to just such a 
relationship. It should be emphasized that only the product of the 
electrolyte distribution coefficient and the diffusion coefficient can be 
determined from the kinetic experiment. At the same time, there is 
no reason to believe that the diffusion coefficient in the pore space of 
the granule is equal to this value in the free volume of the solution. 
Thus, for a separate assessment of the diffusion and electrolyte 
distribution coefficients, some independent method must determine 
one of these values. The fact that diffusion in the pore space of the 
granule proceeds somewhat differently than in the free volume of the 
solution is also evidenced by the temperature dependence of K×D. As 
the results of experiments have shown, the temperature dependence 
of the K×D value for the same pair of exchanging ions is different 
for different sorbents. As an example. Figure 10 shows the activation 
energies for the exchange of cesium ions for potassium and some 
other parameters characterizing the properties of the FS-3 and FS-10 
sorbents.10,12 Note that the activation energy values turned out to be 
close in order of magnitude to the equivalent values for the activation 
energy of diffusion of ions in ion-exchange resins. As can be seen in 
Table 3, there is a significant difference between the studied samples’ 
activation energy values and pre-exponential factors. An exciting 
feature of the obtained results is that the value of the pre-exponential 
factor correlates well with the value of the specific surface area of pure 
ferrocyanide phases. Thus, the results presented in Table 3 suggest that 
the surface of the active phase of the composition plays an essential 
role in the transport of ions within the granule. At the same time, the 
size of the surface is not a factor that ultimately determines the rate of 
the mass transfer process. This rate is also affected by the mobility of 
ions adsorbed on the pore surface.

Figure 18 Dependence of K×D parameter estimates on sorptive 
concentration.

K0×D= 2.95∙10-8, b=0.611.

Table 3 Parameters characterizing the properties of FS-3 and FS-10 sorbents

Parameter Symbol Dimension FS-3 FS-10
Activation energy Eac kJ/(mol∙deg) 12.5 16

Preexponential 
multiplier

D0 m2/sec 9.6∙10-9 18.2∙10-9

The specific surface 
area of ferrocyanide

S0 m2/cm3 50 121

The specific surface 
of the composition S1 m2/cm3 85 337

D0/S0 cm3/sec 1.92∙10-10 1.50∙10-10

D0/S1 cm3/sec 1.13∙10-10 0.54∙10-10

Inhibition effects at the level of homogeneous sections 
of the solid phase

The problems considered earlier concern diffusion inhibition of the 
sorption process at the granule level. When the mass transfer process 
is retarded at the level of a homogeneous particle of the solid phase, 
as already noted, the usual size is the size of this region. The other 
characteristics of the pore space should not play any role in limiting 
the sorption rate. A change in the size of homogeneous sections of the 
solid phase almost always accompanies one very common process for 
synthesizing selective inorganic sorbents, namely, thermochemical 
modification. Considering the great practical significance of this 
process, let us consider the influence of the effects of growth in 
the size of homogeneous regions of the solid phase on the kinetic 
characteristics of sorbents.

In the processes of thermochemical modification, the growth of 
the linear dimensions of homogeneous sections of the solid phase 
is due to the heating of the modified materials to temperatures close 
to the crystallization temperature. In this case, the purpose of such 
processing is not the actual crystallization of the material but the 
ordering of its structure. Moreover, even this ordering is partial since 
samples synthesized in this way always retain a certain proportion of 
nonselective ionogenic centers. Let us consider the influence of the 
growth of the linear dimensions of homogeneous sections of the solid 
phase on the example of a model system - cadmium sulfide. We chose 
this compound to ensure the chemical homogeneity of the material. 
To obtain samples of cadmium sulfide with different linear sizes of 
homogeneous areas of the solid phase, they were calcined at different 
temperatures, using specific measures to prevent their oxidation. The 
sample’s crystallization degree was estimated from the size of the 
region of coherent X-ray scattering. This site, in turn, was determined 
by analyzing the line profile in the diffraction pattern. The samples 
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were used to study the kinetics of copper sorption from a CuSO4 
solution. The results of the experiments are shown in Figure 19.

Figure 19 Sorption kinetics of copper ions on cadmium sulfide. Points - 
experimental data, curves - calculated.

The icons in Figure 19 correspond to the experimental points, 
the solid lines correspond to the calculated values of the degrees 
of conversion, and the numbers near the solid lines correspond 
to the sizes of crystalline blocks in angstroms. The experimental 
data were processed using equation (42). It was assumed that the 
granule material could be conditionally divided into crystallized 
and non-crystallized. The calculations proceeded because only 
the non-crystallized part of the granule material participates in the 
sorption process. Thus, because of processing the kinetic curves, 
we obtained estimates of the proportion of the non-crystallized part 
of the sample and the diffusion coefficient, the value of which was 
used to determine the time for the full completion of the process. The 
dependence of these parameters on the size of crystalline blocks is 
shown in Figure 20. It can be seen from these data that as the size of 
crystalline blocks increases, the value of the estimate of the fraction 
of non-crystallized material decreases, and the time required for the 
complete completion of the process associated with sorption on this 
part of the granule material increases. The latter effect is associated, in 
our opinion, with a reduction in the specific surface of the pore space, 
which occurs as the granule structure is compacted. It should be noted 
that the absorption of copper ions continues even after saturation of 
the non-crystallized part of the samples. Thus, after the contact of 
these samples with a solution of copper sulfate for a day, the total 
capacity exceeded the values obtained from assessing the fraction of 
non-crystallized material. The value of this additional capacitance, 
related to the fraction of crystallized material, is shown in Figure 20. 
As expected, this value decreases sharply with the increasing size of 
the crystalline blocks.

Figure 20 Estimates of the proportion of the sample’s non-crystallized part, 
the diffusion coefficient, and the time to complete the process. Results of a 
kinetic experiment obtained on cadmium sulfide. 

1 - The proportion of non-crystallized material. 2 - The proportion of 
crystallized material. 3 - Time of full completion of the process. 

Influence of geometric factors on the solution 
of diffusion problems
Effect of granule size

To study the effect of the size of sorbent granules on the stage of 
ion diffusion in the pore space, we investigated the dependence of the 
sorption rate on the granule size. The experiments were carried out with 
cationic fractions obtained by sieving. The experimentally obtained 
curves for the case of sorption of lithium ions Li+ from a solution with 
a lithium concentration of 0.001 M at pH 9.5 and 25 °C are shown in 
Figure 21 (indicated by dots). As seen in Figure 21, the ion exchange 
process rate increases significantly with a decrease in the granules’ 
size. Under these conditions, the influence of the polyfunctionality 
of the cation exchanger does not significantly affect the kinetics of 
ion exchange. The exchange isotherm may be represented in the 
form corresponding to the Langmuir isotherm. Previous studies 
have shown that the exchange constant in the Langmuir isotherm 
equation for these conditions is 4.07, i.e., the isotherm has a convex 
form. The process was a controlled stage of internal diffusion. The 
sorbent granules were assumed to be spherical. Like the model used 
to describe the kinetics of ion exchange on nickel hydroxide, the 
difference in the self-diffusion coefficients of ions was considered. 
Therefore, the kinetics of the exchange of lithium ions on a cation 
exchanger with a lithium-manganese spinel structure, as well as of 
halide ions on granular nickel hydroxide, is described by equation 
(23) with initial and boundary conditions of the form (12)-(14). Since 
the obtained granulate fractions were characterized by a significant 
width (Δ≈0.47 for a fraction of 0.088–0.25 mm), the polydispersity of 
the material within the fractions was considered when processing the 
experimental data. The distribution within the fractions was assumed 
to be uniform, except for the fraction smaller than 0.088 mm, where 
a uniformly decreasing distribution was used. Such an assumption 
was made reasonably based on the relative weights of the obtained 
fractions. Approximation of experimental data (shown in Figure 21 
by solid lines) confirms that the process is controlled by internal 
diffusion under these conditions. The effective diffusion coefficients 
obtained for each fraction are close to each other and lie within the 
experimental error. Studies of the sorption kinetics of sodium and 
potassium cations depending on the size of the granules also confirmed 
the mechanism of the ion exchange process corresponding to internal 
diffusion. Therefore, under these conditions, the stage of ion sink into 
the solid phase does not manifest itself kinetically.

Figure 21 Kinetic curves of lithium sorption by cation exchanger depend 
on the granules’ size. Points are experimental data, and curves are calculated.

Granule size: 1 – less than 0.088 mm; 2 - 0.088-0.25 mm; 3 - 0.25-0.5 mm

The influence of the shape of the granules

Granulates of inorganic sorbents often have a shape different from 
that of simple bodies (spheres, cylinders, disks, etc.), for which the 
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analytical solutions of the equations discussed in the previous section 
were obtained. Approximation of kinetic curves for such granules 
is possible using solutions obtained for particles of any simple 
shape. The most natural choice, in this case, seems to be spherical 
particles since their geometric dimensions are characterized by 
only one parameter - the radius. However, this raises the question 
of how suitable these solutions are to them and how the equivalent 
size should be determined to minimize the systematic errors that 
arise when determining the diffusion coefficient. According to,13 
the equivalent diameter of a particle can be defined as the diameter 
of a sphere having the same volume as the given particle or as the 
diameter of a sphere having the same surface area. In the first case, the 
equivalent diameter is expressed by formula (66), and in the second - 
(67). Another definition of the equivalent diameter is also possible as 
the diameter of a sphere, the specific surface of which is equal to the 
particular surface of the particle (68).
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Where: Vg and Sg - volume and surface of the granule, respectively.

We used the shape factor value (69), which determines the degree 
of deviation of the particle shape from spherical. The shape factor 
was determined through the ratio of effective diameters by the 
methodology described in:13
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(69)

In the approximation of the kinetic curve obtained for a non-
spherical particle by the equation of the calculated curve calculated 
for a spherical particle, the value of the effective radius should be 
substituted into the latter. On the other hand, having an analytical 
solution of the diffusion equation for some non-spherical particles 
can be approximated by a solution for a spherical particle with an 
appropriate selection of the radius of this particle. Let us consider 
the results of such approximations by comparing the solutions of 
the internal diffusion equation for a cylinder with permeable bases 
and a sphere. The equation for the kinetics of internal diffusion for a 
cylinder with permeable bases is given by equation (70):14
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Where: 
( )2 1

2
mπ

µ
−

=  – number expansion parameter; nσ - 

positive roots of the first-order Bessel function; 
2

D tFo
r
⋅

=  - Fourier 

criteria; α - conversion degree; D - diffusion coefficient; T - time; m, 
п - summation indices; χ- the ratio of the height of a cylinder to its 
diameter; R - cylinder radius.

As a parameter that determines the shape of the cylinder, we used 
relation (71), which varied from 0.05 to 0.95 with a step of 0.05.

D
D H

γ =
+                                                                                     

(71)

Where: D, H - diameter and height of the cylinder, respectively.

For these parameters, the values of the Fourier criteria were 
calculated, which provide conversion values from 0.05 to 0.95 with 

a step of 0.05. The grid of values of the Fourier criteria obtained in 
this way was used to calculate the degrees of conversion according to 
formula (72), and the proportionality coefficient was chosen in such a 
way as to ensure the best match between the degrees of modification 
calculated by equations (70) and (72).
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(72)

Where: sphα - degree of transformation for sphere; cilFo - Fourier 
criterion for a cylinder; γ – shape factor (71).

It should be noted that the range of change in the value of the 
particle shape coefficient obtained in this case covers these values, 
characteristic of many granular materials (Table 4). The dependence 
of the root-mean-square deviation of the curves calculated by 

equations (70) and (72) on the value of the parameter D
D H+

is 

shown in Figure 22. As seen from Figure 22, for parameter values α 
less than 0.8, the root-mean-square error of approximating the kinetic 
curve for a cylinder by the equation for a sphere does not exceed 1% 
of the maximum degree of conversion. The most significant errors 
are observed for flat discs (large D/H ratios). At the same time, the 
approximation error is minimal for elongated cylinders and even 
fibers, and in many cases of practical analysis of kinetic results, it 
can be neglected. This situation is especially actual for granules of 
irregular shape or having a shape close to ellipsoidal. The value of 
the coefficient of proportionality in equation (41) determines the 
ratio between the radius of the cylinder, for which the initial kinetic 
curve was calculated, and the sphere’s radius corresponding to the 
approximating curve. In this case, we can speak of an effective radius 
determined from the kinetic curve. The ratio between this radius and 
the radius of the corresponding cylinder is determined by expression 
(73).

k cR R γ=                                                                                        (73)

Figure 22 The efficiency of approximation of the kinetic dependence through 
the shape factor.

Table 4 Shape coefficients for particles of various materials13

Material name Shape coefficients
Hard coal, metallurgical coke 0.45
Aluminosilicates, silica gels, alumina gels 0.5
Anthracite 0.67
Crushed stone, gravel, mountain sand 0.7
Sand rounded pebbles 0.75
activated carbon molded 0.8

Where: Rk - effective radius determined from the kinetic curve; Rc 
- cylinder radius; γ - coefficient in the equation (71).
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At the same time, the values of the effective radius for the cylinder 
can also be calculated using formulas (66) - (68). The ratios of the 
radii determined by equations (66) - (68) and calculated by expression 
(73) depending on the value of the parameter α are shown in Figure 
23.

Figure 23 Radius ratios and shape factors depend on the parameter α.

As can be seen from this figure, from the point of view of the 
interpretation of the kinetic experiment, equation (37) gives an 
adequate estimate of the effective radius of the granule. It can be 
recommended for universal evaluation of the results of kinetic 
experiments on natural objects. Overall, the data obtained indicate 
that the solutions to the diffusion problem obtained for spherical 
particles can be a reasonably effective approximation for non-
spherical granules, at least in those cases where the unevenness of the 
particles is not too large.

Influence of polydispersity effects

Almost all methods of manufacturing granular ion-exchange 
materials lead to the production of granulates of a polydisperse 
composition with a greater or lesser degree of heterogeneity. In this 
section, we consider how the polydispersity of the granulometric 
composition of granules affects their kinetic characteristics. We used 
the Gamma distribution (74) as a model distribution:
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Where: d – sorbent particle size, gamma distribution argument 
(d>0); α, β - distribution parameters (α>0, β>0); Г(α) - full Euler 
gamma function.

The distribution width was defined as the ratio of the distribution 
variance to the square of its mean value. The values of the parameters 
α and β, corresponding to different distribution width values, and the 
same average values of these distributions, equal to one, are presented 
in Table 5. Differential density curves for these model distributions 
are shown in Figure 24.

Table 5 Parameters of model distributions

Distribution width, 
variance, D 0.6 0.5 0.4 0.3 0.2 0.1

Parameter α 1.667 2 2.5 3.333 5 10

Parameter β 0 0.5 0.4 0.3 0.2 0.1

Mathematical 
expectation 1 1 1 1 1 1

Figure 24 Model Gamma distributions according to Table 12.

The degree of conversion for polydisperse samples was calculated 
by the formula (75):
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Where: αpd(T) - degree of conversion for a polydisperse sample; 
α(R,T) - degree of transformation for a sphere of radius R, p(R) - 
distribution density.

The calculation results are shown in Figure 25. As can be seen from 
this figure, with an increase in the distribution width for polydisperse 
systems with the same value of the average particle radius, the rate of 
the initial stage of the process increases, and the final stage decreases.

Figure 25 Influence of distribution width (D) on sorption kinetics for 
polydisperse materials.

The initial segments of the kinetic curves, just as in the case of 
spherical particles (Figure 5 and 6), are more or less linear in the 
coordinates 1a tα = , which is a characteristic feature of internal 
diffusion processes. As shown by our calculations, the slope  of 
this dependence at α→0 turned out to be proportional to the value 
determined by relation (76):
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(76)

The correlation between the slope of the experimental dependence 
of α on t  and the value from relation (76) is shown in Figure 26. The 
data obtained show that at kinetics corresponding to the mechanism 
of internal diffusion, the shape of the kinetic curve obtained for a set 
of particles with a wide size distribution differs significantly from the 
kinetic curves for monodisperse fractions. Using the kinetic equation 
for a monodisperse sorbent with a particle size averaged by formula 
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(76) can be effective only for the initial section of the kinetic curve 
shown in Figure 27.

Figure 26 The ratio of the initial slope of the kinetic curve a1 to 
1

avR  for 
polydisperse and monodisperse sorbent.

Figure 27 Kinetic curves for different particle size distribution widths.

Let us consider one more aspect related to the polydispersity of 
samples of sorption materials and the methodological problems of 
determining their kinetic characteristics. The granule size is necessary 
to calculate the diffusion coefficient from experimental data. Since 
granulometric fractions of finite width are always used for the kinetic 
experiment, estimating the average size is very important. Indeed, 
if determining the average size leads to a biased estimate, then the 
analysis results will be distorted due to a systematic error. The results 
show that granulates with a narrow granulometric composition are the 
most preferable in terms of ensuring the completeness of the sorbent 
loading. The simplest way to isolate narrow fractions of granular 
material is sieving. However, even in this case, one must deal with a 
polydisperse sample, the dimensions of which are distributed within 
the sizes of the cells of fine and coarse sieves between which the 
selection was made. Even in the simplest case of a unimodal granule 
size distribution in a narrow fraction, the fraction of particles of the 
minimum size can be less than the fraction of particles of the maximum 
size and vice versa, depending on the position of the fraction relative 
to the distribution mode shown in Figure 28.

The arithmetic mean of the sieve mesh sizes can be used to 
determine the average granule size. However, such a solution leads 
to specific errors, the magnitude of which we will try to estimate 
in this section. The kinetic curve obtained in the experiment can be 
considered the result of averaging the kinetic curves for granules of a 
specific size, feeling the weight of their fractions (77).
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Where: α(t)- experimental kinetic curve; α(r,t) - kinetic curve 
for particle size r; P(r) - a mass fraction of particles of size r in the 
investigated fraction; ,min maxr r - minimum and maximum fraction 
sizes, respectively. This integral curve can be more or less accurately 
approximated by a curve for a monodisperse sample with some 
effective size ( )'teffrα . An estimate of the effective radius can be 
obtained in various ways. For example, as such an estimate, you can 
use the average value of the minimum and maximum granule size 

,mun maxR  (78). Another estimate corresponds to the averaging of the 
specific surface of the granulate, which can be obtained using the 
formula (79).
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Where: Rmin and Rmax - minimum and maximum sieve size, 
respectively; P(r) - distribution function.

Figure 28 Granule size distribution.

To resolve the issue of the most efficient methods for estimating 
the effective radius, consider the results of model calculations. The 
size distribution of granules in the narrow sieve fraction of the 
granulate was characterized by the relative width of this fraction 
( )relR∆  determined by expression (80) and the asymmetry (Asym) of 
the distribution defined by expression (81).
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Where: Rmin and Rmax - maximum and minimum sieve size; P(r) - 
particle size distribution function.

The P(r) dependence in the range from rmin to rmax was considered 
linear. It is easy to see that the relative width of the distribution 
can vary from 0 to 1, with smaller values corresponding to more 
homogeneous fractions. The asymmetry value can range from -1 to 
1, and the equality of the mass fractions of fractions corresponding 
to the minimum and maximum sizes is achieved when the value of 
the asymmetry factor is 0. The image of such distributions is shown 
in Figure 29.

The use of a polydisperse sorbent fraction in a kinetic experiment 
can lead to two consequences:

I. As a result of averaging according to formula (77), some 
distortions of the experimental kinetic curve may occur compared 
to the calculated one, even if the model fully corresponds to the 
system under study.
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II. Estimating the kinetic parameters, for example, the diffusion 
coefficient, may be biased due to the inequality of the average 
size of the fraction and the effective size of the particles in it.

Figure 29 Mass distribution depends on the skewness factor. a - 3D plot 
of particle size distribution function P(r). b – contour plot of particle size 
distribution function P(r). rrel - relative particle radius: ; 
. Asym - distribution asymmetry, according to expression (81).

We carried out a series of model calculations to determine the 
quantitative estimates of these effects. The equation of the kinetics of 
internal diffusion on spherical sorbent grains for a linear isotherm was 
chosen as a model. The dependence of the degree of conversion on 
time, in this case, is given by formula (82):
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Where: α(R,t) - degree of conversion; D - diffusion coefficient; 
t - contact time; R - granule radius; n - summation index. Using this 
formula, we calculated the averaged kinetic curves using equation (77) 
for various relative fraction width and distribution asymmetry values. 
These curves were approximated by equation (82). The parameter 
R in this equation was varied to ensure the minimum discrepancy 
between the averaged kinetic curve and that calculated from this 
equation. The results of these calculations are shown in Table 6 and 
7. As seen from Table 6, the root-mean-square relative approximation 
error, expressed in fractions of the degree of conversion, only exceeds 
1% for a large distribution width. In addition, the maximum relative 
approximation error is achieved for symmetric distributions. It 
follows that averaging over particle sizes does not lead to a significant 
distortion of the shape of the kinetic curve. At the same time, for 
comprehensive and asymmetric distributions, there may be significant 
discrepancies between the estimates of the effective radius and the 
average sieve size (Table 7), which can exceed 10% under certain 
conditions. Moreover, this situation is typical for distributions where 
the proportion of small particles is higher than that of large particles. 
One more feature related to the asymmetry of distributions should 
be kept in mind. The fact is that when selecting fractions of small 
size (less than the most probable size of granules), the asymmetry 
factor will be positive (P(rmax)>P(rmin)), and for large fractions, it will 
be negative. Consequently, for small granule sizes, the estimate of 
the diffusion coefficient will be overestimated, and for large granules, 
it will be underestimated. To recalculate the average sieve sizes 
into effective ones, considering the nature of the distribution of the 
granulate, we propose an empirical expression (83)

( )( )  1 0.06375  S  1 6.2807  kin ssavR R Asym= ⋅ + ⋅ ⋅ + ⋅                            
(83)

Table 6 Relative approximation error

Distribution 
skewness

Relative distribution width

0.0 0.1 0.2 0.3 0.4 0.5

-1.0 0.00000 0.00032 0.00117 0.00246 0.00412 0.00613

-0.5 0.00000 0.00051 0.00198 0.00444 0.00791 0.01248

0.0 0.00000 0.00058 0.00235 0.00544 0.01001 0.01625

0.5 0.00000 0.00054 0.00226 0.00537 0.01017 0.01698

1.0 0.00000 0.00038 0.00167 0.00417 0.00824 0.01432

Table 7 The ratio of the effective value of the radius to the average sieve size

Distribution 
skewness

Relative distribution width

0 0.1 0.2 0.3 0.4 0.5

-1.0 1. 000 1.039 1.075 1.109 1.141 1.171

-0.5 1. 000 1.018 1.033 1.044 1.052 1.057

0.0 1. 000 0.998 0.992 0.982 0.969 0.952

0.5 1. 000 0.978 0.953 0.924 0.892 0.857

1.0 1. 000 0.959 0.915 0.869 0.821 0.77

Where:  - “kinetic” radius;  - average network radius; 
S - distribution width (formula (80)); Asym - distribution skewness 
(formula (81)).

A comparison of the kinetic radii obtained by approximating the 
kinetic curves for polydisperse samples with the calculation results 
by formula (83) is shown in Figure 30. Thus, the empirical equation 
(83) is a reasonably effective tool for calculating corrections to the 
effective particle radius due to polydispersity.

Figure 30 The ratio of kinetic radii to average sieves.

Fractal and hierarchical structure of porous sorption 
materials

The basis of the structure of sorption materials is colloidal gels. 
According to its structure, the gel is a system of interconnected solid 
particles, and the volume occupied by the particles is a small part of 
the volume of the gel. Almost all its volume falls on voids - pores. 
The characteristic size of individual gel particles is usually 2÷200 nm. 
The simplest gel model can be built from spherical particles of the 
same size, and the connection between them is carried out where the 
particles practically touch each other. Any piece of gel that includes 
many individual particles within the framework of the model under 
consideration is a fractal cluster.52 The term “fractal” was introduced 
by Benoit Mandelbrot in 1975 and became widely known with the 
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release of his book “The Fractal Geometry of Nature” in 1977.53 The 
word “fractal” is used not only as a mathematical term. A fractal can 
be called an object with at least one of the following properties and 
a non-trivial structure at all scales. This is the difference between 
fractals from regular figures (such as a circle, an ellipse, or a graph 
of a smooth function). A small fragment of a familiar figure on a 
large scale will look like a fragment of a straight line. For a fractal, 
zooming in does not lead to a simplification of the structure; that is, on 
all scales, we will see an equally complex picture:

I. The fractal material is self-similar or approximately self-similar.

II. It has a fractional dimension or a metric dimension that is superior 
to the topological dimension.

In the synthesis of sorbents, such a structure is determined by its 
formation mechanism. The formation and growth of the gel are due to 
the adhesion of individual particles moving in solution, which leads to 
the formation of growing aggregates. Following one of the properties 
of a fractal aggregate, the average mass density of a substance in a 
sphere of radius R is equal to:

( )
3

0
0

DfrR
R

ρ ρ
−

 =  
                                                                    

(84)

Where: 0ρ - the density of the material of the particles that make 
up the aggregate; 0r - the average radius of the particles that formed the 
aggregate; D f - fractal dimension of the aggregate. 

The presented dependence means that with an increase in the 
allocated volume, voids of an ever larger size will appear, leading 
to a decrease in the total relative volume occupied by the substance. 
In an actual sample, the fractality of the structure will manifest itself 
at limited sizes r R� . The boundary size can be recovered from 
formula (85):
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Where: ρ - average density of a substance in a gel. 

This pattern is determined by the nature of transforming particles 
into a gel. In the first stage, they form small clusters, which, when 
combined, grow. If the aggregates are small, their association is 
determined by the nature of the motion in the solution, and they have 
the lowest dimensional fractal structure. However, when aggregates’ 
sizes become close to R , they will occupy the entire space. The 
subsequent association of aggregates will be associated with their 
proximity and not with the nature of the movement. Therefore, at 
distances r R� , the fractal aggregative structure disappears, and 
a large aggregate becomes, on average, homogeneous. However, 
scale invariance remains, and the formed gel retains its fractal 
character at the level of primary particles. Consider as an example 
a purely geometric model of filling space with points represented as 
two variables, x and y. At any point in time, the instantaneous values 
of these variables define a point on the XY plane. The appearance 
of new points over time forms a specific structure. The relationship 
between variables will determine the form and type of this structure. 
For example, if the x variable is unrelated to the y variable and time, 
we will not see any stable structure. With enough points, they will 
evenly fill the XY plane (Figure 31).

If there is a relationship between x, y, and time, then some regular 
structure will be visible: in the simplest case, it will be some curve 
or maybe a more complex structure (Figure 32).  The same is true 
for three- and more-dimensional space. If there is a connection or 

dependence between all variables, the points will form a curve; if 
there are two independent variables in the set, then the points will 
form a surface; if there are three, then the points will fill the three-
dimensional space, etc. Without the connection between the variables, 
the points will be uniformly distributed across all available dimensions. 
It follows that having determined how the points fill the space. We can 
judge the nature of the connection between the variables. Moreover, 
the shape of the resulting structure (lines, surfaces, three-dimensional 
figures, etc.), in this case, does not matter. The fractal dimension of 
this structure is essential: a line has a dimension equal to 1, a surface 
has a dimension of 2, a volume structure has a dimension of 3, etc. 
It can usually be considered that the value of the fractal dimension 
corresponds to the number of independent variables in the data set. 
The size can be a fractional value, which can happen if the resulting 
structure turns out to be a fractal - a self-similar set with a non-integer 
dimension. Hence, in the case of gel formation during the synthesis of 
sorbents, it can be concluded that the value of the fractal dimension 
makes it possible to determine how the gel structure was organized. If, 
for a three-dimensional space, the experimentally determined fractal 
dimension is within 1 2Df< < , then a branched chain structure is 
formed. A porous openwork frame is formed if its value falls within 
the range of 2 3Df< < . The fractal dimension 2Df ≅  indicates the 
formation of layered structures.

Figure 31 Lack of interaction and correlation between x and y - uniform 
filling of the plane.

Figure 32 There is some correlation between x and y.
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Let us determine the possible values for the fractal dimension 
during the formation of gels from colloidal solutions formed during 
the synthesis of sorbents. The above equations (84) and (85) reduce 
to the pattern described in,54,55 which relates the number of particles 
in a fractal aggregate to the ratio of its radius and the radius of the 
particles that formed it. For calculations, it is more convenient to use 
an equation that relates the properties of sols to the fractal dimension 
of aggregates and gels formed during synthesis. We represent this 
equation in the following form:

Df
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=

                                                                                
(86)

Where: n – the number of monodisperse particles in a sphere 
with a diameter agrD - inside a sphere circumscribed around one of 
the emerging aggregates. In the case of the formation of an infinite 
aggregate, agrD - corresponds to the size of the whole system. pd
– sol particle diameter. Df – fractal dimension. To estimate the 
maximum fractal dimension that can be formed in the ash of a given 
mass of particles (M) in a volume with a diameter agrD  and a given 
mass of a sol particle ( )pm , we write an expression for calculating 
the number of particles per unit volume of the colloid solution. After 
substituting the values of the corresponding quantities, we obtain the 
following:
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Where: m – mass concentration of sol. ρ  – sol particle density. 
Combining equations (86) and (87), we obtain:

3D f
agr

p

Dm
dρ

− 
=   
                                                                             

(88)

This equation is very similar to equation (84). However, equation 
(88), in contrast to equation (84), does not describe the structure 
of the formed gel. It describes the asymptotic structure that can be 
formed from a given sol during its gelation. Thus, it illustrates that 
asymptotic structure with a fractal dimension, above which no other 
structure can start from a sol with provided properties. That is, this 
fractal dimension, being a function of time t, is the value to which it 
tends during the formation of the gel structure, during the aggregation 
of the colloid solution, and the formation of the gel structure, after 
passing the sol-gel transition point:

( ) lim  D ( )f ft
D t

→∞
∞ =

                                                                       
(89)

Thus, the fractal dimension can differ for the same system 
at different scales and times, which is also clearly seen from the 
analysis of formal kinetic models of particle aggregation processes 
presented in.54,55 It can be seen from these data that by the time of 
gelation, only about half of the sol particles entered the structure of 
the infinite aggregate formed because of this process. That is, the 
fractal dimension of the gel at the time of gelation has not yet reached 
the critical value that the formed gel will have - equation (89).  From 
equation (88), one can obtain an equation describing the dependence 
of the limiting value of the fractal dimension of the gel structure that 
can be formed from a given sol:

lg lg3
lg lgf

agr p

mD
D d

ρ−
= +

−
                                                                 

(90)

The results of calculations carried out according to equation (88) 
for sols with different particle sizes and mass concentrations are 
shown in Figure 33–36. The results obtained indicate the relationship 
between the structural parameters of the gels. They apply to wet, 

freshly obtained gels and materials that have undergone syneresis 
and drying, that is, to the structure of directly inorganic ion-exchange 
materials. Figure 35 shows that for coordination numbers from 3 to 12, 
there is an almost direct relationship between the coordination number 
of particles in the structure and its fractal dimension. Moreover, this 
dependence is much weaker for coordination numbers less than n<2.6. 
The fractal dimension drops catastrophically when approaching the 
critical value of the coordination number (equation (94)). Therefore, 
using equations (91) and equation (93), we can calculate the 
dependence of the limiting value  of the fractal dimension on the 
coordination number of particles in globular packing. The results of 
such calculations for particles of different diameters are presented 
in Figure 35, 36. In,56 the relationship between the packing porosity 
of spherical particles in a globular structure was demonstrated, 
depending on the coordination number of these particles. Based 
on this, the dependence (91) of porosity α (%) on the coordination 
number n of spherical particles was calculated:

B
n

α α∞= +
                                                                                                   

(91)

Figure 33 Dependence of the limiting value ( )fD  of the fractal dimension on 
the sol particles’ diameter at different sol mass concentrations (g/l).

Figure 34 Dependence of the limiting value ( )fD  of the fractal dimension on 
the mass concentration of the sol for sol particles of different diameters (nm).

The coefficients in equation (91), for the dimension dim(α)=%, 
have the following values: α∞=7,763±0,016; B=221,95±0,45, 
R2=0,9959. Since the equation of this curve has a singular point, it is 
possible to calculate the limiting value of the coordination number at 
which the volume of voids will be equal to 100%: 

100
100n

B
α∞−

=
                                                                         

(92)

Value n100=2.406±0.010. The physical meaning of this value lies 
in the fact that in the structures of dispersed nanosystems with a 
coordination number less than this value, there is no rigid structure 
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of the framework of the material assembled from individual particles. 
Below this coordination number, the particles are assembled only 
into separate chain structures that are not interconnected, in which 
coordination number 2 is realized. We carried out calculations on the 
selection of a correlation dependence to describe the dependence of 
porosity on the coordination number of packing of spherical particles, 
which gives the maximum correlation coefficient. The maximum 
correlation coefficient was obtained for the dependence of the 
following form:

'

0( )
B

n n
α α∞

′
= +

−                                                                            
(93)

The coefficients in equation (93), with the conditions, as in the 
previous case, were: 'α∞ =0,14964± 0,00019, 'B =310,10±0,40, 

0n =-0,7750±0,0010, 2R = 0,9975. For this dependence, it is also 
possible to calculate the limiting value of the coordination number, at 
which the volume of voids will be equal to 100%: 

100 0 '(100 )
Bn n
α∞

′
= +

−                                                                    
(94)

Hence, substituting the values obtained for expression (93), we 
get the following value n100=2.331±0.006. It is more difficult to 
interpret these results. However, they give a more accurate result and 
somewhat expand the range of coordination numbers, up to which 
forming a rigid framework is still possible, with an openwork packing 
of spherical particles. The values of the fractal dimensions of the gels, 
obtained from the measurement of the gelation time of the sols, show 
that during gelation, first, chain structures are formed, which form 
the pore structure of the sorption material. The dependence on the 
limiting value of the fractal dimension  on the diameter of the sol 
particles for packings of globules with different coordination numbers. 
Figure 35 indicates a weak effect of particle sizes on the geometry 
of their packing during the sol-gel process, which is especially true 
for particles larger than 10 nm, which can be associated with large 
particles’ inertia and steric hindrances in their interaction. The data 
thus obtained can be further applied to analyzing the structural 
features of various sorption materials having a spherical structure.

Figure 35 Dependence of the limiting value of the fractal dimension fD , on 
the coordination number of particles, in globular packing, for sol particles of 
different diameters (nm).

Influence of fractality effects on the kinetics of sorption 
processes

We note one more feature concerning determining the size of 
irregularly shaped granulates. As shown above, the most successful 
estimate of the effective size of the granules is the value calculated 
by the formula (37), which includes the surface of the granule and 
its volume. With sieve classification, granules are selected based 
on linear size. If we assume that the surface is proportional to the 

second power of the linear size and the volume is proportional to the 
third. The classification according to the linear size seems sufficient. 
However, there are objects for which the relationships between linear 
dimensions, surface, and volume differ. It was shown in [15] that the 
relationship between the linear size of an aggregate (cluster) composed 
of particles of finite size is generally determined by expression (64):

0

D
RN
R

ρ
 

=  
                                                                              

(95)

Where: N - cluster mass characteristic; ρ - density per particle; 
R - linear cluster size; R0 - the linear size of a single particle; D – 
fractal dimension of the cluster. Aggregation processes can lead to 
the formation of clusters of fractional dimensions. For example, the 
processes of aggregation of proteins,16 colloidal particles of gold,17 
and silicon dioxide18 lead to the formation of just such particles. We 
also observed similar effects for granulates of inorganic sorbents. For 
example, Figure 37 shows the dependence of the average granule 
mass on the average sieve fraction size for the FS-3 sorbent. The slope 
of this dependence in logarithmic coordinates is 2.39±0.01. Thus, the 
mass of granules does not grow in proportion to the third power of 
the linear size but much more slowly. Similar fractal connections also 
exist between other geometric characteristics of the granulate of a 
given sorbent. For example, consider the results of measurements of 
the perimeters and areas of projections performed for the FS-3 sorbent 
(Figure 38) and the approximation of these results by a power law. As 
the regression analysis of the data presented in Figure 37 showed, the 
value of the projection area increases in proportion to the perimeter 
growth to the power of 1.67 ± 0.24 and not in proportion to the square 
of this value. Thus, the fractality effect can be a source of systematic 
errors in determining the diffusion coefficients. The effective particle 
size, by analogy with formula (77), can be calculated using the data on 
the perimeter and area of their projection by expression (96):

4.  
eff

SD
L

=
                                                                                 

(96)

Where: S - granule projection area; L - granule projection perimeter.

Figure 36 Dependence of the limiting value ( fD ) of the fractal dimension 
on the diameter of the sol particles for packings of globules with different 
coordination numbers.

These estimates lead to a quadratic dependence of the time of 
complete mining of the granule on the square of its diameter, in contrast 
to average sieve sizes (Figure 39). The regression analysis of the data 
presented in Figure 39 showed that the slope of the dependence ln(Tk) 
on ln(D) using the average sieve size is 1.47 ± 0.16. In the case of 
estimates using formula (96), we obtain 1.85 ± 0.28; in the first case, 
there is a significant deviation from the quadratic dependence. In the 
second case, such a deviation is absent.
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Figure 37 Correlation of a granule’s average mass (mav) and its average sieve 
size (Rssav).

Figure 38 Dependence of the particle projection area on its perimeter.

Figure 39 Dependence of the time of full completion of the exchange process 
on the linear dimensions of the granules for the FS-3 sorbent.

1 - Average sieve size. 2 - Estimate by formula (96).

Conclusion
The theoretical analysis makes it possible to reveal some features 

of the sorption kinetics of inorganic ion exchange materials. Firstly, 
the above results indicate that when working in the region of concave 
isotherms, a significant slowdown of the mass transfer process is 
possible even on very permeable granules. This conclusion suggests 
that reversing sorption processes involving highly selective sorbents 
using displacement desorption may encounter difficulties associated 
with maintaining high concentrations of the displacing agent and 
the low rate of the exchange process. Second, the rate of sorption 
on inorganic ion exchange materials depends in a certain way on 
the concentration of absorbed ions in the external solution. This 
dependence should manifest itself even in the absence of external 

diffusion inhibition. In this case, the question of the distribution 
of electrolytes between the pore space of the granule and the free 
volume of the solution is fundamental. Thirdly, the rate of mass 
transfer processes with the participation of inorganic sorbents can 
be affected not only by the permeability of granulates but also by 
inhibition at the level of homogeneous sections of the solid phase. 
The simplest way to detect such deceleration is to compare the data 
of the kinetic experiment with the theoretical results related to the 
model that ignores deceleration at the level of homogeneous sections 
of the solid phase. However, in such a comparison, it is necessary 
to consider possible distortions that arise due to the finite width of 
particle size fractions, the discrepancy between the particle shape and 
the calculated one, etc. This work expands the existing knowledge 
about the mechanisms of implementing ion-exchange processes 
on inorganic ion-exchange materials of various types. One of the 
promising applications of inorganic ion exchange materials is their 
use for direct lithium extraction (DLE) from lithium-poor natural and 
technological brines. Researchers can use the data and techniques 
used in this work to model and predict the modes of conducting 
current technical processes for extracting lithium and other rare and 
trace elements from natural and industrial waters.
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