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Introduction
The Soil Conservation Service Curve Number (SCS-CN) method2,3 

is popularly used for estimation of direct runoff for a given rainfall 
event from small agricultural watersheds. Most of the commercial 
watershed models such as CREAMS,4 AGNPS,5 EPIC,6 and SWAT7 
employ this methodology because of its simplicity, ease of use, lesser 
input data requirements, use of major runoff producing characteristics, 
widespread acceptance, and significant infrastructure and institutional 
momentum for this procedure within Natural Resource Conservation 
Service (NRCS).8

The conceptual/empirical SCS-CN model of hydrologic abstraction 
requires basic descriptive inputs smoothly converted into numeric 
values of CN9 reflecting the runoff potential of the watershed.10 The 
method takes into account the major runoff producing watershed 
characteristics, such as soil type, land use/ treatment, surface condition, 
and antecedent moisture conditions (AMCs). Since its inception, 
the method has been applied in several areas other than originally 
intended, as for example long-term hydrologic simulation,4,11‒23 
prediction of infiltration & rainfall-excess rates and hydrograph 
simulation,24 sediment yield modeling,25-29 partitioning of heavy 
metals,30,31 determination of subsurface flow,32 urban hydrology and 
rainwater harvesting,33,34 water quality,35 and distributed hydrologic 
modeling25,36,37 using GIS and remote sensing. For determination of 
subsurface flow, Yuan et al.32 modified the SCS-CN technique based 
on analogy derived from the plot of accumulated subsurface drainage 
flow against accumulated infiltration yielding subsurface drainage 
flow to have started after some infiltration had accumulated and 
the relationship to have become asymptotic to a line of 45° slope, 
quite similar to the popular SCS-CN rainfall-runoff relationship. The 
procedure was testd using the data of Little Vermilion River (LVR) 
watershed in East-Central Illinois.

Strange (1892)1 studied the available rainfall and runoff in border 
areas of the present-day Maharashtra and Karnataka States of India 
and obtained runoff to rainfall ratios as functions of indicators 
representing catchment characteristics. These catchments were 

classified as Good, Average, and Bad according to their relative 
magnitudes of runoff coefficient. Table 1 shows the runoff coefficients 
(%) for different monsoon rainfall values. Here, it is presumed that the 
SCS-CN concept is applicable to rainfall-runoff data of any duration 
derived from a drainage area irrespective of its size. 

As seen from Table 1, the runoff coefficient (C) (Col. 2) (ratio 
of direct surface runoff, Q, to rainfall, P (Col. 1)), increases with 
increasing P, and vice versa. Since, from SCS-CN concept.10 CN 
increases as C increases for a given amount of rainfall, CN should 
increase with P as does C. However, while describing the behavior 
of watersheds as complacent or standard, CN is shown to decrease 
with P whereas violent watersheds exhibit a decrease in CN with P up 
to a certain extent and afterwards, CN increases with P sharply.38 To 
circumvent the problem, a modification is proposed to the proportional 
equality of the SCS-CN methodology10 and the S-CN mapping 
relationship. Thus, the primary objective of this paper is to resolve 
this issue and evaluate the proposed models using Strange data.

Methodology
Existing SCS-CN methodology

	 The SCS-CN method is based on the water balance equation 
and two hypotheses expressed, respectively, as:

                                a
P I F Q= + +                                       (1a)

                                  (P )a

Q F
I S

=
−

                                          (1b)

	                                aI Sλ= 	                                           (1c)

Where P, total precipitation; Ia, initial abstraction; F, cumulative 
infiltration excluding Ia; Q, direct runoff; and S, potential maximum 
retention or infiltration. The current version of the SCS-CN method 
assumes coefficient of initial abstraction (λ) equal to 0.2 in routine 
applications. λ can range from 0 to ∞.10 Combining Eqs. (4) and (5) 
leads to
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Eq. (2) is valid for P≥Ia; Q=0 otherwise. Eq. 2a is the general form 
(designated as Model 1) of Eq. 2b (designated as Model 2), which 
is the popular form of the existing SCS-CN methodology. The only 
parameter S can range 0≤S≤∞, and therefore, it is mapped onto a 
dimensionless curve number CN, varying from 0≤CN≤100, as:

                                     

25400
254S

CN
= − 		                (3)

Where S is in mm. CN=100 represents a condition of zero potential 
maximum retention (S=0), that is a completely non-abstracting 
impermeable watershed. On the other hand, CN=0 represents 
(S=∞), that is an infinitely abstracting watershed. Mishra and 
Singh10 described CN as an index of runoff potential of a watershed 
corresponding to 10 inches (=254mm) of rainfall. This logic is also 
supported by the fact that routine RS-GIS applications frequently 
distinguish two watersheds in terms of CN for their runoff-producing 
(or hydrologic) potential, ignoring the fact that CN also depends on 
rainfall. Thus, it is more rational to describe the runoff producing 
potential of a watershed for a particular rainfall amount.

S can be determined from Eq. 2b as:

                          5(P 2 Q ( (4Q 5 ))S Q P= + − +                              (4)

Notably, the SCS-CN method excludes the effect of slope on 
runoff yield and, in turn, on the resulting CN. 

Significance of λ

λ (Eq. 1c) actually represents the ratio of initial abstraction (Ia) to 
parameter S. Since Ia included climate-dependent evaporation, soil-
dependent initial infiltration, surface feature (land use)-dependent 
surface detention, and vegetal (land cover) interception, and all 
these affect the surface runoff potential described by CN (or S), and 
therefore, it is not out of order to describe it as a function (or fraction or 
multiple) of S (or CN). S, in turn, is mapped on to CN, and therefore, 
it is not out of order to foresee the dependency of λ on CN (or C) 
that varies with P.38 Because of larger variability, Ia=0.2S relationship 
has been the focus of discussion in literature and modification since 
its inception. Aron et al.39 suggested λ≤0.1 and Golding40 provided λ 
values for urban watersheds depending on CN as λ=0.075 for CN≤70, 
λ=0.1 for 70<CN≤80, and λ=0.15 for 80<CN≤90. Ponce & Hawkins41 
suggested that the fixing of λ as 0.2 might not be the most appropriate 
number, and that it should be interpreted as a regional parameter. 
Hawkins et al.42 found that a value of λ=0.05 fitted the data better and 
therefore was more appropriate for use in runoff calculations.

Mishra & Singh43 suggested that λ can take any non-negative 
value. Mishra & Singh24 developed criterion for the applicability 
of SCS-CN method based on runoff coefficient (C) and λ variation. 
They defined the applicability bounds for the SCS-CN method as for 
λ≤0.3, Ia/P≤0.35 and C≥0.23. Since P relies on climate/meteorological 
characteristics of the region, Jain et al.17 proposed a more general 
non-linear Ia-S-P relation, and Mishra et al.44 used Ia-S-M relationship 
based on the hypothesis that Ia largely depends on the initial soil 
moisture (M). Thus, there exists a sufficient scope for improvement.

Significance of CN 

Mishra and Singh10 described the significance of CN as a degree of 
saturation (Sr) of an initially completely dry watershed due to 254mm 
(=10inches) of rainfall. For Ia=0, Eq. 1a can be recast as,

                       

100
100

1 /
P

F
CN

S S P
= =

+
		                  (5)

Which describes the P-dependent CNP for a given S. For P=254mm 
(=10inches), CNp=CN as described by Eq. 3. It is worth noting that 
the direct use of CN in the proportionality hypothesis (Eq. 1b) for 
computing Q is restricted, because CN, by definition, corresponds to 
the 254mm base rainfall amount, not to the actual amount. Therefore, 
Eq. 2 with Ia=0 should be resorted to computation of Q for a given 
rainfall amount. 

In terms of CN, the runoff factor C (=Q/P) can be defined from Eq. 
2 (for Ia=0) as:

                               

1

254 100
1 1

C

P CN

=

+ −
 
 
 

	                           (6)

Figure 1 depicting the variation of C with CN and P shows that 
for a given P, as C increases, CN also increases; for a given C, CN 
increases with decreasing P; and for a given CN, C increases as P 
increases. The first condition is realizable when the watershed 
characteristics change, as for example, from agriculture to urban or 
vice versa. The last condition of a given CN, implying a particular 
type of watershed with certain wetness or of specific runoff potential, 
is realizable as C increases with P, as shown by Strange data described 
later. However, the second condition is hard to realize for the reason 
that C is forced to remain constant with changing P, which it actually 
can’t, and therefore, CN (which is a constant) is forced to exhibit a 
decreasing trend with increasing P for enabling C to remain at a fixed 
value in Eq. 6. Such behaviour can also be explained as follows.

Re-writing Eq. 4 in terms of C and P, it can be shown that S (or 
SP) is a function of both C and P. C increases with P1 and S (or SP) is 
directly proportional to P (Eq. 4). Thus, S (or SP) will increase with 
increasing P, and vice versa, and, from Eq. 3, CN is inversely related 
to S (or SP). It leads to the inference that CN is inversely related to 
P. Such unrealistic behaviour has led to several misunderstandings/
misinterpretations. To circumvent the problem, a modification is 
needed in the SCS-CN application procedure, as follows. From given 
P-Q data, compute SP from Eq. 4, and CNP from Eq. 5. Here, subscript 
‘P’ to S or CN refers to their correspondence with P. Similarly, CN 
corresponding to 254mm of P can be defined as CN10 or simply CN 
from Eq. 3. Since it represents the runoff potential of a watershed 
for a fixed amount of rainfall, it is a better indicator to predict the 
comparative effect of watershed characteristics.

Description of watershed behaviour
Following Hawkins,38 Strange data (Table 1) is plotted in Figure 

2. In this figure, solid lines show the variation of CN (derived from 
Eqs. 4 and 3) with P for varying C (=Q/P) values. As seen, for any 
fixed C-value, CN decreases with P, as described above. The dotted 
lines correspond to three watersheds described by Strange as Good, 
Average, and bad watersheds depending on their runoff generating 
potential. A Good watershed exhibits a high and Bad a low runoff 
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generating potential, and Average falls in between. Thus, consistent 
with the literature, let the Bad watershed be described as Complacent, 
Average as Standard, and Good as violent watershed. Notably, for a 
watershed to be violent, CN should increase rapidly with increasing P.

As seen from Figure 2, the complacent type behaviour of the 
watershed closely follows the line C=0. C can however be equal to 
0 under three situations: (a) P≤0.2S, (b) P=0, and (c) S=∞. Here, the 
second situation is clearly improbable for an event to occur (as P is 
non-negative) whereas the first and last ones are most likely to prevail. 
Thus, for C=0, P has always to be less than 0.2S, and therefore, has to 

follow C=0 line. In other words, complacent behaviour is realizable 
only if it is an absolutely zero runoff potential watershed, an idealized 
situation. On the other hand, CN values are seen in the same figure 
to range (12.63, 68.23). Similarly, the data of the standard watershed 
exhibits C to vary from 0.001 to 0.45 and CN values range (16.63, 
68.23). The data of Good, Average, and Bad watersheds exhibit C 
to vary in the range (0.001, 0.6), (0.001, 0.45), and (0.001, 0.3), 
respectively. Up to the reasonably high rainfall of 254mm (=10inches), 
C-values range (0.001, 0.043), (0.001, 0.032), and (0.001, 0.021), 
respectively, indicating all watersheds to be low runoff producing 
watersheds.

Figure 1 Variation of runoff factor (C) with curve number (CN) and precipitation (P, inch). 1inch=25.4mm.

Table 1 Strange Table of total Monsoon rainfall and the percent runoff coefficients1

Total monsoon 
rainfall (mm)

Runoff coefficient (%)
Total monsoon 
rainfall (mm)

Runoff coefficient (%)

Good 
catchment

Average 
catchment

Bad 
catchment

Good 
catchment

Average 
catchment

Bad 
catchment

1 2 3 4 1 2 3 4

25.4 0.1 0.1 0.1 787.4 27.4 20.5 13.7

50.8 0.2 0.2 0.1 812.8 28.5 21.3 14.2

76.2 0.4 0.3 0.2 838.2 29.6 22.2 14.8

101.6 0.7 0.5 0.3 863.6 30.8 23.1 15.4

127 1 0.7 0.5 889 31.9 23.9 15.9

152.4 1.5 1.1 0.7 914.4 33 24.7 16.5

177.8 2.1 1.5 1 939.8 34.1 25.5 17

203.2 2.8 2.1 1.4 965.2 35.3 26.4 17.6

228.6 3.5 2.6 1.7 990.6 36.4 27.3 18.2

254 4.3 3.2 2.1 1016 37.5 28.1 18.7
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Total monsoon 
rainfall (mm)

Runoff coefficient (%)
Total monsoon 
rainfall (mm)

Runoff coefficient (%)

Good 
catchment

Average 
catchment

Bad 
catchment

Good 
catchment

Average 
catchment

Bad 
catchment

279.4 5.2 3.9 2.6 1041.4 38.6 28.9 19.3

304.8 6.2 4.6 3.1 1066.8 39.8 29.8 19.9

330.2 7.2 5.4 3.6 1092.2 40.9 30.6 20.4

355.6 8.3 6.2 4.1 1117.6 42 31.5 21

381 9.4 7 4.7 1143 43.1 32.3 21.5

406.4 10.5 7.8 5.2 1168.4 44.3 33.2 22.1

431.8 11.6 8.7 5.8 1193.8 45.4 34 22.7

457.2 12.8 9.6 6.4 1219.2 46.5 34.8 23.2

482.6 13.9 10.4 6.9 1244.6 47.6 35.7 23.8

508 15 11.3 7.5 1270 48.8 36.6 24.4

533.4 16.1 12 8 1295.4 49.9 37.4 24.9

558.8 17.3 12.9 8.6 1320.8 51 38.2 25.5

584.2 18.4 13.8 9.2 1346.2 52.1 39 26

609.6 19.5 14.6 9.7 1371.6 53.3 39.9 26.6

635 20.6 15.4 10.3 1397 54.4 40.8 27.2

660.4 21.8 16.3 10.9 1422.4 55.5 41.6 27.7

685.8 22.9 17.1 11.4 1447.8 56.6 42.4 28.3

711.2 24 18 12 1473.2 57.8 43.3 28.9

736.6 25.1 18.8 12.5 1498.6 58.9 44.4 29.4

762 26.3 19.7 13.1 1524 60 45 30

Figure 2 Plot of Strange data in the existing CN perspective.

Table continue
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Following the present understanding on the existing S-CN 
relationship (Eq. 3), the behaviour of the complacent watersheds can 
be described as follows. All three watersheds closely follow C=0 line 
until P exceeds Ia. It will exist under all circumstances in nature as 
the direct surface runoff always starts with zero, and therefore, every 
watershed has to follow it and, in turn, has to be complacent in nature. 
When P exceeds Ia, the behaviour of watershed is actually reflected 
by the increase in both P and P-dependent C, rather than CN (which 
is for P=254mm). The gradual and abrupt rate of rise in C leads to 
the description of watersheds as standard and violent, respectively. At 
what P-magnitude, this rise will be experienced in a watershed will 
depend on watershed characteristics affecting the runoff generating 
potential. 

Figure 3 shows CN-P and CNP-P relations to describe the 
behaviour of three types of watersheds described by Strange. As seen, 
CNP exhibits a more rational behaviour than does CN with increasing 

P for all three datasets; as P increases, CNP also increases and C (not 
shown) also increases, consistent with the above notion. 

The methodology proposed (designated as Model 3 for CN and 
Model 4 for CNp) can be described in steps as follows:

a.	 Determine S or SP from Eq. 4 using the observed P-Q dataset 
for a watershed.

b.	 Determine CN from Eq. 3 and CNP from Eq. 5.

c.	 Develop a relationship between CN or CNP and P for the 
watershed. 

d.	 For known P, derive CN or CNP from the respective relation for 
field application. 

Application of these models is demonstrated using Strange (1892) 
data.

Figure 3 CN and CNP versus P relations for strange datasets. Note: Strange data best fitted with CN using 2 period moving averages.

Modification to the formulation of SCS-CN 
methodology

The basic formulation of SCS-CN methodology is modified 
keeping in view the decreasing trend of CN with P in Figure 3. To this 
end, the proportional equality hypothesis is re-written and revised as 
follows:

                           

( ) Pa
eo

F P I
S S

Q
α−−

= = 		                (7)

Where So is the initial storage space (or potential maximum 
retention when P=0) (mm) and α is a decay coefficient (mm-1). The 
right hand side of Eq. 7 is consistent with the work of Mishra and 
Singh,10 the storage space actually decreases as rainfall grows with 
time. Taking Ia=0, Eq. 7 can be reformulated as:

                              

2

P
o

P
Q

P S e α−=
+

		               (8)

Which is the revised model formulation. From Eq. 8,

                                 

1o
P

S C

P C e α−

−
= 		                               (9)

Following Eq. 5, revised CN can be described as follows:

                 

100 100

1 / 1 ( 1)

P

o P
o

C e
CN

S P e C

α

α

−

−
= =

+ + −
	             (10)

For CNo≥0, C≥0 and/or P≤∞, which is justifiable. For CNo≤100, 
C≤1, which is again reasonable. However, Eq. 10 shows CN to 
decrease with P, but for constant C, a physically unrealizable condition. 
When C=0, CNo=0 and when C=1, CNo=100. In addition, α=0 in Eq. 
8 implies that So does not vary with precipitation (or time),10 which 
contrasts the fundamental decay behaviour of infiltration with time. 
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Thus, Eq. 8 presents a more realistic formulation than the existing 
one. It is designated as Model 5 in the forthcoming text.

Model 5 (Eq. 8) can be further (coarsely) approximated to 

	                        
2

(1 )o

P
Q

P S Pα
=

+ −
	                            (11)

                                              Or

	

                      

2 2

(1 )o o o

P P
Q

S P S aP Sα
= =

− + + 	          (12)	 

Where a=1– αSo. Eq. 12 is the Modified SCS-CN model proposed 
by Mishra and Singh (1999). From Eq. 12,

		          
1

(1 )
oS C

P P Cα

−
=

−
		             (13)

As C→0, So/P→ ∞, and as C→1, So/P→ 0. From Eq. 5,

	                       	                            

                                                                                                  (14)

As C→0, CN→0, and as C→1, CN→100, consistent with the 
general notion that CN increases with C, and vice versa. Similar to 
Model 5, CN can be shown to decrease with P, but for constant C, 
a physically unrealizable condition. Furthermore, for CN to be non 
negative (the applicability criterion),

                  1       1PC Q and Pα α α= ≤ ≤ 	             (15)

Eq. 11 or Eq. 12 is designated as Model 6 in the forthcoming text.

Application
As above, Strange described the watersheds as Good, Average, and 

Bad according to their relative magnitudes of yield or runoff. It is again 
worth emphasizing here that the Strange monsoon season data (Table 
1) was used considering that the SCS-CN concept is applicable to 
any duration (including seasonal) rainfalls. The correlation equations 
of best fitting lines relating percentage C are expressed as Strange 
(1892):

For Good catchment:

                                   ( ) 5 2 2 250 ,              %   7 10 –  0.0003 ,   0.9994For P mm C P P R−< = × =                                (16a) 

                                                                                                                                                                                                                        (16b)

 
                                                                                                                                                                                                                       (16c)

For Average catchment:

                                                                                                                                                                                                                          (17a)

                                                                                                                                                                                                                       (17b)

 
                                                                                                                                                                                                                          (17c)

For Bad catchment:

                                                                                                                                                                                                                      (18a) 

                                                                                                                                                                                                                         (18b)

                                                                                                                                                                                                                      (18c)

100(1 )

1

P C
CN

PC

α

α

−
=

−

( ) 2 250 760 ,      %   0.0438  –  7.1671,   0.9997For P mm C P R< < = =

( ) 2 250 760 ,      %   0.0438  –  7.1671,   0.9997For P mm C P R< < = =

( ) 5 2 2 250 ,               %   6 10 –  0.0022   0.1183,   0.9989For P mm C P P R−< = × + =

( ) 2 250 760 ,       %  0.0328  –  5.3933,   0.9997For P mm C P R< < = =

( ) 2 760 1500 ,     %   0.0333  –  5.7101,   0.9999For P mm C P R< < = =

( ) 5
=

2 2 250 ,               %   4 10 –  0.0011   0.0567,   0.9994For P mm C P P R−< = × +

( ) 2 250 760 ,      %   0.0219  –  3.5918,   0.9997For P mm C P R< < = =

( ) 2 760 1500 ,    %   0.0221  –  3.771,   1.0For P mm C P R< < = =

Where C(%) is percentage; runoff coefficient, ratio of seasonal 
runoff to seasonal rainfall in percent (non-dimensional), P, monsoon 
season rainfall in mm, and R2, coefficient of determination.

Since there is no appreciable runoff due to rains in dry (non-
monsoon) period, the monsoon season runoff volume has been taken 
as annual yield of the catchment.1 This table can be used to estimate 
the monthly yields also in the monsoon season. It is however to be 
used with the understanding that the table relates cumulative monthly 
rainfall since the beginning of the season and the corresponding 
cumulative runoff. 

Considering the above Strange data as observed, the use of both 
CN and CNP concepts is shown to describe this data in Figure 3. As 
seen, CN first decreases with increase in P and then after a certain 
extent (i.e. P=254mm =10inches), CN increases with increasing P. 
Thus, the same CN-concept shows two different types of behaviour 
with increasing P. It is resolved by plotting CNP against P (Figure 
3). This data has been used for performance evaluation of 6models 
described above and summarized in Table 2.

The model application results are shown in Table 3 and Figures 
4A-4C. As seen, Model 1 is the generalized form of the existing SCS-
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CN model, i.e. Model 2. CN for both the models is derived from Eq. 
3. Both Models 3 & 4 are based on Eq. 2b and Eq. 4. The former 
employs Eq. 3 for CN determination whereas the latter one employs 
Eq. 5 for CNp determination. CN- and CNp-values for these models 
are derived from the following relations (Figure 3):

For Model 3,

 CN=3E-06P-0.0571P+43.225       (for Good watershed)        (19a)

 CN=134.89P-0.301                           (for Average watershed)   (19b)

 CN=227.29P-0.413	                (for Bad watershed)          (19c)

These CN relations can be further improved/simplified significantly 
by using CNP in place of CN (for Model 4),

CNp=0.0343P+16.435	            (for Good watershed)             (20a)

CNp=0.0267P+17.06	            (for Average watershed)        (20b)

CNp=0.0192P+17.491	            (for Bad watershed) 	          (20c)

In Eqs. 10 & 14, 0≤CN or CNp≤100. Model 5 is based on Eq. 8, 
and Model 6 on Eq. 11. The former is the general form of the latter. 

CNo for both these models is derived from Eq. 3 so as to bring all CN-
values at one P (=254mm = 10inch)-scale.

As seen from Table 3, Good watershed has the highest runoff 
coefficient (C) (derived from mean values of rainfall and runoff), Bad 
the lowest, and Average in between these two. Such order of runoff 
generating potential is described by CN (or CNo) values derived (for 
the same P=254mm) from all model applications. All the models 
generally performed extremely well on all watersheds. Model 3 
performed the poorest. λ of Model 1 is seen to have ranged from 0.07 
(for Bad watershed) to 0.29 (for Good watershed). Thus, λ appears 
to be mean C (or CN)-dependent. It is of paramount importance in 
field applications as a proper prescription of average C-dependent 
λ-value can enhance the results significantly. λ→0 appears to be 
reasonable for Bad type of watersheds, largely for the reason that such 
watersheds exhibit very high S (or low CN) value to describe a certain 
value of initial abstraction (Ia=λS). Similarly, a relatively high λ-value 
is proper for Good type of watersheds as these watersheds exhibit 
very low S (or very high CN) values. Bias in Table 3 is presented 
to indicate whether a model over (positive)- or under (negative)-
predicted the runoff. 

Table 2 Model formulations/procedures

Model 
No. Equations Parameter(s) Procedure

1 2a, 3 λ, S or CN from Eq. 3 Optimize parameters

2 2b, 3 S (or CN from Eq. 3) Optimize parameters

3 2b, 3, 4 CN a) Determine S from Eq. 4 for each P-Q dataset for a watershed.

(for P = 254mm) b) Determine CN from Eq. 3.

c) Develop a relationship between CN and P for the watershed (Fig. 4) for future 
applications. 

d) Derive CN from P, then S from Eq. 3, and then Q from Eq. 2b.

4 2b, 4, 5 CNp a) Determine Sp from Eq. 4 for each P-Q dataset for a watershed.

(for P = 254mm) b) Determine CNp from Eq. 5 or 10.

c) Develop a relationship between CNp and P for the watershed (Fig. 4) for future 
applications. 

d) Derive CNp from P, then Sp from Eq. 5 or 10, and then Q from Eq. 2b.

5 8, 10 α, So (or CNo from 
Eq. 3)

Optimize parameters

6 11, 14 α, So (or CNo from 
Eq. 3)

Optimize parameters

Table 3 Performance evaluation of various models

Sl. 
No.

  No. of 
P-Q 
events

Mean 
rainfall 
(mm)

C=Mean runoff/
Mean rainfall

Model 1 Model 2

Watershed 
Type λ S (CN) 

(mm)
Eff. 
(%)

Bias 
(mm)

S (CN) 
(mm)

Eff. 
(%)

Bias 
(mm)

1 Good 60 774.7 0.38 0.29 746.42 98.88 6.34 869.49 98.69 6.73

(25.39) (22.61)

2 Average 60 774.7 0.28 0.17 1311.94 99.61 1.84 1240.12 99.49 -2.39

(16.22) (17.00)
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Sl. 
No.

  No. of 
P-Q 
events

Mean 
rainfall 
(mm)

C=Mean runoff/
Mean rainfall

Model 1 Model 2

Watershed 
Type λ S (CN) 

(mm)
Eff. 
(%)

Bias 
(mm)

S (CN) 
(mm)

Eff. 
(%)

Bias 
(mm)

3 Bad 60 774.7 0.19 0.07 2666.84 99.92 -0.03 1737.76 98.11 -0.26

            (8.69)     (12.75)    

Sl. no.
Model 3 Model 4

CN (for P=254mm) Eff. (%) Bias (mm) CNP (for P=254mm) Eff. (%) Bias (mm)

1 30.66 94.9 -40.05 25.15 99.98 -0.27

2 25.48 96.98 -8.78 23.84 99.95 0.05

3 23.09 99.82 -4.49 22.37 99.82 0.46

Sl. No.
Model 5 Model 6

α (mm-1) So (CNo) (mm) Eff. (%) Bias (mm) α (mm) So (CNo) (mm) Eff. (%) Bias (mm)

1 0.00099 4620.69 99.99 0.89 0.00045 3197.53 99.94 3.02

(5.21) (7.36)

2 0.00069 5300.71 98.98 1.18 0.00038 4294.18 99.94 2.17

(4.57) (5.58)

3 0.00047 7176.06 99.97 1.1 0.00029 6430.47 99.95 1.46

    (3.42)       (3.79)    

Table continue

Figure 4A Evaluation of Models 1-6 by comparing the computed runoff 
(mm) with the observed runoff (mm) of Good watershed (Strange, 1892). LPF 
represents the line of perfect fit. NSE, Nash and Sutcliffe Efficiency.

Figure 4B Evaluation of Models 1-6 by comparing the computed runoff (mm) 
with the observed runoff (mm) of Average watershed (Strange, 1892). LPF 
represents the line of perfect fit. NSE, Nash and Sutcliffe Efficiency.
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Figure 4C Evaluation of Models 1-6 by comparing the computed runoff 
(mm) with the observed runoff (mm) of Bad watershed (Strange, 1892). LPF 
represents the line of perfect fit. NSE, Nash and Sutcliffe Efficiency.

The application results of Models 3 and 4 indicate that the latter 
is in general an improvement over the former one and, therefore, 
assert that the pre-derived CNp-P relationship for a watershed can 
be an improved alternative for runoff predictions using Model 2. In 
addition, as shown in Figure 5, the use of Eq. 5 better describes the 
Good, Average, and Bad watersheds just based on CNp or C-values. 

Model 5 is a general form of Model 6, and it is also exhibited by 
their application results. Both the parameters α and So, respectively, 
exhibit consistently decreasing and increasing trends with Good to 
Average and to Bad watersheds. In addition, Eq. 8 of Model 5 when 
plotted for a specific value of α, the resulting C-CNo (Figure 6) and 
CNo-P (Figure 7) relations more rationally describe the behavior of 
the three types of watersheds. 

Thus, in order of preference all the models can be preferred 
for generally all watersheds. Among these, Model 3 is the least 
preferable. For improved applications, mean C-λ can be prescribed 
for a watershed. Model 4 can be preferred if CNp-P relations are 
established. Model 6 along with mean C-α relation can also be a 
substitute for all watersheds.

Conclusions
The following can be derived from the present study:

i.	 The description of three Good, Average, and Bad watersheds 
based on decreasing CN trend with increasing P is physically 
not justifiable as it contrasts the increasing trend of C (or CN) 
with increasing P. 

ii.	 The proposed CNp-P relation (Eq. 5) describes more rationally 
the behaviour of the above three watersheds. 

iii.	 The proposed modification to the application approach of the 
popular SCS-CN methodology (i.e. Model 4) is more rational, 
as it describes consistent C-CN-P behavior, and has the efficacy 
to describe the watershed behavior more scientifically and 
resolve the issue of CN decaying with increasing rainfall (P). 

iv.	 The proposed Models 5 & 6 have the power to physically 
describe the behavior of three watersheds and are equally 
suitable for these watersheds. 

v.	 Model 1 and Model 2 performed extremely well for all the 
watersheds. However, the prescription of mean C-λ (Model 
1) and/or CNp-P (Model 4) relationships for a watershed can 
improve the application results significantly.45‒47 

Figure 5 C-CNp relationship (Model-4 consisting of Eqs. 2b, 4, and 6) for description of watershed behaviour.
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Figure 6 C-CNo relationship for Model 5 (α=0.0001).

Figure 7 Variation of CN with P (mm) for three types of watersheds for Model 5 with α=0.0001.
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