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Abstract

Easily-calculated metrics describing potential impacts of dams are often used
as preliminary investigations, or in analyses describing hydrologic impact over
large scales and involving many dams. However, common dam impact metrics
overwhelmingly reflect effects of medium to large reservoirs. Indicators applied to
describe a dam’s capacity to alter downstream river flows typically consider reservoir
storage as a sole mechanism of hydrologic impact. Herein, metrics of hydraulic size
are proposed to encompass potential impacts related to both storage and diversion
of water. Hydrologic effect due to storage and diversion computed across a sample
of diversion and non-diversion dams exemplifies that hydrologic alteration related
to diversion may be significant, even where storage-based indicators suggest that
potential for hydrologic impact is low. As compared to metrics based on storage alone,
the proposed metrics offer a more flexible and inclusive description of hydrologic
impact and one which is more universally applicable to dams of variable design and
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Introduction

River scientists and engineers have long sought to understand
and quantitatively describe potential for hydro-geomorphic impact to
the river environment caused by dams and flow regulation. Despite
acknowledgement that simplified metrics (e.g. dam height, reservoir
size, installed hydropower capacity, gross static head) are potentially
poor indicators of a dam’s environmental impact> and despite
development of more comprehensive models®* simplified indicators
of impact size remain widely referenced. In some cases, for instance in
differentiating small and large hydropower dams on the basis of power
generation capacity, such indicators are used as policy tools in attempt
to segregate high- and low-impact projects.®’ If metrics applied in dam
decision making fail to adequately indicate environmental effect size,®
outcomes could include outsized and unintended ecological impact,
including loss of aquatic biodiversity and eosystem services. However,
the persistence of simplified indicators, including those known to be
at best reductionist and at worst misleading, speaks to the need for
broad-based and simple classification metrics that more accurately
indicate the potential hydrologic effect of a dam. Herein, a metric
of hydraulic dam size is proposed to fulfill the need for preliminary
analysis of potential hydrologic impact. Notably, the proposed non
dimensional indicator encompasses multiple potential mechanisms of
hydrologic impact, including water storage and diversion, within a
single metric. The proposed metric more accurately assesses potential
impact from diversion and allows for direct comparison of hydraulic
size between dams of varied design and operations, as well as across
scales.

Mechanisms of hydrologic impact from dams: The ways in which
storage reservoirs affect downstream flow regimes and aquatic
ecosystems have been extensively reported and reviewed’ ' and
metrics indicating potential for hydrologic change by dams® !¢ are often
designed to describe such large dam-storage reservoir complexes. For

example, the primary mechanism for hydrologic change from large
dam-reservoir facilities derives from control supported by reservoir
storage.!” Larger storage capacity relative to inflows may indicate that
operations have greater capacity to change the river’s natural flow
pattern, for instance by storing flood peaks, increasing base flows, or
altering the timing and frequency of high and low flows.'>""® Hence,
metrics such as the ratio of reservoir storage to annual flows'*" or
similar derivatives of retention time'® are widely applied to describe
impact potential. Such metrics elegantly normalize the degree of
reservoir storage control by the size of the river on which they are
placed. As such, a large reservoir placed on a comparatively large
river is gauged to have less flow regulation potential than a reservoir
of similar size constructed on a smaller river. Such a normalization
of effect to encompass the river’s capacity offers substantial
improvement over metrics which indicate the size of infrastructure
alone (dam height, reservoir volume or area) with no corresponding
information regarding river size. However, storage-based metrics
will fail to predict hydrologic alteration by diversion, particularly at
facilities characterized by comparatively small reservoirs but with
large capacity to modify flows through diversion.” Unlike storage
reservoirs, hydrologic alteration in the case of diversion dams is
not necessarily achieved through reservoir control, but rather by
the capacity of diversion. Hydrologic effects from diversion dams
and smaller reservoirs have been investigated and reported far less
widely, such that the literature developed around hydrologic alteration
by dams and dam impact metrics overwhelmingly reflect effects of
medium to large reservoirs. However, estimates by Pareto distribution
models indicate that globally well over 99% of existing reservoirs are
likely characterized by surface areas less than 1 km>'>° Thus, the
most commonly applied metrics for indicating downstream hydrologic
impact of dams may be systematically biased, identifying impacts
related to storage while failing to recognize diversion as another
primary mechanism of hydrologic impact. The outcome narrative,
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that a diversion dam with small reservoir has little potential to impact
downstream hydrology, is in some case wholly incorrect.! The few
existing hydrologic analyses related to diversion hydropower dams,
for instance indicate potential for severe hydrologic impact related to
diversion.'”* Therefore, metrics that encompasses multiple potential
mechanisms of hydrologic alteration may be more universally
applicable, and will better facilitate comparisons between dams of
diverse purpose and design.

The hydraulic size of a dam: a proposed metric: A non dimensional
metric of dam hydraulic size i (t) dam (Eq. 1) is computed by joint

consideration of flow control through both reservoir storage and
diversion, normalized relative to river flows:
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InEq. 1, V (t) is the mean reservoir volume (L?) over a given
res
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time period, Q (t)ﬂow and Q (z‘)ah_v are respectively the instantaneous

river inflows and diverted river flows (L3t') over the same time
period. The most universally informative time period for analysis is
likely annual; however the seasonal variability of dam hydraulic size
may also be of interest and hydraulic size may be computed over other
durations.

Hydraulic size should be computed using the greater of reservoir
volume or diverted volume; to combine the two additively could be
misleading, for instance, in the case of irrigation dams, where both
storage and diversion are potentially significant sources of alteration.
In such cases, additional information about the specific nature of
potential hydrologic effect can be discerned in the comparison of the

two discrete hydraulic size components, i(t)mm eand i(t)d’ _
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The two components are characterized by different theoretical upper
bounds. The upper bound of i (t) .
of very large reservoirs may exceed annual runoff volume. On the

other hand, i (t)

size components allows for quantitative description of the relative
contributions of storage and diversion to overall alteration potential.
For instance, when applied to a set of diversion and non-diversion
dams (Figure 1) comparison of discrete hydraulic size components
clearly indicates that diversion, rather than storage, is the primary
mechanism for hydrologic change below diversion dams. The mean

may be over one, as storage

may not exceed one. Comparison of hydraulic

diversion

i (t)d_ _across the diversion dams analyzed can be interpreted to
ersion
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convey that 75+7 percent of incoming flows may be controlled by

diversion, while mean l'(t) conveys that less than 0.02 percent

storage

of flows may be stored in the reservoirs. Additionally, the capability
to compare hydraulic size across the variable sample of dams (this
sample includes diversion and non-diversion dams, heights ranging
from 4m to over 300m; reservoir volumes ranging from 10°mcm
to over 10*mem) provides a conceptual illustration of how different
dam designs may affect downstream hydrology. At the analysis scale
of individual dams, hydraulic size of only the largest non-diverting
storage reservoirs are within the same order of magnitude as all of
the diversion dams. Contrarily, if impact potential is computed based
on storage only, all diversion dams fall well below the 2 % regulation
threshold proposed to indicate potential for significant hydrologic
change.'” The potential for hydrologic alteration due to diversion
clearly can be substantial and should thus be accounted within dam
impact indicators.

o i(t)diversion ¢ 1(t)storage * E(t)storage—cumutative
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Figure | Hydraulic size components of a sample of diversion and non-
diversion dams, with the 2% regulation threshold indicated data from I, 22,
23 and 24.

Hydraulic size analysis nodes: Regulation metrics developed for
dams with storage reservoirs are traditionally computed at the dam site
using observed or estimated reservoir inflows. Analysis of cumulative
regulation effects by multiple dams at the reach or river scale may
be computed along a river network, by combining upstream storage
volume additively across all upstream reservoirs.'> However, it is also
possible that a single dam may be linked to more than one location of
impact, particularly if water is diverted outside of the river basin. It
therefore may be necessary to compute hydraulic size as a measure of
flow regime impact from a single dam at multiple analysis nodes; for
instance at the site of flow diversion (at the dam) and at other locations
representing hydrologic signatures of return flows. As an example,
water diverted for hydropower production may be transferred to a
power generation facility in a different basin, where water diverted
from several rivers may be returned to a single river. In the case where
diverted water is released to a different river, the tailrace or location
of return flow should also be analyzed as a location for potential
hydrologic regime impact.> Water diverted for irrigation also may
reemerge as return flows to a different river, and similarly may affect
hydrologic signatures. The potential for multiple locations of impact
may complicate the analysis of cumulative effect of diversion dams,
and it should be noted that diversion volumes may not always be
additively combined in the same manner as storage volumes. In the
case of rivers developed by series of several diversion dams, thorough
understanding of diversion and return flow locations are necessary to
create a reach-scale cumulative impact metrics
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Conclusion

New metrics of hydraulic size are proposed to indicate potential
for hydrologic impact of a dam. It is suggested that hydraulic
size should encompass both storage and diversion as potential
mechanisms of hydrologic effect. Comparison of hydraulic size
components due to storage and diversion computed across a sample
of diversion and non-diversion dams illustrates that the magnitude
of possible diversion effects may be comparable to impacts below
large storage reservoirs. Metrics based on storage alone would not
be sensitive to detect such effects. The proposed metrics therefore
present a more flexible and inclusive description of dam impact, and
one which is more universally applicable to dams of variable design
and purpose, as compared to metrics based on storage alone. While
the proposed metrics may constitute incremental improvement over
more simplified metrics, it should be stressed that the primary utility
in their application remains that of a preliminary analysis or indicator
of potential for hydrologic impact. Detailed site- or reach-scale study
of actual flow dynamics with and without regulation is necessary to
determine true hydrologic impact. However, the proposed metrics
may be useful in determining large-scale impacts of flow regulation
through combined storage and diversion. To this point, global-scale
analyses of potential for hydrologic change due to dams has been
biased towards the sample of dams represented in global databases,
which are likely larger, with greater storage potential, relative to the
global population of dams. Metrics applied in past global assessments
additionally have not accounted for potential hydrologic impacts
of diversion. Concerted efforts to better describe the global dam
population, for instance through combined database and statistical
methods, and application of more comprehensive flow alteration
indices may enhance understanding of the impact of flow regulation
to global hydrology.
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