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Introduction
Phosphorus is common within geological materials. The average 

continental crust contains 0.27% P2O5.
1 Phosphorus is the primary 

resources to produce fertilizer and phosphorous-based products.2 
Phosphorus is neither substitutable nor recyclable, therefore, the 
total demand must be provided through the mining, beneficiation and 
chemical processing of phosphate ores. The key to understanding the 
association between environmental pollution and phosphate rocks lies 
in appreciating the mining and processing effect of phosphate ores. 
Phosphorus is normally produced by mining and beneficiation of 
Phosphate ores.3 Mines produce large amounts of waste including toxic 
metals and radioactive elements.4 The mining and beneficiation process 
results in the majority of these hazardous elements being lost either to 
waste disposal or to the environment, mainly soil, water, atmosphere 
and human food chain.5,6 Apatite is the dominant mineral in phosphate 
ores. It may occur as carbonate-fluorapatite [Ca5 (PO4, CO3)3 (OH, F)] 
in sedimentary rocks and as hydroxyl-fluorapatite [Ca5 (PO4)3 (OH)] 
in igneous rocks. Apatite is commonly very insoluble in its original 
state as extracted from the earth and is practically unavailable as a 
plant phosphorus source.7 For this reason, drastic chemical processing 
with strong acids (such as Sulfuric acid, phosphoric or nitric acids) 
is necessary to produce soluble phosphate products. By virtue of 
its chemical behavior, apatite is generally associated with fluoride, 
which is a potential risk for human health. During the current decade 
there is a rising concerns about the environmental impacts of the 

phosphate mining industries. Most of the impacts are being reflected 
in the form of changes to local hydrology, water contamination, water 
consumption, air pollution and human risk.8,9 Environmental impact 
of phosphate mining and beneficiation which is directly or indirectly 
related to water resources is the subject of this review. The review 
result will provide a summarized update to the undergoing researches 
in this field.

Material and methods
We follow the Systematic Literature Review (SLR) guideline 

proposed by Okoli & Schabram10 During the reviewing, only published 
information was used, there was no time period limit for the literatures 
used. Literatures from different locations of the world, at different 
level and complexity of phosphate mining (surface, underground or 
sea-bed phosphorite mining) were accessed; large-scale phosphate 
mines were taken as a complete mining and processing documentation 
for this study; closed old mines and reclaimed mines were considered 
as an important references to reconstruct the historical consequence 
of the mining on the environment. This review is structured into result 
and discussion: the result part was used to extract relevant information 
about phosphate rock basics, mining and beneficiation, the association 
of toxic metals and radioactive elements in the phosphate rocks and 
the transfer pathways of these hazardous elements from the phosphate 
rocks to the environment. The discussion part was mainly concerned 
on the environmental impact of phosphate mining and processing 
with main emphasis on water pollution, air pollution and human risks.
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Abstract

Although the subject of mining and its environmental impacts are very wide to be covered 
in this review, concerns about the impact of phosphate mining and processing typically 
emphasis on its potential effects on water pollution, air pollution, and human health were 
accessed. We reviewed published information at different stages of mining; current mines, 
closed old mines and reclaimed mines and at different complexity of mining; surface 
mining, underground mining and sea-bed phosphorite mining. Information was analyzed 
to understand the association of toxic metals and radioactive elements in the phosphate 
rocks and to trace the transfer pathways of toxic metals and radioactive elements from 
the phosphate rocks to the environment. According to the reviewed results the major 
environmental impacts of phosphate mining and processing on the water resources were: 
impacts on the hydrology by phosphate industry water usage and landscape changes, and 
impacts on water quality by discharges of industry wastewater into the waterways. Dust 
was a common air quality problem throughout all mining activities; fluoride emissions and 
radon gas emission were also serious problems. Toxic metals and radioactive elements of 
significant human health problems were Pb, Cd, Hg, Cr, As, U Th and Ra. Most researches 
agreed that 226Ra is considered as one of the most toxic radionuclide. The nuclide is of 
further importance as the parent nuclide of the gaseous 222Rn which, along with its solid 
decay products, constitutes a significant source of radiation exposure. Scientific researches 
on mine water drainage and phosphate mining relationship may help to understand the 
environmental impacts associated with water resource and water quality.
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Result
Phosphate rocks, mining and beneficiation 

Phosphate rocks

Phosphate rocks can be mined from three main deposits,11,12 the 
dominant deposits are sedimentary source (75%), Igneous sources 

(15–20%) and animal such as bird and bat guano source (2–3%). There 
are about 200 verities of phosphate minerals of which the minable 
ones are the apatite groups.1,13‒15 (Table 1). The Apatite group can be 
expressed as: Y5 (ZO4)3 (OH,F,Cl) when Y=Ca and Z=P. However in 
natural form apatite structure can be replaced by several elements: Y 
can be replace by Sr, Pb, Ba, Na, Cd, Mg, Mn, Fe and Z replace by 
PO4,Si, SO4, As, CO3, V, and others.16,17 

Table 1 Main varieties of apatite and their formulae from59

Variety formula Variety formula Major category

Francolite Ca10-x-y Nax Mgy (PO4)6-Z (CO3)zF2F0.4z Sedimentary

Hydroxyl-fluor-carbonate apatites Ca10 (PO4, CO3)6 (OH, F)2 Sedimentary

Dahllite 3Ca3 (PO4)2·CaCO3. Sedimentary

Collophane 3Ca3 (PO4)2·nCa(CO3,F2,O)·xH2O Sedimentary

Fluor-apatite Ca10 (PO4)6F2 Igneous 

Hydroxyl apatite Ca10 (PO4)6, (OH)2 Igneous

Chlorapatite, Ca10 (PO4)6Cl2 Igneous

Carbonate-hydroxy-apatite Ca10 (PO4, CO3)6 (OH)2 Biogenic

Mining and beneficiation

There are two types phosphate mining methods based on the 
depth and deposit geometry, the surface (strip) mining method (for 
deposit up to 100m) and the underground mining method (for deposit 
greater than 100m). However surface mining such as strip mining 
can affect a wide area than underground mining does, therefore, can 
be an important factor of environmental degradation.18 Beneficiation 
is the process of removing the unnecessary minerals, which is used 
to increase the grade of mining product (concentrate). Phosphate 
ores can be beneficiated using one or a combination of different 
methods.19‒21 The most common ones are: flotation, crushing, des-
liming, separation, grinding and washing (Figure 1). 

Figure 1 Mining and beneficiation of sedimentary (A) phosphate ore (B) 
Igneous phosphate ore51

Association of toxic metals and radioactive elements 
in phosphate rock 

Toxic metals in phosphate rock

As iron and aluminum are essential for human existence, toxic 
heavy metals are among which are of non essential for human 
existence. Increased concern about the entry of the various metals in 
to human food chain has initiated the need to explore the connection 
between toxic metals and phosphate product in different parts of the 
world.22 Result indicated that Arsenic, Chromium, Lead, Mercury, 
Nickel, Vanadium and Cadmium, (Table 2), are frequently associated 
with Phosphate rock. It was further indicated that sedimentary deposits 
are richer in toxic metals than igneous deposits (Table 3).

Table 2 Average toxic heavy metal concentrations in phosphate rock deposits 
adapted from Kongshaug et al.22

PR deposits
Heavy metal concentration (mgKg-1) 

As Cd Cr Pb Hg Ni V

Russian (Kola) 1 0.1 13 3 0.01 2 100

USA 12 11 109 12 0.05 37 82

South Africa 6 0.2 1 35 0.06 35 3

Morocco 11 30 225 7 0.04 26 87

North Africa 15 60 105 6 0.05 33 300

Middle East 6 9 129 4 0.05 29 122

Average 91 % of Pr 
reserves 11 25 199 10 0.05 29 88

P- mg/kg 71 165 1226 66 0.29 189 578

g/ha/yr applied with20 
kg-p/ha 1 3.3 25 1 0.01 4 12

Tolerance limit in soil, 
mg/kg 2 100 100 2 50 50 300
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Table 3 Average phosphorus and toxic heavy metal concentrations in rock phosphate from different origin (adapted from51,57,59)

Country Deposit Type
P2O5 As Cr Pb Hg Cd U

(%)  mgKg-1 

Algeria Djebel Onk S 28.3 4.50 174 3.00 190 22.5 25.0

Togo Unknown S 36.7 10 101 8.33 365 58.4 93.5

Tunisia Unknown S 29.3 4.50 144 4.00 nd 39.5 44.0

Morocco
Khouribga S 32.6 13.4 200 10.3 855 15.1 87.7

Youssoufia S 31.2 9.20 255 14.0 120 29.2 97.0

Syria Khneifiss S 31.9 4.00 140 6.00 28.0 3.00 75.0

Senegal Taiba S 35.9 17.4 140 6.00 270 86.7 67.0

Israel
Arad S 32.4 5.50 130 2.00 129 14.3 150

Oron S 33.6 8.00 107 1.00 128 5.00 99.0

USA

Florida S 31.9 11.3 60.0 16.8 199 9.13 141

North Florida S 31.2 7.00 064.7 11.7 nd 6.14 80.7

Idaho S 31.7 23.7 637 12.3 290 92.3 107

North Florida S 29.9 11.2 158 8.33 233 38.2 65.3

Finland Siilinjarvi I 39.5 3.00 14.0 4.00 42.0 <2.00 37.0

Russia Russian Kola
Peninsula I 35.6 10.0 nd 33.0 nd 1.25 27.0

S. Sedimentary rock phosphate, I. Igneous phosphate, nd. no data.

Radioactivity elements in phosphate rock

The radioactivity of phosphate rock was probably first observed 
in 1908, when the British physicist R. Strutt found that samples of 
phosphorite were many times more radioactive than the average 
rocks of the Earth’s crust.23 The dominant radioactivity detected in 
phosphate rocks are uranium, thorium and their decay products in 
equilibrium with their respective parent elements in the ore.24 The 
Uranium series includes 238U, 234Th, 234U; 230Th; 226Ra, 222Rn, 210Pb, 
210Bi and 210Po, Thorium series includes 232Th; 228Ra, 228Ac; 228Th, 
224Ra, 220Rn, 212Pb, 212Bi. Of all the radionuclides in phosphate rock, 
226Ra is of particular interest because of its long half-life, radiotoxicity 
and its relative physical and biological mobility. The nuclide is of 
further importance as the parent nuclide of the gaseous 222Rn which, 
along with its solid decay products, constitutes a significant source 
of radiation exposure. Concentrations of 226Ra in phosphate rock are 
reported to vary, covering a range of 1-2 Bq/g.25‒29 Most of the 226Ra 
in the ore ends up in the waste phosphogypsum during the production 
of phosphate fertilizers. The concentration of 226Ra in these wastes is 
reported to be nearly 1Bq/g.25,27 

Transfer pathways of toxic metals and radioactive 
elements

There are a number of means by which the toxic metals and 
radioactive elements from the mining may be favorably transferred 
into the environment. The most common pathways are during the 
mining and beneficiation effects. 

Mining effect

Land disturbance by phosphate mining activities would be expected 
to increase the concentrations and loads of many dissolved and 

suspended toxic metals and radioactive elements in the environment, 
including some that are particularly important for water quality and 
air pollution and human health. 

The following major mining effects has been discussed,9,30

i.	 Erosion of soils and mine wastes into surface waters

ii.	 Impacts of tailings impoundments and heap leaching

iii.	 Acid mine drainage and contaminant leaching

iv.	 Acid mine water dewatering

Beneficiation effect

There are two types of phosphate processing: The wet processing 
and dry thermal processing. The wet processing, done with Sulfuric 
acid, is the most used method for more than 90% of the phosphate 
fertilizer production. The reaction of calcium phosphate with sulfuric 
acid leads to different products depending upon the relative amount of 
Sulfuric acid added to the phosphate ore (Figure 2): the first reaction 
used produce SSP; the second reaction used to produce WPA; the 
third reaction used to produces TSP; if phosphoric acid is neutralized 
by ammonia, the fourth reaction can lead to the production of MAP 
and DAP etc. Phosphogypsum is the byproduct in wet processing. 
Generally, 4-5 tons of phosphogypsum are produced per ton of 
phosphoric acid (P2O5).

31 

	 ( ) ( )4 2 42 23 2 4 4
 2    2Ca PO H SO Ca H PO CaSO+ → +

  
 (1)

	
( )4 23 2 4 3 4 4

 3  2  3Ca PO H SO H PO CaSO+ → +              (2)

	
( ) ( )4 2 42 23 3 4

 4  3  Ca PO H PO Ca H PO+ →   	              (3)

https://doi.org/10.15406/ijh.2018.02.00106


Environmental impact of phosphate mining and beneficiation: review 427
Copyright:

©2018 Reta et al.

Citation: Reta G, Dong X, Zhonghua Li, et al. Environmental impact of phosphate mining and beneficiation: review. Int J Hydro. 2018;2(4):424‒431. 
DOI: 10.15406/ijh.2018.02.00106

	 3 3 4 4 2 4
  NH H PO NH H PO+ →  		                (4)

Figure 2 Relationship of Phosphate Rock and Phosphate Fertilizers: WPA. 
Wet Process Phosphoric Acid, SSP. Single Superphosphate, DAP. Diammonium 
Phosphate, MAP. Monoammonium Phosphate, TSP. Triple Superphosphate and 
NPKs. NPK–compounds.52,53

In the dry thermal process phosphorus vapour and carbon 
monoxide are produced after the phosphate ore is heated to 1500oC in 
an electric furnace. As a by-product a large amount of calcium silicate 
CaSiO3 slag is produced.

	 ( )4 23 2 3 2 5
 3  3  Ca PO SiO CaSiO P O+ → +

	 2 5
 5   5   2P O C CO P+ → +

In the thermal process the chemical reaction at high temperature 
produces elemental Phosphorus, which is relatively free of 
radioactivity. In the wet process method, 226Ra is co-precipitated 
with the gypsum, while 238U and 232Th follow the Phosphorus into the 
phosphoric acid, which is then used to manufacture various fertilizer 
products.24 In general, about 80% of the 226Ra, 30% of the 232Th and 
14% of the 238U is left in the phosphogypsum. 238U and 232Th become 
enriched in the fertilizer to about 86% of their original value (Figure 
3).

Figure 3 Transfer of most important radionuclides and heavy metals from 
rock phosphate to P-fertilizers and phosphogypsum during the production 

process, adapted from.31,54‒59

Discussion
Impact of on water resources

Impact on the hydrology

During mining and processing water is generally needed for: 

i.	 Disintegration and slurrying of the ore at the pit, 

ii.	 Transportation of ore by slurry from pit to beneficiation plant, 
then through wet screening or classifying devices, 

iii.	 Transportation of waste products to settling ponds or other waste 
disposal areas, 

iv.	 Separation of phosphate from impurities in the flotation process, 
and 

v.	 Drinking and sanitary supply for the plant area. 

Several studies.32‒34 have documented the historical hydrological 
changes that had occurred at different location due to phosphate 
mining induced environmental impacts. The impacts of phosphate-
mining on surface and groundwater resources in west central Florida, 
USA was the subject of a study conducted by Lewelling & Wylie32  
The background hydrologic characteristics and water quality of three 
unmined basins in the area were compared to mined and phosphate-
mined and reclaimed basins. Result indicated that the hydrologic 
effects of mined and reclaimed area vary with the type of fill material 
used during reclamation. Peak runoff rates from the mined basins 
generally were higher than those from the unmined basins during 
intense rainfall; Runoff responds more slowly to rainfall in the mined 
basins than in the unmined basins because of undeveloped drainage 
systems in the mined basins. The depth to the water table in the 
surficial aquifer in the mined basins generally was much greater than 
that in the unmined basins. Concentrations of dissolved solids, iron, 
sulfate, manganese, and lead exceeded regulatory standards at various 
reclaimed basins. Reclaimed basins backfilled with clay commonly 
are rich in radiochemical constituents associated with phosphate 
ore, and streams draining these basins sometimes contain water with 
elevated concentrations of these constituents.

A comparison study of hydrologic conditions in Osceola National 
Forest, Florida, USA with those in the same region Hamilton County, 
where phosphate mining and ore processing have been ongoing since 
1965,33 showed that the potential impact of Phosphate mining in the 
forest would be expected to produce effects similar to those observed 
in the present day Hamilton County mining and beneficiation 
operation. The flow characteristics of the streams draining of the 
forest would be changed due to shifting of basin divides and an 
interbasin transfer of water. Average flow would be increased about 
40 percent by phosphate industry releases consisting largely of water 
added to the hydraulic system of the phosphate mining complex from 
pumpage of the Floridan aquifer. In practice, the effect would be 
most notable during low-flow periods and at those particular times 
when releases from the hydraulic system are withheld. The effluent-
receiving stream(s) would have average concentrations of dissolved 
solids, sulfate, phosphorous, nitrogen, and fluoride that are higher than 
under natural conditions. Suspended sediment concentrations would 
increase in all the streams draining the forest because of the land-
clearing and excavation activities and the draining of swampland.

The main objective of the investigation by Arnow35 was to 
determine the influnce of phosphate mining on the ground water of 
Anguar, Palau Islands. The removal of phosphate ores by mechanized 
methods resulted in a deep pits extending below the water table. 
Another study by Wang et al.,36 indicated that effect of phosphate 
mining activities in the area generally reduced runoff coefficient 
and runoff peak. The impact of phosphate mining on offshore (sub-
marine) phosphorite minerals such as glauconite mining activities 
differs according to the specific locality and the effects of the mining 
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operation on intertidal, sub tidal or deep-sea marine environments. 
Many offshore mining operations are vulnerable to inclement weather 
conditions that pose added risks of fuel and material spills and loss of 
human life. 

Impacts on water quality 

Water quality control is not very easy in the fatty acid or anionic 
flotation process, nor in wet sizing transportation of the clay-free 
feed.33 Clear water is required to transport the “deslimed” wet-sized 
or washer product to further beneficiation circuits. Swamp waters that 
contain inorganic acids cause problems. Turbid water is detrimental 
to the separation processes. Slightly alkaline water is preferred to 
decrease reagent costs. The amine or cationic flotation process is 
sensitive to water quality. In this process, deep well water is generally 
used because it possesses the desired qualities of low suspended solids 
content and a constant pH.33,36 Several studies have discussed the 
impact of phosphate mining on water quality. Most of the concerns are 
associated with, Acidic process water.2,37 Radionuclides,38 Phosphate 
runoff,39,40 and Toxic fluoride and heavy metals in runoff.41,42 

The primary purpose of the investigation by Miller & Sutcliffe37 
was to document the effect of three phosphate industries on the 
groundwater quality in central Florida, USA. Geologic, topographic, 
and hydrologic environments were examined in relation to phosphate 
industry operations. Emphasis was on the effects from gypsum 
stacks and associated ponds with some additional effort on slime 
ponds. Test holes were drilled around the ponds and in the area of 
the ponds at multiple depths to define the extent and magnitude of 
movement of any contaminants in to surface and intermediate aquifer. 
The result of the investigation indicated that the chemistry of the 
water from the mining and beneficiation operations and the native 
ground water was different. The highly acidic mine water has a 
solute constituents of about 28,000mg/L, a pH of 1.4 to 1.8 units, and 
contains sodium, phosphate, fluosilicate, hydrogen, and sulfate ions 
as major constituents. On the others hand the native ground water has 
a dissolved-solids concentration of less than 500 milligrams per liter 
and is calcium bicarbonate water with a pH near 7.0units. Sodium 
and sulfate ions are the most mobile of the contaminant-source 
constituents in process water. Migration of radionuclides, fluosilicates, 
phosphates, and trace metals is largely controlled by the degree of 
acid neutralization as the result of reaction with aquifer materials, and 
is generally restricted to areas immediately adjacent to the source. 
Iodide, bromide, and ammonium are useful as tracers near gypsum 
stacks. Phosphate slimes from mining and beneficiation operations 
were found to contain phosphorus, trace metals, and radiochemicals. 
These substances were associated with solid materials and were 
effectively retained by the slime pond.

Recent assessment by Beavers et al.,2 on the phosphate mining 
activities in Florida, USA, observed that intentional or accidental 
discharges of process water in to the local water channels risks 
the water quality of the surrounding surface water. By virtue of its 
chemical behavior, apatite is generally associated with fluoride, which 
is a potential contaminant.43 There are several studies specifically 
studied the water quality impacts of fluoride toxicity from phosphate 
mining.42 studied the fluoride in water in the Alafia and Peace River 
basin Florida, USA, and found that waste water from phosphate 
chemical plants in the tributary headwater areas contributes fluoride 
and other waste products to the Alafia and Peace rivers. The fluoride 
concentration of the Alafia River at Lithia, Florida, ranged from 3.2 

to 30ppm (parts per million) and the Peace River at Arcadia, Florida, 
ranged from 0.6 to 2.2ppm in samples of water collected. The natural 
fluoride concentration in streams in the Alafia and Peace River basins 
generally ranged from 0.2 to 0.4ppm as determined from analysis 
of water from streams away from the active areas of mining and 
processing of fluoride bearing phosphate minerals. The drinking water 
permissible limit of fluoride is 1.5mg/litre.44 

The un-restored post-phosphate mined lands in Lake Fuxian 
watershed, Yunnan Province, china are large scale. The main objective 
of the study by Feng40 was to investigated the amounts of pollutants 
releasing from phosphate mined lands and transporting by runoffs. The 
releasing and transporting amounts of pollutants were calculated from 
column leaching studies and acreages of exposed phosphrite layers 
and overburdens. The results showed that the amounts of fluoride and 
phosphorus releasing were 60.65 t/a, and 27.34t/a, respectively, and 
the amounts of fluoride and phosphorus transported by surface runoffs 
were 22.58t/a, and 7.27t/a, respectively.39 when studied the water 
quality of Udaisagar lake, downstream of a phosphate mining, in 
Rajasthan, India, has found elevated concentration of phosphate (186 
in surface water and 236mg/l in sub surface) and conclude that the 
enormous and wide-spread growth of algal bloom in lake water and 
Ahar river and occasional fish mortality are indications of eutrophic 
conditions prevailing in the lake.

Release of toxic trace elements from mining activities and 
accumulation in the food chain has result in the adverse biological 
effect on local horses and sheep southeastern Idaho, USA. After a 
series of studies by Hamilton & Buhl41 it was found that selenium 
concentrations from the phosphate mining area of southeastern Idaho, 
USA, were sufficiently elevated in several ecosystem components 
to cause adverse effects to aquatic resources in the Blackfoot River 
watershed.38 investigated Uranium contents in Waste Water drains 
channel. The results (Table 4) show that average uranium contents 
(mgm-3) in a three-month period are appreciable in the waste water 
channel.
Table 4 Average Uranium concentration (mg/m3) of the waste water drains 
of various units of the investigated phosphoric acid and fertilizer Produced in 
the factory in three months period, after38

Material
Fertilizer 
produced in the 
factory

In waste water 
drain

H3PO4 Unit I (54%) P2O5 18.81 (+/-) 0.94 35.69 (+/-)13.86

H3PO4 Unit II (28%) P2O5 40.19 (+/-) 3.40 20.75 (+/-) 5.73

NPK process (15%) P2O5 25.28 (+/-) 2.09 23.94 (+/-) 1.11

DAP process (15%) P2O5 51.76 (+/-) 4.37 58.26 (+/-) 25.43

Sea Discharged Joint 
Channel 34.01 (+/-) 12.60

Impacts on air quality

Air quality tends to be a serious problem of the mining industries. 
Dust is a common problem throughout all mining activities,9 the most 
important air quality problems related to phosphate mining activities 
are associated with Fluoride emissions and Radon gas emission.8 
Several studies can be found specifically concerned on the influence 
of phosphate mining on the air quality. The main objective of the 
study by Raja et al.,45 was to investigate the chemical and mineralogy 
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characteristics of dust collected near the phosphate mining basin of 
Gafsa, Tunisia. It was found that heavy metals pollution increased by 
the proximity to the mining area; samples were enriched predominantly 
in SiO2, CaO and P2O5 which were detected only at mining area. 

Impact on human health

From human healthy perspective at least 57 of the trace elements 
in phosphate rock have been reported to possess toxicity to varying 
degrees, and Be, As, Cd, Hg, Tl, and Ra are generally designated 
as extremely toxic.46 Using information on major pollutants and 
the works of46‒49 has classified the toxicity of phosphate products 
according to their risk to human health (Table 5).50 was to measure 
the doses arising from effluent discharges from the phosphate rock 
processing plant of SICNG (Societe Industries Chimiclues du Nord 
de la Grece),Thessaloniki, Northern Greece. The major airborne 
emissions occur in the form of fine rock dust from drying and grinding 
operations of phosphate rock. Collective dose commitments resulting 
from atmospheric releases of 238U and 226Ra from phosphate rock 
processing plants were estimated for the case of inhalation during the 
passage of radioactive cloud, (Table 6). Lung tissue is more suffered 
from 238U and 226Ra inhaled during the cloud passage as compared 
with the other organs or tissues. 

Table 5 Degree of toxicity of elements in phosphate rock46

Associated elements found in phosphate 
rock Degree of toxicity

Be, As, Cd, Hg, Tl, Ra Extreme

F, Cl (Cl2), Cr (CrIV, CrVI), Ba, Gd, Yb, Pb High

Li, Ni, Cu, Ga, Sn, Sb, Te, La, Ce, Pr, Nd, Sm, Tb, Ho, 
Bi, Th, U

Moderate

Ca, V, Mn, Fe, Zn, Ge, Mo, Lu Low

Mg, S, Ca, Sc, Co, Se, Sr, Y, Zr, Nb, Ag, In, I, Dy, Eu, Er, 
Tm, Hf, Au

Negligible

Table 6 Estimated collective dose commitments (man Gy t-1) From 
atmospheric releas of 238U and 226Ra from phosphate rock processing plant 

SICNG, Thessaloniki, Northern Greece, after50

Organ or tissue 238Ux10-9 226Rax10-9

Lungs 1.957 0.152

Bone surfaces 0.0214 0.065

Red bone marrow 0.0014 0.0057

Liver 0.0000356 0.00076

Kidneys 0.0089 0.00076

Spleen 0,0000356 0.00076

G.I. track 0.000249 0.00114

Other soft tissues 0.0000356 0.00076

Conclusion and recommendation
Conclusion

Although the subject of mining and its impacts are very wide to 
cover in this review, concerns about the impact of phosphate mining 
with emphasis on water resources, air quality, and human health were 
accessed. Several studies have documented the historical hydrological 

changes that had occurred at different location due to phosphate 
mining induced environmental impacts. According to these studies 
the main impact of phosphate mining on water resources were impacts 
on the hydrology by phosphate industry water usage and landscape 
changes, and impacts on water quality by discharges of industry 
wastewater into the waterways. Several studies have also discussed 
on the impact of phosphate mining on water quality, most of the 
concerns were associated with; acidic mine water drainage, release of 
potentially toxic metals, release radioactive elements, and phosphate 
and nutrients in runoff. Dust was a regular problem to all type of 
mining; the most important air quality problems associated with 
phosphate mining activities are associated with, fluoride emissions, 
radon gas emission. For human healthy, toxic metals and radioactive 
elements of significant phosphate products were Pb, Cd, Hg, Cr, As, 
U and Ra.

Recommendation

Scientific research on mine water drainage and water resource 
protection relationship could be the most important steps in water 
resources and environmental management associated with phosphate 
mining. The success could be achieved through 

i.	 Construction of water resources protection facilities to control the 
source of pollution and reduce the discharge of pollutants from 
the mine 

ii.	 Construction effective mine/acid water drainage system control to 
protect mining induced groundwater-surface water contaminations 

iii.	 Establish automatic real-time hydrology and water quality 
monitoring strategy 

iv.	 Develop the opportunities to re-use of process water. 
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