
Submit Manuscript | http://medcraveonline.com

Introduction
Presently, world is facing the problem of environmental pollution, 

which is associated to the air, water and soil pollution. This is mainly 
due to a continually rising of population and increase of demands for 
source water. Due to rapid civilization and industrialization, many 
pollutants such as various toxic compounds, dyes, sulfates are dumped 
into water.1,2 Water is an indispensable source of life. It is the major 
solvent, for all biochemical processes. The discharged waste water 
from the industries contains the organic, inorganic and microbial 
contaminants that are hazardous to human, aquatic and biotic life. The 
removal of organic contaminants form water is of prime importance.3 
Degradation of pollutants is of paramount importance as far as potable 
water is concerned.

There are different methods are used for the degradation of 
organic pollutants present in the environment, however, among them, 
advanced oxidation processes (AOP’s) has been demonstrated to be 
effective for the degradation of organic pollutants. It is a useful for 
complete mineralization of organic pollutants into water and carbon 
dioxide with the help of highly reactive radicals (.OH and O2

.- ).4,5 
These radicles are highly reactive and unstable because one of the 
electron is unpaired. By interaction of these radicles with organic 
pollutants convert hazardous pollutants into less hazardous products. 
This review focus on the basics of photocatalysis and effective 
utilization of solar spectrum by doping and preparing the stratified 
films.

Photocatalysis
The phenomenon of photocatalysis was first discovered by 

Honda–Fujishima, which is based on the photo-electrochemical water 
splitting using titania.6 Photocatalytic degradation which come under 
AOPs that involves interaction of semiconductor material with light 
and oxygen, water molecules are responsible for the production of 
radicals. It involves the absorption of photons having energy (hν) 
equal to or greater than the band gap energy (Eg) of a semiconductor 
material, then there is generation of electron hole pairs.7,8 Upon 
the incident of light on semiconductor, electrons (e-) jump from its 
valence band (VB) to conduction band (CB), thus there is concurrently 
formation of a hole (h+) in the valence band (Eq. (1)). But in most of 

cases the holes and electrons can recombine and discharge the energy 
in the form of heat (Eq. (2)). These photogenerated e- and h+ then react 
with available oxidants and reductants, respectively, to form unstable 
radicals (Eqs. (3) and (4)) which further react with the organic 
pollutant and subsequently mineralize it to carbon dioxide and water, 
forming a number of intermediate products (Eqs. (5) and (6)). These 
reactions can be presented as follows1
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The overall photocatalytic process involves three major steps: 

i.	 Absorption of light by the semiconductor to generate of electron-
hole pairs, 

ii.	 Charge separation and migration to the surface of the semiconductor 
and 

iii.	 Surface reaction for the water reduction or oxidation reactions.9 

Photocatalysis phenomenon is based on the redox reactions 
take place at the surface of semiconductor material. Chiefly, it is a 
green root for the mineralization of organic compound present in the 
environment. It takes oxygen from air and process take place at ambient 
temperature and pressure. It provides a wide range of applications, 
notable amongst them being effluent treatment containing organic 
pollutants and water splitting. In photocatalysis, the photocatalytic 
activity depends on the ability of the catalyst to create electron–
hole pairs, which are then taking part in a redox reaction to generate 
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Abstract

Intensive research work has been carried out for the degradation of organic pollutants 
present in the environment using the metal oxide semiconductors. For the same, TiO2

, 
ZnO semiconductor photocatalysts has been widely used, but the main drawback 
of these materials is able to utilize the UV spectrum only, due to its high band gap 
property. Since solar spectrum contain a significant proportion of the visible light, it is 
imperative that for an active and versatile utilization of the incident solar energy. The 
visible light active photocatalysts with a relatively smaller band gap are developed. 
However, smaller band gap often results in rapid recombination and conversion of 
photonic energy into non-usable heat. The main aim of this review is provide different 
ways for utilization of solar spectrum using different catalyst with relatively smaller 
band gap.
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hydroxyl, superoxide radicals, which are able to undergo secondary 
reactions. The main drawback of this process is low efficiency due to 
recombination of charge carriers.10 

Different ways of enhancing photocatalytic 
efficiency

There are different ways of enhancing photocatalytic efficiency, 
which are given below

Photoelectrocatalysis

The enhancement in photocatalytic efficiency is done by applying 
bias of 1.5V, which results into separation of photo generated 
charge carriers and increase the efficiency. Hunge et al. studied the 
photoelectrocatalytic degradation of terephathalic acid using ZnO 
photocatalyst under UV light illumination.11

By Doping

By doping the suitable element. Mohite et al. studied the 
degradation of benzoic acid using Au doped TiO2 films and shows 
that enhancement in degradation efficiency by doping.12 Mahadik et 
al. studied the degradation of phthalic acid using Al doped ZnO thin 
films.13

Using Stratified films

By making the layered films of metal oxide semiconductor for 
avoiding the recombination and transfer of photo generated electrons 
and holes Hunge et al,15 studied the degradation of oxalic acid using 
WO3 and stratified WO3/TiO2 thin film and found that increase in 
degradation efficiency in stratified WO3/TiO2 thin films because of 
transfer of electron transferred from conduction band TiO2 to the 
conduction band WO3 and holes from valance band of WO3 to valance 
band of TiO2, thus minimizing the recombination of charge carriers.15

Sonocatalytic technique

Using the ultrasound and catalyst. Hunge et al.,16 studied the 
sonocatalytic degradation of brilliant blue using WO3 and stratified 
WO3/ZnO photocatalyst.16

Conclusions
Advanced oxidation process proved to be effective way for 

the degradation of organic pollutants present into water sources. 
The photocatalytic efficiency depends upon the ability of catalyst 
(semiconductor) to generate electron hole pairs and therefor generate 
the hydroxyl and superoxide radicals. 
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