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 Introduction
Probable Maximum Precipitation (PMP) is termed as 

“theoretically the greatest depth of precipitation for a given duration 
that is physically possible over a given size storm area at a particular 
geographic location at a given time of the year”.1 Originally PMP was 
defined as the Maximum Possible Precipitation (MPP), the value of 
precipitation that could not be exceeded. However, MPP values have 
been exceeded2 and because of the complex atmospheric interactions 
contributing to extreme precipitation its name was changed to PMP. 
Since the 1940s, the National Weather Service has published a series 
of Hydrometeorological Reports (HMRs) that describe procedures for 
deriving the PMP values for the majority of United States. The main 
assumption in these procedures for PMP calculation is that there is the 
optimum combination of available moisture in the atmosphere and 
efficiency of the causative mechanism in the storm that will cause 
maximum precipitation. PMP is used for the calculation of Probable 
Maximum Flood (PMF) which is then used for the design of hydraulic 
structures, such as large dams and spillways, flood control works, 
levees, and nuclear power plants. PMF is used to size the hydraulic 
structures such that the risk of their failure is minimized.3 There are, 
however, uncertainties involved in the PMP estimation regardless 
of the method used to calculate it. An upper bound with zero risk is 
not realistic, as there have been instances where storms in USA have 
exceeded the PMP estimates.4 and the recorded floods have exceeded 

the estimated PMFs.5 

PMP has been used to predict the volume, timing, and peak flow 
of extreme flood events all around the world. Designers obtain PMP 
values from hydrometeorological reports (HMRs) produced by the 
U.S. Bureau of Reclamation (USBR) and National Weather Service 
(NWS). However, these HMR documents provide generalized 
precipitation values that are not basin specific. Hence, they tend to 
represent the largest PMP values across broad regions. Many site-
specific studies in the past have produced different PMP values 
compared to HMR published values.6 There is therefore a need 
to determine basin-specific PMP which can then be used for the 
calculation of PMF. Such PMP can incorporate basin characteristics 
that are specific to the local topography and climate. Hence, to quantify 
the uncertainty with PMP, frequency analysis of extreme precipitation 
is needed. The objective of this study therefore was to estimate PMP 
values for different durations and locations in the Brazos River basin 
using the statistical method and determine the associated uncertainty. 
To achieve this objective, specific objectives were to: 

I.	 Construct a basin-specific enveloping curve of frequency factor 
for the Brazos River basin and calculate the PMP values by 
using it and construct the Isohyetal maps of PMP values; 

II.	 Determine the best-fit probability distribution for extreme 
precipitation and the probability of exceedance of PMP values 
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Abstract

Probable Maximum Precipitation (PMP) is used for estimating Probable Maximum 
Flood (PMF) which, in turn, is used for design of major hydraulic structures, such 
as dams and spillways, flood protection works, and nuclear power plants. One 
of the commonly used methods for estimating PMP is the statistical method, also 
called Hershfield method that entails computation of frequency factor, adjustment of 
the frequency factor, construction of an enveloping curve of the frequency factor, 
estimation of PMP, choosing a probability distribution of PMP, and determination 
of the return period of PMP. There are, however, uncertainties associated with the 
PMP values estimated using the statistical method. This study determined the PMP 
values for different durations using the statistical method with data from the Brazos 
River basin, Texas. It was found that significant uncertainty in the PMP estimates 
can occur with the use of enveloping curve of the frequency factor and the number 
of stations involved in its construction. Hershfield’s curve yielded higher frequency 
factor values by 16% for 1 hour duration, by 17.9% for 6 hour duration, and by 22.1% 
for 24 hour duration. In comparison with basin-specific values, the PMP values from 
the Hershfield enveloping curve were 16.8% higher for 1-hour duration, 18.5% for 
6-hour duration, and 23.4% for 24-hour duration. For most of the Brazos River basin 
the return period of the PMP values was in the range of 1000 to 3000 years which 
was less than the range of 103 to 106 years reported in HMR 51, showing the degree 
of risk associated with the PMP values. Therefore, a basin specific-enveloping curve 
is suggested. From 24 commonly used statistical distributions and 5 goodness of fit 
tests, the Burr Type XII distribution was found to be the best frequency distribution 
for describing PMP. It was observed that the return period obtained from the Burr type 
XII frequency distribution was not significantly higher than that obtained from the 
hydreometeorological reports (HMRs) of National Weather Service and other studies. .
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for the Brazos River basin; and 
III.	 Compute the uncertainties associated with the statistical 

estimates of PMP values arising from the uncertainties due to 
the choice of probability distribution, number of stations, and 
frequency factor, and calculate the return periods of calculated 
PMP values.

The paper is organized as follows. With the introduction in 
this section, methods of computing PMP are discussed in section 
2, followed by a discussion of uncertainty in PMP in section 3. 
The methodology of estimating PMP is discussed in section 4 and 
computation of the return period of PMP is outlined in section 5. The 
paper is concluded in section 6. 

Methods for computing PMP
There are different methods used for PMP estimation which can 

be categorized as hydrometeorological and statistical. Common 
hydrometeorological methods7‒9 include moisture maximization 
method,10 storm transposition method, generalized method, storm 
separation method11 and depth-area-duration method. Common 
statistical methods include the Hershfield method and its variants 
and multifractal method. In moisture maximization the storm 
precipitation is increased to such a value that is consistent with the 
maximum moisture in the atmosphere for the storm location and 
the month of occurrence.12 The basic assumptions in this method 
are that precipitation is linearly related to precipitable water. Storm 
transposition is associated with the relocation of storm precipitation 
within a region that is homogeneous relative to terrain and 
meteorological features important to the particular storm rainfall. 
The basic assumption here is that a meteorologically homogeneous 
region exists such that a major storm occurring somewhere in the 
region could occur anywhere else in the region. In the generalized 
method, the maximum recorded rainfall depths of rainstorms over a 
large area and adjustment source are made in applying the maximum 
recorded rain depths to a particular catchment.13 The generalized 
method has an advantage of using the maximum recorded rain depths 
for all combinations of area and duration and allowing for almost free 
transposition in space.14,15 used the generalized method to estimate 
the PMP values for catchments of four large dam basins in India. It 
was assumed that the PMP values would result from the optimum 
combination of the available moisture in the atmosphere and the storm 
mechanism efficiency which was indirectly measured by observed 
precipitation. 

Storm separation method is used particularly in orographic 
regions where the storm transposition method is inappropriate. It 
assumes that orographic and convergence rainfall amounts can be 
explicitly determined. The convergence rainfall is referred to as the 
free-atmospheric forced precipitation (FAFP) (HMR, 57). It develops 
PMP in terms of orographic and convergence components, and HMR 
36 is one of the earliest reports which discusses this method. Recently, 
multifractal analysis has been used for PMP estimation. Multifractal, 
also known as multiscaling, is widely used to describe the scaling 
behavior of precipitation and streamflow. Douglas & Barros16 used 
this technique to calculate the physically meaningful estimates of 
maximum precipitation from observations in the eastern United 
States. The multifractal approach has an advantage in that it provides 
a formal framework to infer the magnitude of extreme events, called 
the fractal maximum precipitation (FMP), independently of empirical 
adjustments, at a site specific application of FMP in orographic 

regions. The method is constrained by the length of record, the spatial 
resolution of raingauge network, and the lack of uncertainty estimates. 
Of all the methods the statistical method, often called Hershfield17 
method is more commonly used and can be applied, if long term 
precipitation data is available.18,19 Bruce & Clark20 in Canada and 
Myers21 in the U.S. have shown that the PMP estimates obtained 
by the Hershfield method are too far from those obtained by the 
moisture maximization and storm transposition methods. Wiesner22 
argued that this method expressed the entire rainfall data set in terms 
of statistical parameters. Papalexiou & Koutsoyiannis14 showed that 
the statistical method for estimating extreme precipitation values was 
more consistent with natural behavior and provided a better basis 
for estimation than did moisture maximization. Since the Hershfield 
method is based on average precipitation and standard deviation of 
precipitation, it is similar to the Chow23 frequency factor method, 
expressed as:

		           m n
P X k S= +  		          (1)

where n is the number of annual maximum precipitation values 
corresponding to a given duration, X is the sample mean, 

n
S  is the 

sample standard deviation, and 
m

k  is the frequency factor. Hershfield17 
used 15 as the maximum value of 

m
k  for computing PMP. Later in 

1965, Hershfield 3 found that an upper envelope of 
m

k  had a tendency 
to decrease with increasing precipitation amount. In other words, the 
frequency factor decreases with increasing mean annual maximum 
precipitation. The value of 

m
k  varies from 5 to 20, depending upon 

the precipitation duration and average precipitation.24 This method was 
also used in this study. Hershfield3 analyzed over 95,000 station-years 
of annual maxima belonging to 2,645 stations, about 90% data was 
from the United States and 10% from other parts of the world which 
included some of the heaviest precipitation regions. He then produced 
an empirical nomograph ranging from 5 minutes to 24 hours that have 
been standardized by WMO19 as a basis for estimating PMP.25 Using 
this method, enveloping curves were derived for particular areas and 
durations and these have been used to calculate the PMP values.26,27 
The enveloping frequency factor serves the purpose of transposition. 
Casas et al.26 used the Hershfield method to estimate the PMP values 
for one-day duration and their return periods, and spatial resolution 
over the Catalonia region. The Gumbel distribution with parameters 
estimated by the L-moments method was used to determine the return 
periods of calculated PMP values. They showed that 90% of the PMP 
values had return periods of 104 to 108 years. 

The fundamental element in the Hershfield method is the parameter 
km and different variants of this method estimate this parameter 
differently. For example, Koutsoyiannis & Papalexiou14 proposed 
nomographs for estimating the km value. Lan et al.9 used a standardized 
variable, defined as the maximum deviation from the mean of a 
sample scaled by the standard deviation of the sample to replace the 
km factor and found it to be more reasonable., Koutsoyiannis25 fitted a 
generalized extreme value (GEV) to the frequency factor values for 
the same data set as used by Hershfield and found that the km value 
of 15 corresponded to a 60,000 year return period PMP. This shows 
that there can be a large variation in the value of PMP resulting from 
the frequency factor value. Therefore, this study revisits the PMP 
estimation and its uncertainty. 

Uncertainty in PMP estimation
The uncertainty with different methods for estimating PMP has 

been investigated by several researchers who were mainly concerned 
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with maximizing and transposing actual storms using in-place 
moisture maximization.10,14 Studies focusing on uncertainties in 
the PMP estimates using the statistical method or more specifically 
Hershfield method have been limited. There can be two ways to 
quantify uncertainty in the PMP estimates. First, uncertainty can be 
determined due to uncertainties in the frequency factor, and mean and 
standard deviation of extreme precipitation values. Second, frequency 
analysis of PMP can be used to quantify uncertainty. 

There exist uncertainties in the frequency factor (
m

k ) which 
is accounted for by using an enveloping function of the highest 
frequency factor values. Koutsoyiannis25 pondered whether the 
extreme precipitation data used in the Hershfield method suggested 
a deterministic upper limit of precipitation. He suggested unifying all 
classes of record length and adding the number of occurrences of all 
classes after ignoring the effect of record length on 

m
k . Considering 

m
k  as a random variable, the probability of its non-exceedance 
can be estimated using the Weibull formula, assuming all records 
of standardized annual maximum precipitation 

m
k  represented 

practically the same population. There are also uncertainties in the 
sample mean and sample standard deviation which can affect the PMP 
estimation.28 On the other hand, the uncertainty of PMP values can be 
quantified by frequency analysis of the annual maximum precipitation 
series. The first step is to determine the best fit probability distribution 
for the extreme precipitation series and return periods of PMP values. 
The exceedance probability of PMP values can be used to analyze 
uncertainty. Although the definition of PMP assumes an upper 
bound of precipitation, there are, however, no assigned probability 
level and return period to ‘probable’ events which might exceed 
the upper limits.29 There is the uncertainty of occurrence of such 
extreme events. However, by selecting an appropriate distribution 
for extreme precipitation values and ignoring the concept of upper 
limit, the return period can be calculated for the estimated PMP value. 
Various probability distributions can be used to calculate the return 
periods of maximum precipitation of different durations or calculate 
the return period of extreme precipitation. The Gumbel distribution 
has been commonly used for extreme frequency analysis, because 
maximum annual precipitation series are relatively short, especially 
in developing countries, and outliers are observed. The traditional 
fitting method with the conventional moments, such as mean and 
standard deviation, can result in return periods shorter than the ones 
corresponding to a longer sample containing a large number of years 
of data.26 The coefficient of variation (CV) of the annual maximum 
precipitation series can be adjusted to compensate for the effect of 
outlier.30 

There is a considerable amount of uncertainty associated with 
finding the best-fit distribution for doing frequency analysis. Stations 
having limited quantity of data for frequency analysis introduce 
sampling uncertainty, in particular, due to the presence of outliers, 
which make the estimates of higher order moments (like skewness) 
become unstable.31 For daily time series, Koutsoyiannis32 found that 
the Generalized Extreme Value (GEV) type II (EV2) better described 
hydrological extremes than did the Gumbel distribution. Assuming 
the shape parameter of the EV2 distribution as constant (=0.15) across 
Europe and North America, the distribution fitting was simplified. 
More recently Papalexiou & Koutsoyiannis33 used a three-parameter 
Generalized Gamma (GG) distribution and a four-parameter 
Generalized Beta distribution of the second order (GB2) to 11,519 
daily precipitation records across the globe. Results showed that these 
distributions described almost all empirical records satisfactorily. 
Determining the best fit probability distribution is important to quantify 

the uncertainty in the PMP estimates. Asquith34 analyzed frequencies 
of annual maximum precipitation for durations of 15, 30, and 60 
minutes; 1, 2, 3, 6, 12, and 24 hours; and 1, 2, 3, 5, and 7 days using 
L-moments, like mean, L-scale, L-coefficient of variation, L-skew, 
and L-kurtosis. He found that the generalized logistic distribution, 
using L-moment ratio diagrams, was an appropriate probability 
distribution for modeling the frequencies of annual maxima for 
durations of 15 minutes to 24 hours; whereas the generalized extreme-
value distribution was appropriate for durations of 1 to 7 days.34 
However, the results were only based on the L-moments ratio and 
included only a few distributions, like generalized logistic distribution 
and generalized extreme value (GEV) distribution, generalized Pareto 
distribution, and Pearson Type III distribution. To our knowledge, the 
best-fit probability distributions for different durations like 2, 3, 6, 12, 
24 hours have not been determined for the Brazos River basin. 

Therefore, the question arises: “What are the PMP estimates for 
Brazos River basin and what is the uncertainty associated with those 
values?” Our study calculated PMP for 1, 2, 3, 6, 12, and 24 hour 
durations and focused on uncertainties due to the use of frequency 
factor enveloping curve, return period of PMP values, and uncertainty 
in the selection of best fit probability distribution. It is also important 
to see how PMP values vary with the given duration and if there is 
any relation between the PMP values and the mean of extreme values, 
PMP values and the highest observed precipitation, or the mean and 
the standard deviation for different stations and durations. If there 
exists a strong correlation between these statistics then one statistic 
can be substituted for the other. 

PMP estimation
The methodology for PMP estimation is comprised of 5 steps: 

i.	 Selection of precipitation data; 
ii.	 Estimation of frequency factor; 

iii.	 Determination of uncertainty in frequency factor; 
iv.	 Computation of PMP; and 
v.	 Determination of uncertainty in the PMP values. Each of 

these steps is described in what follows.

Precipitation data 	

Precipitation data for 1-hour duration were taken from the NCDC 
NOAA website (https://www.ncdc.noaa.gov/cdo-web/). Shapefiles 
of rain gauge stations to be imported into GIS were prepared using 
the latitude and longitude of stations. Using the locations of stations 
and the boundary of Brazos River basin, it was determined that the 
basin had more than 90 stations. The stations were selected, based on 
the criteria of having at least 30 years of record length and 9-month 
observations for each year.35 Then 39 stations were selected that had an 
average record length of 50 years and 17 of these stations had record 
lengths of more than 60 years. The recording period varied from 1940 
to 2013. Figure 1 shows the locations of 1-hour duration rain gauges. 
From the data of 1-hour duration the data for other durations 2, 3, 6, 
12, and 24 hours were generated. Time series of stations with different 
durations was plotted to see if there was any trend in the precipitation 
records corresponding to time. No time series plot showed any 
significant non-stationarity. Then, annual maximum precipitation 
series, based on different durations, were compiled for each station. 

Estimation of frequency factor

The values of mean X , standard deviation 
n

S  and highest observed 
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precipitation 
m

X were calculated for annual maximum series of each 
station corresponding to each duration. Mean and standard deviation 
were adjusted for sample size and maximum observed event.7 The 
mean and standard deviation of the annual maximum series tend to 
increase with the length of record, because the frequency distribution 
of precipitation extremes is skewed to the right so that there is a greater 
chance of getting a larger value of mean for a longer length of record. 
Hence, for smaller series of extreme precipitation n, adjustments were 
made to the mean and standard deviation for the length of record.7 
The coefficient of variation (CV), the ratio of standard deviation and 
mean of the annual maximum series, was calculated for each station. 
Sometimes the inclusion of an outlier or an extraordinarily extreme 
precipitation event, with a recurrence period much longer than the 
series, could cause an anomalous effect in the calculated mean and 
standard deviation values.17 CV for each station was calculated and 
checked whether it differed too much from that of the neighboring 
stations. For stations whose CV value was found to be too much 
different from neighboring stations, it was adjusted to the nearest 
value as compared to the neighboring stations.15 

 The frequency factor 
m

k  was calculated as:

		              

1

1

nm
m n

X X
k

S
−

−

−
=  		        (2)

where 1nX −  is the mean and
1n

S
−

 is the standard deviation for the 
annual maximum precipitation series excluding the highest value from 
the series. The highest value of 

m
k  for 1 hour duration was found to 

be 10.1 at Santa Anna, Texas. A similar procedure was applied to the 
maximum precipitation series for other durations. Since each station 
had its own 

m
k value, depending upon the magnitude of the mean, 

the 
m

k values of 39 stations were plotted against the adjusted mean
X  in order to consider an appropriate enveloping curve that would 

give reliable estimates of 1-hour PMP rather than using the observed 
highest value. As there were only 39 stations in the study area 
hence, only a single enveloping curve was constructed rather than 
constructing regional enveloping curves for different areas within the 
basin. Also, there was not any considerable topography difference 
which could yield to unreliable frequency factor values. Enveloping 
curve was drawn with the help of upper points for different durations. 
Figure 2 shows the enveloping curves for different durations. The 
curve seemed to be more sensitive for lower durations of precipitation, 
meaning changing the mean changed the value of the corresponding 

m
k  by a considerable amount. However, all of the curves followed 
the same trend. 

Figure 1 1-hour duration rain gauge station locations.

Figure 2 Enveloping curves of            for different durations.

Uncertainty in frequency factor

Figure 3 shows the enveloping curve of 
m

k  based on 39 stations 
in the Brazos River basin and the enveloping curve provided by 
Hershfield for computing PMP on an hourly basis. From Figure 3, 
it is seen that both curves generally followed the same trends but 
did not match properly. Brazos River basin has a smaller number of 
stations as compared with 2645 stations that Hershfield used, hence 
the frequency factor markedly depends on number of stations used. 
The enveloping curve specific for the Brazos River basin is lower 
than the Hershfield curve, which was constructed using some of the 
highest precipitation producing regions with long term records. The 
Hershfield enveloping curve seems to give higher values of 

m
k  as the 

mean increases. Hence, it is more conservative than the basic-specific 
one for one hour duration. The same can be said for other durations, as 
the basin-specific curves followed the same trend and Hershfield’s 

m
k

was higher for other durations as compared to the basin-specific one. 
Figure 4 shows the difference between the 

m
k  values for each station 

for 1-hour duration in dimensionless terms based on the formula:

			 

mH mB

mH

k k
k
−

 		          (3)

where 
mH

k  is the Hershfield frequency factor value and 
mB

k  is the 
basin specific frequency factor value. This difference is an indication 
of uncertainty that can be introduced when using the Hershfield curve 
rather than the basin-specific curve. The same procedure was applied 
for 6-, and 24-hour durations and the same trend was observed. Using 
Hershfield’s curve rather than basin specific can increase 

m
k  by 16% 

for 1 hour duration, by 17.9% for 6 hour duration and by 22.1% for 
24 hour duration. 

m
k  was also calculated by using the PMP values 

published in HMR documents (HMR, 51). The range of PMP values 
varied from 863.6 mm (station at Pep) to 1198.8 mm (station at 
Houston Alife) for 24-hour duration. The value of 

m
k  was calculated 

as:

		              
( )HMR

m n

PMP X
k

S
−

=  	          (4)

where 
HMR

PMP  is the PMP values from the HMR documents. 
Using the PMP values and the mean and standard deviation of stations, 
the range of 

m
k  was from 22.2 to 26.6. The value of km was high 

but had a range from the lowest to the highest value. It was because 
the PMP values published in HMR are too high as compared to the 
average precipitation amount and the PMP estimated using basic-
specific enveloping curve. This shows the significance of constructing 
the basin-specific enveloping curve and then calculating PMP. In 
order to quantify the uncertainty due to the number of stations, the 
enveloping curve was constructed by removing the top two stations 
(Lexington and Briggs) on an hourly basis. The curve changed, 
giving lower values of 

m
k  that gave lower PMP values (Figure 5). 

The frequency factor, on an average basis, decreased by 8.1%. Hence, 
accurate data of stations and the number of stations are important in 
constructing the curve. Otherwise, uncertainty can be introduced in 

mκ
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the curve. Also, the inclusion of any outlier can increase the value of 

m
k  which can change the shape of the curve. 

Series 1– Basin-specific curve; Series 2- Hershfield curve.

Figure 3 Comparison of Hershfield’s enveloping curve of m
k

 with Brazos River 
basin enveloping curve.

Figure 4 Uncertainty in the values of frequency factor in dimensionless terms.

Series 1- Original enveloping curve; Series 2- Curve made upon removing top 
two stations.
Figure 5 Comparison of the original enveloping curve and the curve made 
upon removing top two stations.

Computation of PMP 

The PMP values for each station and duration were calculated 
using equation (1). The calculated PMP values were then adjusted for 
the fixed observational time interval based on the procedure described 
in WMO (2009). As precipitation data are usually given for fixed time 
intervals, for example, 3 AM to 4 AM (hourly data), 6 AM to noon 
(6-hour), or 8 AM to 8 PM (daily). The adjustment will yield values 
closely approximating those to be obtained from analysis based on 
true maxima.7,15 However, less adjustment is required when maximum 
observed amounts for various durations are determined from two or 
more fixed time intervals.36,37 Table 1 shows the PMP values for the 
study area using the basin-specific enveloping curve. 

Table 1 Adjusted PMP values for different stations and durations (mm)

Station
Duration          

1 hour 2 hour 3 hour 6 hour  12 hour 24 hour

Albine 192.2 242.9 271.1 314.1 364.6 421.8

Bay City 296.8 310.2 336.5 354.8 372.7 414.9

Belton 270.1 276.8 326.7 356.3 394.9 443.7

Bertnam 301.9 324.5 344.7 380.6 381.2 428.9

Briggs 341.2 344.6 355.6 385.4 390.5 447.3

Burleson 240.8 251.9 287.8 405.7 410.8 468.3

Clovis 219.6 240.1 265.6 284.9 323.6 374.1

Station
Duration          

1 hour 2 hour 3 hour 6 hour  12 hour 24 hour

Cranfills 268.2 288.5 320.9 342.2 358.9 431.3

Cherroke 241.1 264.1 300.8 311.1 351.3 401.3

Cresson 270.1 282.1 307.2 339.8 365.3 408.2

Eastland 264.8 299.1 339.2 378.2 392.7 439.8

Evant 282.9 317.6 350.5 358.6 401.4 450.6

Santa Anna 351.6 358.4 374.8 369.8 371.9 419.5

Flat 246.3 325.5 350.8 393.2 392.9 425.8

Galveston 209.4 266.8 315.9 402.7 411.2 384.9

Gorman 222.4 247.2 294.3 359.7 380.6 434.6

Groesbeck 265.3 267.8 287.8 317.8 323.6 364.2

Houston 
addicts 242.8 276.2 308.6 360.5 393.6 445.4

Houston 
Alife 239.1 280.8 301.4 344.5 381.1 416.4

Indian Gap 208.8 259.5 316.9 342.8 347.7 363.1

Iredell 192.6 243.5 292.1 347.1 358.1 392.5

Jayton 260.8 301.7 348.9 327.5 417.2 470.2

Jewett 293.2 331.7 351.2 367.4 375.5 447.9

Kopperl 255.4 275.2 312.6 327.2 344.4 400.7

Lexington 262.9 264.6 300.3 327.2 366.5 443.9

Loraine 251.7 262.2 292.6 339.2 368.2 445.1

Lubbock 304.6 319.8 363.5 390.7 395.2 443.1

Moline 311.4 334.3 352.2 392 422.3 464.8

Pep 302.8 320.6 383.3 404.2 420.2 469

Richmond 213.7 253.4 255.7 326.4 385.7 433.8

Spicewood 283.2 311.6 345.9 385.1 392 437.8

Stamphord 282.3 332.3 377.4 414.2 420.9 462.6

Stephenville 253.4 280.1 314.2 371.4 375.8 428.9

Still house 232.6 288.9 321.2 325.3 373.5 413.6

Thompson 253.4 262.3 292.4 388.6 425.1 460.8

Waco 242.5 257.7 272.7 318.3 347.8 362.7

Washington 223.3 281.3 339.3 394.8 411.7 462.2

Wheelock 256.5 270.7 292.7 330.8 347.4 387.3

Uncertainty in PMP values

To quantify the uncertainty that can be introduced in PMP estimates 
by using Hershfield’s enveloping curve, basin-specific PMP values 
were also calculated. Figure 6 compares the PMP values based on both 
methods and shows that PMP from the Hershfield enveloping curve 
was higher than the basin-specific curve. For 1 hour duration the PMP 
values were 16.8% higher using Hershfield’s curve than basin-specific 
values, 18.5% for 6 hour duration, and 23.4% for 24 hour duration. 
Plots between PMP values and mean of extreme values, PMP values 
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and highest observed precipitation and mean and standard deviation 
were also made. There was an increasing correlation between mean 
and standard deviation, highest observed precipitation and PMP but 
not that significant. However, there was no significant correlation 
between the mean and PMP for different stations. It may be because 
the frequency factor comes in the multiplication with standard 
deviation which has a more effect on the values of PMP. Plots were 
also made for different durations for Eastland station (Figure 7), 
showing increasing correlation between PMP values and the mean of 
extreme values, PMP values and the highest observed precipitation, 
and the mean and standard deviation. However, it may be noted that 
a highest observed precipitation for one duration can be the same as 
for another duration. 

Series 1– Hershfield’s PMP; Series 2- Own PMP
Figure 6 Comparison of Hershfield’s PMP estimates against PMP estimates for 
Brazos River basin based on 1-hour duration (mm).

Figure 7A Plots between PMP values and mean of extreme precipitation.

Figure 7B Plot between mean and the standard deviation of extreme 
precipitation.

Figure 7C Plot between PMP values and the highest observed precipitations.

Return period of PMP from frequency analysis of extreme 
precipitation

It is important from the standpoint of hydrologic design to 

compute the return period of a PMP value. The computation entailed 
four components: 

i.	 Frequency analysis 
ii.	 Frequency analysis of extreme precipitation

iii.	 Factors affecting frequency distributions 
iv.	 Return period of PMP values and uncertainty due to the choice 

of a probability distribution. Each of these components is 
discussed below. 

Frequency analysis

For extreme precipitation frequency analysis, the same 39 stations 
were used as for calculating the PMP values. Stations were checked 
for stationarity and independence. Time series for the stations with 
all durations of precipitation were plotted to see if there was any 
trend in the precipitation records corresponding to time. No time 
series plot showed any significant non-stationarity. For frequency 
analysis of extreme precipitation for all durations and stations, 24 
probability distributions (Table 2), were used. Three goodness of fit 
(GOF) tests, Kolmogorov-Smirnov (K-S) test, Anderson-Darling (A-
D) test and Chi-square (C-S) test, were employed to check whether 
a hypothesized distribution function fitted the sample data.38 The 
hypothesis of the GOF tests was:

H0=The precipitation data followed the specific distribution; and 
H1=The precipitation data did not follow the specific distribution.

These tests were performed at the significance level (α=0.05) 
for choosing the best fit probability distribution.39 Q-Q plot and 
Root Mean Square Error (RMSE) were also used to find the best fit 
probability distribution. Extreme precipitation data were fitted to all 
the distributions and parameters of the distributions were estimated by 
the maximum likelihood estimation. The probability density functions 
(PDFs) were determined and plotted. Matlab and R-statistics were 
employed for fitting the probability distributions.

Frequency analysis of extreme precipitation

To find the best fit probability distribution for each station and 
different durations a three-step process similar to Olofintoye et 
al.40was used. It may be noted that our focus was on the right tail 
of the distribution where extreme precipitation occurs. In the initial 
processing all 24 common statistical distributions were used in 
this step. For each station and duration the test statistic values of 
Kolmogorov-Smirnov, Anderson Darling, and Chi-square were 
calculated for every distribution. For each of the three tests the 
distributions were ranked according to the lowest test statistic value. 
The distribution having the 1st rank was assigned a score of 24, 2nd 
rank distribution a score of 23, and so on. The total scores from the 
three tests of each distribution were added to see which distribution 
had the highest score, the second highest, and so on. At least 5 to 6 
distributions were considered for further analysis. The stations were 
ranked according to the least RMSE value and best Q-Q plot (Here 
best means Q-Q plot is linear or the specified theoretical distribution 
is the correct model.). The PDFs of the selected 5 or 6 distributions 
were compared to see if our results were consistent with the PDF 
graph or not. In the last step, for those stations and durations for which 
the difference in the PDF graphs of selected distributions was not too 
much or there were contradicting results by observing the quantiles 
of the distributions with the observed values against the MSE and 
Q-Q plot results, the ranking system was used again. The top 5 or 6 
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distributions from step 1 were selected. The distributions were ranked 
according to the test statistic value from K-S, A-D, C-S, RMSE tests 
and visually seeing Q-Q plots. A score of 5 or 6 was assigned to the 
best distribution for a particular test and so on. The distribution having 
the highest combined score from the 5 tests was regarded as the best 
distribution. After the best distribution was selected, it was analyzed 
to see which distribution fitted most of the stations and for different 
durations overall. 

Table 2 shows the overall best distributions for each station and 
1-, 6-, and 24-hour durations, based on different GOF tests. The 
Anderson-darling GOF test performed better than the other tests. 
It is because it focuses more on the tail of the distribution than the 
K-S test. The K-S test is distribution free in the sense that the critical 
values do not depend on the specific distribution being tested. The 
Anderson-Darling test makes use of the specific distribution in 
calculating critical values. The log-logistic (3parameter) distribution 
performed good in the right tail for higher quantiles for 1-, 2-, 3-, and 
6-hour durations. But overall it did not perform as well as Burr XII or 
GEV for 2-, 3-, and 6 hour durations. For 12 and 24-hour durations 
of extreme precipitation, the generalized gamma (4parameter) and 
Johnson SB performed better in the right tail.

Table 2 Overall best-fit distribution for different stations and durations

Station Duration

  1-hour 6-hour 24-hour

Albine Log-logistics 3 GEV Burr

Bay City Log-logistics 3 Pearson 6 4p Burr

Belton Johnson SB Log-logistics 3 Johnson SB

Bertnam GEV Inverse-
Gaussian 3

Inverse-Gaussian 
3

Briggs Log-logistics 3 Log-logistics 3 Log-logistics 3

Burleson Burr GEV Log-logistics 3

Clovis GEV GEV Log-logistics 3

Coryell GEV Burr Burr

Cranfills GEV Burr Burr

Cherroke Burr Log-logistics 3 Burr

Cresson Burr Log-logistics 3 Burr

Eastland Log-logistics 3 Johnson SB Johnson SB

Evant Burr Burr Burr

Santa Anna Log-logistics 3 Burr Burr

Flat 
Inverse-Gaussian 
3 Burr

Inverse-Gaussian 
3

Galveston Burr 4p Johnson SB
Inverse-Gaussian 
3

Gorman Burr Johnson SB Johnson SB

Groesbeck Log-logistics 3 Burr Burr
Houston 
Addicts Log-logistics 3 GEV GEV

Houston 
alife GEV Log-Pearson 3 Burr

Indian Gap Johnson SB GEV Log-logistics 3

Iredell Burr GEV GEV

Jayton Log-logistics 3 GEV Burr

Station Duration

  1-hour 6-hour 24-hour

Kopperl Beta GEV Gumbel Max

Lexington Burr Gen Gamma 
4p

Log-Pearson 3

Loraine Log-logistics 3 GEV GEV

Lubbock Log-logistics 3 Johnson SB Inverse-Gaussian 
3

Moline Burr GEV GEV 

Pep Dagum Burr Inverse-Gaussian 
3

Richmond Log-logistics 3 Log-Pearson 3 Johnson SB

Spicewood Inverse-Gaussian 
3

Burr Burr 

Stamphord Log-logistics 3 Burr GEV

Stephenville Burr Log-Pearson 3 Log-logistics 3

Still house Log-logistics 3 Burr Burr 

Thompson Burr GEV Johnson SB

Waco Log-logistics 3 Log-Pearson 3 Burr

Washington GEV GEV GEV

Wheelock Log-logistics 3 Log-Pearson 3 Burr

*GEV=Generalized Extreme Value

Factors affecting frequency distributions 

Next, the effect of duration and distance from the Gulf on the 
histogram and best-fit distribution was analyzed. It was observed that 
there was a general tendency for higher skewness for shorter durations 
of precipitation than for longer durations, as shown in Figure 8 for 
station at Evant, Texas, for 2-, 6-, and 24-hour durations. It is because 
for short durations such as 1-hour, a large amount of precipitation may 
occur within a short time in certain cases exhibiting large skewness, 
while for long durations, such as 24-hour, precipitation is averaged 
and thus exhibits less skewness. Burr type 12 performed better for 
less skewed distributions and log-logistic (3-parameter) performed 
better for more skewed distributions. Within Brazos River basin there 
exist different climate producing mechanisms for different areas. For 
example, in the eastern part of Texas or near the Gulf of Mexico there 
is fairly uniform seasonal precipitation, with slight maxima occurring 
in the summer season, because the influence of the Gulf of Mexico is 
dominant.41 Hence, the effect of the distance from Gulf was analyzed. 
There was no systematic pattern but still it was observed that for 
stations close to the Gulf of Mexico, the histogram was smooth but had 
more variation. As the distance from the Gulf increased the histogram 
began to become sharp with less variation. Figure 9 shows histograms 
for stations at Thompson and Lubbock for 2 hour duration. Thompson 
lies close to the gulf, whereas Lubbock lies in the north-western part 
of Texas. The reason for this pattern may be due to the moderating 
influence of the Gulf of Mexico. As we go farther from the Gulf, in the 
northwest direction we come close to regions of High Plain division in 
which maximum precipitation comes from thunderstorms during the 
summer season. However, there was no preferable distribution which 
performed best near the Gulf or far away from it. However, Burr XII 
and GEV performed better for smooth histograms. Overall Burr type 
12 distributions were chosen to be the best distribution for the Brazos 
River basin covering 30 to 40% of the stations for different durations. 
For other stations also, it was in most of the cases one of the top three 
best distributions.42 
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Figure 8A Histogram at Evant, TX for 2-hour duration.

Figure 8B Histogram at Evant, TX for 6-hour duration.
Figure 8C Histogram at Evant, TX for 24-hour duration.

Figure 9A Histogram at Thompson, TX, for 2-hour duration.

Figure 9B Histogram at Lubbock, TX, for 2-hour duration.

Return period of PMP values and uncertainty due to choice 
of probability distribution

For quantifying uncertainty, return periods of the PMP values 
were determined for each duration. For our study we used the PMP 
values derived from the basin-specific enveloping curve of 

m
k  as it 

was made only by using the data for the Brazos River basin and is 
more accurate.43,44 The return period was less than expected. For most 
of the Brazos River basin the return period of the PMP values was in 
the range of 1000 to 3000 years which was less than the range of 103 to 
106 years reported in HMR 51. It shows the amount of risk associated 
with the PMP values. The difference between the two sets of values 
points to the uncertainty associated with the PMP values. To evaluate 
the uncertainty in the return period due to the choice of distribution, 
return periods for stations and durations were also calculated from 
the 4th best distribution. Table 3 shows the return period from the best 
and the 4th best distribution. On an average basis the return period 
from the 4th best distribution was 55.1% lower than that from the best 
distribution. Figure 10 shows the difference between the return period 
of the 24-hour PMP values for selected stations from the best and the 
4th best distribution in dimensionless terms as:
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4best thbest

best

T T
T
−

  		        (5)

where 
best

T  is the return period from the best distribution, and 

4thbest
T  is the return period from the 4th best distribution. As can be seen 
from the figure return periods were different, showing the importance 
of accurately determining the best-fit probability distribution. Figure 
11 & Figure12 show the spatial distribution of the 1- hour PMP 
values and return period for those values calculated based on the best 
fit probability distribution. The GIS spatial interpolation tool was 
employed for performing it. The spatial interpolation was done on the 
basis of inverse distance weighted interpolation. The depth-duration-
frequency curve was also constructed for PMP values. Log of 1, 2, 3, 
6, 12, and 24 hour of precipitation and log of PMP values of different 
return period was taken. Figure 13 below shows the relation between 
PMP values and duration on log-log paper. It was observed that there 
was an increasing correlation between log of PMP values and log of 
duration for different return periods. The chosen return was the return 
period of different duration PMP values and for the same return period 
the depth of rainfall was calculated for different durations.45

Figure 10 Difference between the return period of the 24-hour PMP values for 
selected stations from the best and 4th best distribution in dimensionless terms.

Figure 11 Spatial distribution of the PMP values in Brazos River Basin for 
1-hour duration. 

Figure 12 Spatial distribution of the Return period of 1-hour PMP values in 
Brazos River basin.

Figure 13 Depth-Duration-Frequency curve of PMP values.

Table 3 Return periods of PMP values from the best and the 4th best 
distribution for 24-hour duration

Return period (years) 
from best distribution

Return period (years) from 4th 
distribution

1111.1 7142.8

6579.8 3950.2

4347.8 1333.3

16666.6 3703.7

2222.2 2500

16666.6 25000

232552.7 20000

6136.4 6840.9

1886.7 16666.6

50796.6 1265.8

33333.3 9090.9

12500 12500

1870.4 1149.4

1282 970.8

Conclusions
It is seen from this study that the PMP values are subject to 

uncertainty. The PMP estimates obtained from the statistical method 
depend largely on the frequency factor. Removing or adding any 
one station can change the shape of the curve which can result in 
highly uncertain PMP values. Hershfield’s statistical method can 
approximate the PMP values generally but for a specific area priority 
should be given to using the specific precipitation data for the area 
and deriving the enveloping curve for the specific area. For the Brazos 
River basin, the PMP values are lower than those calculated using 
Hershfield’s curve. Also we should have at least 20-30 stations which 
can be used in the construction of the curve. It is important to find 
the best fit probability distribution as uncertainty can be introduced 
due to the choice of probability distribution. Frequency analysis 
was done using five goodness-of-fit tests and different distributions. 
It was observed that for stations close to the Gulf of Mexico, the 
histogram was smoother but had more variation. As the distance from 
the Gulf increased the histogram began to become sharp with less 
variation. There was also a general tendency for higher skewness of 
precipitation data of shorter duration than of longer duration. The Burr 
distribution XII was the best distributions for different durations on an 
average basis. The return periods of PMP values were less than those 
published in the HMR documents.
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