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Introduction
River scientists and engineers have long sought to understand 

and quantitatively describe potential for hydro-geomorphic impact to 
the river environment caused by dams and flow regulation. Despite 
acknowledgement that simplified metrics (e.g. dam height, reservoir 
size, installed hydropower capacity, gross static head) are potentially 
poor indicators of a dam’s environmental impact1,2 and despite 
development of more comprehensive models3‒5 simplified indicators 
of impact size remain widely referenced. In some cases, for instance in 
differentiating small and large hydropower dams on the basis of power 
generation capacity, such indicators are used as policy tools in attempt 
to segregate high- and low-impact projects.6,7 If metrics applied in dam 
decision making fail to adequately indicate environmental effect size,8 

outcomes could include outsized and unintended ecological impact, 
including loss of aquatic biodiversity and eosystem services. However, 
the persistence of simplified indicators, including those known to be 
at best reductionist and at worst misleading, speaks to the need for 
broad-based and simple classification metrics that more accurately 
indicate the potential hydrologic effect of a dam. Herein, a metric 
of hydraulic dam size is proposed to fulfill the need for preliminary 
analysis of potential hydrologic impact. Notably, the proposed non 
dimensional indicator encompasses multiple potential mechanisms of 
hydrologic impact, including water storage and diversion, within a 
single metric. The proposed metric more accurately assesses potential 
impact from diversion and allows for direct comparison of hydraulic 
size between dams of varied design and operations, as well as across 
scales. 

Mechanisms of hydrologic impact from dams: The ways in which 
storage reservoirs affect downstream flow regimes and aquatic 
ecosystems have been extensively reported and reviewed9−14 and 
metrics indicating potential for hydrologic change by dams5‒16 are often 
designed to describe such large dam-storage reservoir complexes. For 

example, the primary mechanism for hydrologic change from large 
dam-reservoir facilities derives from control supported by reservoir 
storage.17 Larger storage capacity relative to inflows may indicate that 
operations have greater capacity to change the river’s natural flow 
pattern, for instance by storing flood peaks, increasing base flows, or 
altering the timing and frequency of high and low flows.12−18 Hence, 
metrics such as the ratio of reservoir storage to annual flows10‒15 or 
similar derivatives of retention time16 are widely applied to describe 
impact potential. Such metrics elegantly normalize the degree of 
reservoir storage control by the size of the river on which they are 
placed. As such, a large reservoir placed on a comparatively large 
river is gauged to have less flow regulation potential than a reservoir 
of similar size constructed on a smaller river. Such a normalization 
of effect to encompass the river’s capacity offers substantial 
improvement over metrics which indicate the size of infrastructure 
alone (dam height, reservoir volume or area) with no corresponding 
information regarding river size. However, storage-based metrics 
will fail to predict hydrologic alteration by diversion, particularly at 
facilities characterized by comparatively small reservoirs but with 
large capacity to modify flows through diversion.19 Unlike storage 
reservoirs, hydrologic alteration in the case of diversion dams is 
not necessarily achieved through reservoir control, but rather by 
the capacity of diversion. Hydrologic effects from diversion dams 
and smaller reservoirs have been investigated and reported far less 
widely, such that the literature developed around hydrologic alteration 
by dams and dam impact metrics overwhelmingly reflect effects of 
medium to large reservoirs. However, estimates by Pareto distribution 
models indicate that globally well over 99% of existing reservoirs are 
likely characterized by surface areas less than 1 km2.12−20 Thus, the 
most commonly applied metrics for indicating downstream hydrologic 
impact of dams may be systematically biased, identifying impacts 
related to storage while failing to recognize diversion as another 
primary mechanism of hydrologic impact. The outcome narrative, 
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potential for hydrologic impact is low. As compared to metrics based on storage alone, 
the proposed metrics offer a more flexible and inclusive description of hydrologic 
impact and one which is more universally applicable to dams of variable design and 
purpose. 
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that a diversion dam with small reservoir has little potential to impact 
downstream hydrology, is in some case wholly incorrect.1 The few 
existing hydrologic analyses related to diversion hydropower dams, 
for instance indicate potential for severe hydrologic impact related to 
diversion.19‒24 Therefore, metrics that encompasses multiple potential 
mechanisms of hydrologic alteration may be more universally 
applicable, and will better facilitate comparisons between dams of 
diverse purpose and design. 

The hydraulic size of a dam: a proposed metric: A non dimensional 
metric of dam hydraulic size ( )i t dam  (Eq. 1) is computed by joint 
consideration of flow control through both reservoir storage and 
diversion, normalized relative to river flows:
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Q t are respectively the instantaneous 

river inflows and diverted river flows (L3t-1) over the same time 
period. The most universally informative time period for analysis is 
likely annual; however the seasonal variability of dam hydraulic size 
may also be of interest and hydraulic size may be computed over other 
durations. 

Hydraulic size should be computed using the greater of reservoir 
volume or diverted volume; to combine the two additively could be 
misleading, for instance, in the case of irrigation dams, where both 
storage and diversion are potentially significant sources of alteration. 
In such cases, additional information about the specific nature of 
potential hydrologic effect can be discerned in the comparison of the 

two discrete hydraulic size components, ( )
storage

i t and ( )
diversion

i t  
(Eq. 2a & 2b).
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The two components are characterized by different theoretical upper 
bounds. The upper bound of ( )

storage
i t  may be over one, as storage 

of very large reservoirs may exceed annual runoff volume. On the 
other hand, ( )

diversion
i t may not exceed one. Comparison of hydraulic 

size components allows for quantitative description of the relative 
contributions of storage and diversion to overall alteration potential. 
For instance, when applied to a set of diversion and non-diversion 
dams (Figure 1) comparison of discrete hydraulic size components 
clearly indicates that diversion, rather than storage, is the primary 
mechanism for hydrologic change below diversion dams. The mean 
( )

diversion
i t  across the diversion dams analyzed can be interpreted to 

convey that 75±7 percent of incoming flows may be controlled by 
diversion, while mean ( )

storage
i t  conveys that less than 0.02 percent 

of flows may be stored in the reservoirs. Additionally, the capability 
to compare hydraulic size across the variable sample of dams (this 
sample includes diversion and non-diversion dams, heights ranging 
from 4m to over 300m; reservoir volumes ranging from 10-3mcm 
to over 104mcm) provides a conceptual illustration of how different 
dam designs may affect downstream hydrology. At the analysis scale 
of individual dams, hydraulic size of only the largest non-diverting 
storage reservoirs are within the same order of magnitude as all of 
the diversion dams. Contrarily, if impact potential is computed based 
on storage only, all diversion dams fall well below the 2 % regulation 
threshold proposed to indicate potential for significant hydrologic 
change.12 The potential for hydrologic alteration due to diversion 
clearly can be substantial and should thus be accounted within dam 
impact indicators. 

Figure 1 Hydraulic size components of a sample of diversion and non-
diversion dams, with the 2% regulation threshold indicated data from 1, 22, 
23 and 24.

Hydraulic size analysis nodes: Regulation metrics developed for 
dams with storage reservoirs are traditionally computed at the dam site 
using observed or estimated reservoir inflows. Analysis of cumulative 
regulation effects by multiple dams at the reach or river scale may 
be computed along a river network, by combining upstream storage 
volume additively across all upstream reservoirs.15 However, it is also 
possible that a single dam may be linked to more than one location of 
impact, particularly if water is diverted outside of the river basin. It 
therefore may be necessary to compute hydraulic size as a measure of 
flow regime impact from a single dam at multiple analysis nodes; for 
instance at the site of flow diversion (at the dam) and at other locations 
representing hydrologic signatures of return flows. As an example, 
water diverted for hydropower production may be transferred to a 
power generation facility in a different basin, where water diverted 
from several rivers may be returned to a single river. In the case where 
diverted water is released to a different river, the tailrace or location 
of return flow should also be analyzed as a location for potential 
hydrologic regime impact.3 Water diverted for irrigation also may 
reemerge as return flows to a different river, and similarly may affect 
hydrologic signatures. The potential for multiple locations of impact 
may complicate the analysis of cumulative effect of diversion dams, 
and it should be noted that diversion volumes may not always be 
additively combined in the same manner as storage volumes. In the 
case of rivers developed by series of several diversion dams, thorough 
understanding of diversion and return flow locations are necessary to 
create a reach-scale cumulative impact metrics 
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Conclusion
New metrics of hydraulic size are proposed to indicate potential 

for hydrologic impact of a dam. It is suggested that hydraulic 
size should encompass both storage and diversion as potential 
mechanisms of hydrologic effect. Comparison of hydraulic size 
components due to storage and diversion computed across a sample 
of diversion and non-diversion dams illustrates that the magnitude 
of possible diversion effects may be comparable to impacts below 
large storage reservoirs. Metrics based on storage alone would not 
be sensitive to detect such effects. The proposed metrics therefore 
present a more flexible and inclusive description of dam impact, and 
one which is more universally applicable to dams of variable design 
and purpose, as compared to metrics based on storage alone. While 
the proposed metrics may constitute incremental improvement over 
more simplified metrics, it should be stressed that the primary utility 
in their application remains that of a preliminary analysis or indicator 
of potential for hydrologic impact. Detailed site- or reach-scale study 
of actual flow dynamics with and without regulation is necessary to 
determine true hydrologic impact. However, the proposed metrics 
may be useful in determining large-scale impacts of flow regulation 
through combined storage and diversion. To this point, global-scale 
analyses of potential for hydrologic change due to dams has been 
biased towards the sample of dams represented in global databases, 
which are likely larger, with greater storage potential, relative to the 
global population of dams. Metrics applied in past global assessments 
additionally have not accounted for potential hydrologic impacts 
of diversion. Concerted efforts to better describe the global dam 
population, for instance through combined database and statistical 
methods, and application of more comprehensive flow alteration 
indices may enhance understanding of the impact of flow regulation 
to global hydrology.
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