

A new mathematical operator

Abstract

In mathematics the basic operations are addition, subtraction, multiplication and division, and a mathematical operator is a symbol that is used to indicate what operation is to be realized, for example, $+$, $-$, \times , \div , and so on. In this article, I present the procedure by which it is possible to reduce any natural number –even or odd, with or without decimals–, to one of the first four odd numbers: 1, 3, 5, or 7. I suggest the symbol $>n<$ for this reduction operator.

Keywords: Operator, reduction, biomaterial universe, biointerfacemal universe, bioenergemal universe, bioenergemal communication, biocommunication, bioexperience, unit universe, bioenergême, extraterrestrials, neuromindegó, biomathematics

Volume 15 Issue 2 - 2022

Alejandro Cuevas-Sosa

Managing director, Centro de Prevención y Tratamiento de la Violencia Sexual e Intrafamiliar, México

Correspondence: Alejandro Cuevas-Sosa, Centro de Prevención y Tratamiento de la Violencia Sexual e Intrafamiliar, Apartado Postal 12-206, Ciudad de México, México, Tel +52 55 55757111, Email commentsoneuno@gmail.com

Received: March 30, 2022 | Published: April 25, 2022

Abbreviations: BML, biomaterial; BIFL, biointerfacemal; BEL, bioenergemal; BEG, bioenergême; BELC, bioenergemal communication; ETs, extraterrestrials; NMEO, neuromindegó; $>n<$, reduction

Introduction

In addition to *biomatter* [biomaterial (BML) universe], the human body includes the *bioenergême* (BEG) or personal component of organized BEL energy and a third virtual (temporary, potential) component or *biointerfaceme*, which corresponds to the accumulation of virtual bioscenes and bioimages that might still accompany the BEG when passing to the *biointerfacemal* (BIFL) universe, a possible remnant that the BEG excludes before entering the *bioenergemal* (BEL) universe (perhaps pentadimensional). In BEL communication (BELC), that we establish through relaxation, the bioimage of a BEG is a living and acting virtual biointerfaceme, like the rest of the bioimages that are formed during it (perhaps through a BIFL process of the brain), which, as in dreams, at the end of *biocommunication* all virtual events vanish.^{1,2}

Procedure and results

On Sunday, May 21, 1995, I did the following considerations. 1) If, from *one*, we see the natural numbers not as quantities but as sets formed by digits; 2) if we add all digits that form a quantity formed by two or more natural integers, and of the resultant number, 3) we also add its digits up to obtaining a not divisible integer. 4) Or if it is a single divisible digit also divide it by its natural numbers' divisors, up to obtain only natural not divisible numbers (except for themselves). Any such original numeral can be reduced to one of four numbers, three of them prime numbers, with their average (mean) in parenthesis: 1 (45%, mode), 3 (33%), 5 (11%) or 7 (11%). They form a set of just four natural odd numbers to which all other figures can be reduced (see examples below). I propose the symbol $>n<$ to the operator that specify this kind of operations. This symbol is read as saying that large or small numbers can equally be reduced to n, where n is any of the first four odd natural numbers.

A sequence of ten quantities, as from 10 to 19, 100 to 109, 1000 to 1009, 1100 to 1109, and so on, after carrying out the operations mentioned, I have found that it will give as a result five *ones* (50%, mode), three *threes* (30%), one *five* (10%) and one *seven* (10%), which added give 26 and the reduction sum ($>n<$) of its digits, in turn, give 8 = 4 = 2 = 1. (In short, **1**: 5 times (t); **3**: 3 t; **5**: 1 t; **7**: 1 t). As far as I have tested, with this kind of integers it seems that always happens this way, as in the following examples:

10 = 1	1	...	1000 = 1	1
11 = 2 =	1		1001 = 2 =	1
12 = 3	3		1002 = 3	3
13 = 4 = 2 =	1		1003 = 4 = 2 =	1
14 = 5	5		1004 = 5	5
15 = 6 =	3		1005 = 6 =	3
16 = 7	7		1006 = 7	7
17 = 8 = 4 = 2 =	1		1007 = 8 = 4 = 2 =	1
18 = 9 =	3		1008 = 9 =	3
19 = 10 =	1		1009 = 10 =	1
26>n<1			26>n<1	

In this specific case, a sequence can be formed 1,1,3,1,5,3,7,1,3, 1,1,1,3,1,5,3,7,1,3,1, ... at great scale an algorithm should test if this sequence prevails and in which specific cases; surely other sequences could arise with different sets of quantities.

I started with this variety of examples.¹ However, if we do the same operations with quantities with continuous digits and progressive in their *ones*, *tens* and/or *hundreds* place like numbers 1100 to 1109, 1200 to 1209... up to 2000 to 2009, ten columns with ten quantities each, one hundred quantities in total. We obtained (a) *five* columns with *one* more frequent than *three*, and *five* and *seven* are in *one* column each: 50 quantities. (b) *Three* columns with *one* and *three* in equal frequency, and *five* and *seven* are in one column each: 30 quantities. (c) One column with four *ones*, three *threes*, two *fives* and one *seven*: 10 quantities. (d) And one last column, the tenth, with four *ones*, three *threes*, one *five* and two *sevens*: 10 quantities. Briefly, adding this data we get 45 *ones* (45%, mode), 33 *threes* (33%), 11 *fives* (11%) and 11 *sevens* (11%). (In sum, **1**: 45 t; **3**: 33 t; **5**: 11 t; **7**: 11 t = 100 quantities in total). Summarized in the following table (after example of column one):

An example of this set of columns (column one) is:

1100 = 2	= 1	1: 5; 3: 3; 5: 1; 7: 1 = 10
1101 = 3	= 3	
1102 = 4 = 2	= 1	
1103 = 5	= 5	Are in quantities:

1104 = 6	= 3	1: 0, 2, 6, 8, 9
1105 = 7	= 7	3: 1, 4, 7
1106 = 8 = 4 = 2 = 1	5: 3	
1107 = 9 = 3 = 3	7: 5	
1108 = 10 = 1		
1109 = 11 = 2 = 1		

Accumulating ten columns (one to ten) of ten quantities each:

1100-1109	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t a)
1200-1209	1: 4 t; 3: 4 t; 5: 1 t; 7: 1 t b)
1300-1309	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t a)
1400-1409	1: 4 t; 3: 3 t; 5: 2 t; 7: 1 t c)
1500-1509	1: 4 t; 3: 4 t; 5: 1 t; 7: 1 t b)
1600-1609	1: 4 t; 3: 3 t; 5: 1 t; 7: 2 t d)
1700-1709	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t a)
1800-1809	1: 4 t; 3: 4 t; 5: 1 t; 7: 1 t b)
1900-1909	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t a)
2000-2009	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t a)

$$45 + 33 + 11 + 11 = 100$$

1: 45 t (45%)

3: 33 t (33%)

5: 11 t (11%)

7: 11 t (11%)

100 (100 %) quantities

Same result with different quantities is obtained if, for example, we take a column of ten figures from 10000 to 10009 (column eleven), from 100000 to 100009 and from 100100 to 100109 (columns 12 and 13), from 1000000 to 1000009 and in a million we vary the hundreds from 1000100 to 1000109, 1000200 to 1000209, ... up to 1000900 to 1000909, we have ten columns of ten figures (columns 14 to 23) with the digit of the hundreds from one to nine. From 1001000-1001009 is column 24 and from 1002000-1002009 is column 25. All 25 columns of 10 quantities each.

Briefly, the total of 250 quantities distributed in 25 columns of 10 quantities each is made up of the following figures: **1-10**) From 1100-1109, 1200-1209, ... to 1900-1909, 2000-2009 are the columns from 1 to 10 of ten quantities each, 100 quantities in total. **11**) From 10000-10009 is column 11 of 10 quantities in total. **12-13**) From 100000-100009 and from 100100-100109 are columns 12 and 13 of ten quantities each, 20 quantities in total. **14-23**) From 1000000-1000009, 1000100-1000109, 1000200-1000209, ... up to 1000900-1000909 are columns 14 to 23, 10 columns of ten quantities each, 100 quantities in total. **24**) From 1001000-1001009 is column 24 of 10 quantities in total. **25**) From 1002000-1002009 is column 25 of 10 quantities in total. **1-25**) Adding figures: $100 + 10 + 20 + 100 + 10 + 10 = 250$ quantities in total.

As expected, in this arbitrary combination of ten columns (14 to 23) of ten figures each, I also obtained (a) *five* columns with *one* more frequent than *three*, and *five* and *seven* are in *one* column each: 50 quantities. (b) *Three* columns with *one* and *three* in equal frequency,

and *five* and *seven* are in one column each: 30 quantities. (c) One column with four *ones*, three *threes*, two *fives* and one *seven*: 10 quantities. (d) And one last column, the tenth, with four *ones*, three *threes*, one *five* and two *sevens*: 10 quantities. Accumulating 45 *ones* (45%), 33 *threes* (33%), eleven *fives* (11%) and eleven *sevens* (11%), 100 quantities in total (100%). As shown in the following table (after example of column 20):

Example of column 20: 1: 4 t; 3: 3 t; 5: 1 t; 7: 2 t = 10

1000600	= 7
1000601 = 8 = 4 = 2	= 1
1000602 = 9	= 3 Are in quantities:
1000603 = 10	= 11: 1, 3, 4, 6
1000604 = 11 = 2	= 13: 2, 5, 8
1000605 = 12	= 35: 7
1000606 = 13 = 4 = 2	= 17: 0, 9
1000607 = 14	= 5
1000608 = 15 = 6	= 3
1000609 = 16	= 7

Accumulating ten columns (14 to 23) of ten quantities each:

1000000-1000009	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t; a)
1000100-1000109	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t; a)
1000200-1000209	1: 4 t; 3: 4 t; 5: 1 t; 7: 1 t; b)
1000300-1000309	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t; a)
1000400-1000409	1: 4 t; 3: 3 t; 5: 2 t; 7: 1 t; c)
1000500-1000509	1: 4 t; 3: 4 t; 5: 1 t; 7: 1 t; b)
1000600-1000609	1: 4 t; 3: 3 t; 5: 1 t; 7: 2 t; d)
1000700-1000709	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t; a)
1000800-1000809	1: 4 t; 3: 4 t; 5: 1 t; 7: 1 t; b)
1000900-1000909	1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t; a)

$$45 + 33 + 11 + 11 = 100$$

1 = 45 t (45%)

3 = 33 t (33%)

5 = 11 t (11%)

7 = 11 t (11%)

100 (100%) quantities

I extended the exercise to 25 columns of ten quantities each in total and the frequency behaved following the same trend, with 14 columns of ten figures (56%) in which *one* is more frequent than *three* (and *five* and *seven* are in a column each); followed by 7 columns (28%) in which *one* and *three* are found in equal frequency (and *five* and *seven* are in one column each); two columns with four *ones*, three *threes*, two *fives* and one *seven* (11%); and two columns with four *ones*, three *threes*, one *five* and two *sevens* (11%). A summary of these data is presented in the following table:

1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t = 14 (56%)

1: 4 t; 3: 4 t; 5: 1 t; 7: 1 t = 7 (28%)

1: 4 t; 3: 3 t; 5: 2 t; 7: 1 t 2 (8%)

1: 4 t; 3: 3 t; 5: 1 t; 7: 2 t 2(8%)

25 (100%) columns

From the **25 columns** of ten quantities each, **250 quantities** in total are obtained, in **114** times (45.6%) the reduction ($>n<$) ended in **one**, **82** times (32.8%) the reduction ($>n<$) ended in **three**, **27** (10.8%) times in **five** and **27** (10.8%) times in **seven**: $114 + 82 + 27 + 27 = 250$ (100%) were the figures that I reduced ($>n<$) to its lowest natural number. See the following table:

1: 114 t (45.6%)

3: 82 t (32.8%)

5: 27 t (10.8%)

7: 27 t (10.8%)

250 (100%) quantities

Succinctly, according to the ending from **zero** to **nine** (in the ones place) of the **250** quantities, to what number of the first four odd natural numbers was each one reduced ($>n<$)? Reducing the **250** quantities, **114** quantities were reduced ($>n<$) to **1;82** to **3;27** to **5**; and **27** to **7**.

Of the **114 quantities** that were reduced ($>n<$) to **1**, in **14** the last number they had was **0** (see column one), in **12** it was **1**, in **11** it was **2**, in **11** it was **3**, in **8** it was **4**, in **9** it was **5**, in **11** it was **6**, in **12** was **7**, in **12** was **8**, and in **14** was **9**.

Of the **82 quantities** that were reduced ($>n<$) to **3**, in **7** the last number they had was **0**, in **9** it was **1**, in **9** it was **2**, in **7** it was **3**, in **9** it was **4**, in **9** it was **5**, in **7** it was **6**, in **9** was **7**, in **9** was **8**, and in **7** was **9**.

Of the **27 quantities** that were reduced ($>n<$) to **5**, in **2** the last number they had was **0**, in **2** it was **1**, in **3** it was **2**, in **5** it was **3**, in **5** it was **4**, in **2** it was **5**, in **2** it was **6**, in **2** was **7**, in **2** was **8**, and in **2** was **9**.

Of the **27 quantities** that were reduced ($>n<$) to **7**, in **2** the last number they had was **0** (see column twenty), in **2** it was **1**, in **2** it was **2**, in **2** it was **3**, in **3** it was **4**, in **5** it was **5**, in **5** it was **6**, in **2** was **7**, in **2** was **8**, and in **2** was **9**.

Summarized in the following table:

1: 0: 14 t; 1: 12 t; 2: 11 t; 3: 11 t; 4: 8 t; 5: 9 t; 6: 11 t; 7: 12 t; 8: 12 t; 9: 14 t = 114 t (45.6%)

3: 0: 7 t; 1: 9 t; 2: 9 t; 3: 7 t; 4: 9 t; 5: 9 t; 6: 7 t; 7: 9 t; 8: 9 t; 9: 7 t = 82 t (32.8%)

5:0: 2 t; 1: 2 t; 2: 3 t; 3: 5 t; 4: 5 t; 5: 2 t; 6: 2 t; 7: 2 t; 8: 2 t; 9: 2 t = 27 t (10.8%)

7:0: 2 t; 1: 2 t; 2: 2 t; 3: 2 t; 4: 3 t; 5: 5 t; 6: 5 t; 7: 2 t; 8: 2 t; 9: 2 t = 27 t (10.8%)

250 (100%)

When I used ten quantities with discontinuous digits but progressive in their **ones** place 1970 to 1979, once again I got **five ones** (50%, mode), **three threes** (30%), **one five** (10%) and **one seven** (10%). In sum, **1: 5 t; 3: 3 t; 5: 1 t; 7: 1 t = 10**

1970 = 17 = 8 = 4 = 2 = 1

1971 = 18 = 9 = 3

1972 = 19 = 10 = 1

1973 = 20 = 2 = 1

1974 = 21 = 3 = 3

1975 = 22 = 4 = 2 = 1

1976 = 23 = 5

1977 = 24 = 6 = 3

1978 = 25 = 7 = 7

1979 = 26 = 8 = 4 = 2 = 1

1: 5 t (50%)

3: 3 t (30%)

5: 1 t (10%)

7: 1 t (10%)

10 (100%)

Likewise, when using **ten** discontinuous and non-progressive figures, **six** with two decimals and **four** without decimals, the result was **five ones** (50%), **three threes** (30%), **zero fives** (00%) and **two sevens** (20%). With **eleven** discontinuous and non-progressive figures, **seven** with decimals and **four** without decimals, I obtained **five ones** (45.45%), **four threes** (36.36%), **zero fives** (0.0%) and **two sevens** (18.18%). With **twelve** discontinuous and non-progressive figures, **eight** with decimals and **four** without decimals, I obtained **five ones** (41.67%), **five threes** (41.67%), **zero fives** (0.0%) and **two sevens** (16.66%). With **thirteen** figures, **nine** with two decimals and **four** without decimals, I got **five ones** (38.46%), **five threes** (38.46%), **zero fives** (0.0%) and **three sevens** (23.08%). **One** remains as the most frequent number or mode (see next table).

3776408.89 = 52 = 7

1278419.31 = 36 = 9 = 3

995439.57 = 51 = 6 = 3

180011.85 = 24 = 6 = 3

60776.69 = 41 = 6 = 3

272942.48 = 38 = 11 = 2 = 1

20500.49 = 20 = 2 = 1

20500.00 = 7 = 7

538783714 = 46 = 10 = 1

395760253 = 40 = 4 = 2 = 1

123456789 = 45 = 9 = 3

372457609 = 43 = 7

20500.40 = 11 = 2 = 1

1: 5 t (50%) 1: 5 t (45.45%)

3: 3 t (30%) 3: 4 t (36.36%)

5: 0 t (00%) 5: 0 t (0.0%)

7: 2 t (20%) 7: 2 t (18.18%)

10 (100%) 11 (99.99%)

1: 5 t (41.67%) 1: 5 t (38.46%)

3: 5 t (41.67%) 3: 5 t (38.46%)

5: 0 t (0.0%)	5: 0 t (0.0%)
7: 2 t (16.66%)	7: 3 t (23.08%)
12 (100%)	13 (100%)

Comments

In BELC of 05/23/1995 we presented the above results to three bioenergemes (BEGs) close to our bioenergemal (BEL) research. *Abdus Salam*, a physicist; *Srinivasa Ramanujan*, a mathematician; and *Bhrikiam*, an extraterrestrial (ET) man from the planet Agram located in the Andromeda constellation. I told them about the procedure and the results of the reduction ($>\mathbf{m}<$) to the level I had developed and practiced it at that time, and they and my BEG did some exercises, all four BEGs were very enthusiastic. *–I asked them if it could be a new mathematical operator.* *–Abdus:* I consider that it is a new operator indeed. *–Bhrikiam (B):* It would be useful in its application in electronics, computing, for example. *–Ramanujan:* It is a new operator, although it starts from the basic operators already known. It is similar, for example, to the square root, it would also be a new law that would govern the decimal or base ten system. Not only is it fun, it's also a *BELintuition*. I do think it could be a rule or law of the decimal numbering system. *–Then, mathematical science or mathematics is the best example of the influence of the BEG on the intellectual work of the neuromindegó (NMEGO), frequently through one of the most important BEL functions such as intuitions.* *–Ramanujan:* [He is joyful] Yes, exactly. The clarification you make between a function of the NMEGO and the strictly intuitive function of the BEG is very important. The experience of intuitions, which we have all lived, is very satisfying. Oneself doubts how it was that you came to such an idea or answer, but it is an intuition. *–Abdus:* [Bioenerscientiates, intuits] Indeed, mathematics and other exact sciences are fundamentally performed by the BEG function. Perhaps that is where the abstract lies, that is, not because of mathematics itself, but because it is difficult to explain how it is that certain intuitions or abstractions, bioenerscientiots and bioenerscientemes [components common to intuitions] arise or are reached. *–B:* [Joyful] I add that there have been useless efforts of many terrestrial and ET NMEGOs that have allowed themselves to go for the ambition of recognition and they have only remained with a sensation of frustration for not accepting the simple intuitions of their BEG.¹

Unit universe

We have talked about the biomaterial universe (BMLU; discontinuous space-time, three-dimensional) and the bioenergemal universe (BELU), interconnected by the biointerfacemal universe (BIFLU), which seems to play a role similar to a fourth dimension. It would be like a universe between before (BML) and after (BEL), it would be the proto-space-time (proto-BML universe) and/or the proto-BEL universe. The BEL universe would be a fifth dimension. This is summarized in the following diagram:

BMLU (space-time) \Leftrightarrow BIFLU (proto-space-time or proto-BELU) \Leftrightarrow BELU (BEL energy universe)

What is your opinion about this? *–Ramanujan:* Now it seems obvious to me. For BEL communication in that BIFLU universe is the origin, it is the moment in which intuitions arise, like the ones you are commenting on at this moment. I will try to accompany you when you bioenerscientiate with the other invited BEGs. *–Abdus:* [Asks for the floor, while we read the comment, he bioenerscientiated the BIFLU universe as constant, origin and present continuous] The BIFLU universe is related to some experiments we did with rings and the ruler [that could be rotated in all ways without changing its characteristics

and functions], this continuous present is given. *–B:* [Shows very interested] What I hear is very interesting and now understandable. The existence of the BIFLU universe, which you were able to intuit very well in some bioexperience, is necessary for the biointeraction between the BML universe and the BEL universe to exist throughout the [unit] universe. This approach would help to understand that there is only one [unit] universe, and that in the BIFLU universe the present is continuous. That is why proto-space-time is associated with subatomic levels. *–Shows the bioscene of the spin of a particle.*¹

BEL mathematics

Did terrestrial humanity discover the mathematics that already exists in the phenomena of nature or did it invent mathematics to interpret these natural phenomena or did it both discover and invent both types of mathematics? *–Ramanujan:* [Smiles joyful] Look, now I can tell you that terrestrial humanity discovers and invents both types of mathematics. Discover and invent because there is an exchange of intuitions coming from the same BEL energy in unit nature. The BEG and the NMEGO play a very important role in this process. *–Abdus:* The first option is what has happened. Let us clarify that the BEG of terrestrial humanity discovers mathematics in the phenomena of nature and in collaboration with the NMEGO is that it interprets these phenomena, elaborating mathematics theoretically. *–B:* I agree with Abdus. *–What is the origin of the mathematics that has been developed in the BML universe?* *–Ramanujan:* The intuitions. *–Abdus:* The origin has been propitiated by the BEG as we have just commented. It is through the intuitions that are experienced from the earliest childhood, for example, when the infant recognizes his/her space. *–B:* That may be a universally applicable approach. *–Can we suppose that some BEL mathematics or biomathematics of the BEL universe could eventually be developed?* *–Ramanujan:* Yes, it is possible. [It would be] as limited as in the BML universe, but full of surprises. *–Abdus:* Following this same approach we can say that in the BML universe implicitly and involuntarily, at least in part, the BEG has already tried to develop these BEL mathematics or biomathematics, only they have not been considered as such. *–B:* I totally agree with Abdus, in fact, the discovery of the [BML] universe has been due to the intuitions that the BEG has had, and the NMEGO is the one that has distorted that bioinformation. *–How would you define bioenergemal mathematics or biomathematics?* *–Ramanujan:* [Bioenerscientiates and jokes] They would be intuitions to the n... BEL mathematics or biomathematics would be the BEG's solution to a problematic situation that the NMEGO poses. *–Abdus and Bhrikiam:* It is the BEL communication capacity of the BEG both with the BEL energy in general and with the NMEGO in particular. *–From what numerical base do the mathematics you use start?* *–B:* It is an alphanumeric base.¹

Extraterrestrials, space travelers

Have you heard of any humanity that has disappeared as a result of internal war conflicts or for any other reason? *–B:* Due to armed conflicts, no humanity has disappeared, but changes in environmental conditions have caused several humanities to become extinct. In the whole [BML] universe there may be a hundred or more than a hundred. The most common cause has been the misuse of chemicals. *–Abdus:* Bhrikiam's answer seems insufficient, perhaps he meant that in the harmful use of chemical products, and I would add bacteriological as well, even their use as weapons. *–Ruth:* Bhrikiam smiles, pats Abdus on the back. *–B:* It is true what you say. *–Why didn't you want to say it, Bhrikiam?* *–B:* I stayed with the most basic. *–What do you think Abdus, why didn't Bhrikiam want to say it?* *–Abdus:* Because perhaps, although it is obvious, he doesn't know it.¹

ETs on earth

ACS: Do you know of any extraterrestrial humanity that, like the terrestrial, can survive in the open on the surface of the Earth, and without protection breathe our atmosphere? –Bhrikiam (B): In such conditions I do not know extraterrestrial humanity that could do it. *–Do you know of any extraterrestrial humanity that, like the terrestrial, has a body with: 1) Circulatory system, heart and through its veins and arteries circulate blood or something similar? –B: 1)* No, there are no such conditions. *2) respiratory system or the like? 2)* The different extraterrestrial humanities have adapted to the different life conditions in which they find themselves, but there is no other humanity with the conditions that are known of the terrestrial humanity. *3) Sexually reproducing or the like? 3)* No. Possibly there is some extraterrestrial humanity that reproduces in a similar way but not the same. *4) Nervous system, brain and peripheral nerves or the like? 4)* Of course, the nervous system is essential for interaction with the outside world. But that does not make them equal, they are only similar, each humanity has its own characteristics. *5) Digestive system or the like? 5)* I would tell you the same thing, it has the function, but it is not exactly the same. *6) Musculoskeletal system or the like? 6)* I tell you the same. *7) Endocrine system and hormones or something similar? 7)* Same. *8) Skin or something similar? 8)* Same. *9) With fingers and toes or something similar? 9)* No, I don't know any other humanity that has fingers and toes. *10) That transmit their hereditary characteristics through the DNA molecule? 10)* Same. *11) Are the physical characteristics of each of the different extraterrestrial and terrestrial humanities unique, then? 11)* That's right, the characteristic that unifies all of them is the BEL energy. *12) At this moment Ruth sneezes and we ask Bhrikiam if they sneeze. 12)* [Smiles] No. *–Abdus:* If we met between the different extraterrestrial and terrestrial humanities, we would perceive each other as rare biospecies. However, one and the other could intuit affinities for the same BEL energy existing in all of them. *–Ruth:* Bhrikiam was surprised and pleased by these questions that had not occurred to him. *–Abdus:* In summary, the terrestrial and extraterrestrial humanities are an example of the extraordinary biocreative capacity of BEL energy. *–Ramanujan:* I thank you for waking me up again. *–B:* We hope that the time will come when the terrestrial and extraterrestrial humanities can share their knowledge in this simple way, as happens through BEL communication.¹

Dian Fossey and the mountain gorillas

BELC 03/09/2007. We told Abdus and Bhrikiam that, regarding the waste of natural resources, we would like to invite Dian Fossey, she was an ethologist by profession. In the area of the Virunga volcanoes in Rwanda, Central Africa, she studied the behavior of mountain gorillas for nearly two decades and where she was killed by poachers. When mentioning the African continent, a bioscene of the jungle is observed and a thin woman appears there. We invite her to stay close to where Abdus and Bhrikiam are, and introduce her to them. What do you say of human attitudes regarding the conservation of ecosystems and natural resources in general? –Dian: There is no limit for the human to cause all kinds of destruction. Against nature or against human life. *–What do you opine is due to this human attitude? –To ambition, to the search for power; to trivial life, to ignorance. [Shows very upset] They feel like 'gods' and owners of the world. They take over what has no owner, they take over everything. They continue to behave 'primitively'. We still live trapped in a reality that we do not know, and we supposed to be free and we suppose to dominate others. But we do not know much about this freedom that exists in the BEL universe. Also, this is a serious mistake, I mean not knowing*

the BEL universe. That makes life like being imprisoned or trapped by the NMEGO itself. Now I understand my mistakes... *–Then, we invited Digit, one of the gorillas she studied and with whom she established strong emotional ties. Digit appears, walks over to her and pats her head. Digit, do you want to make Dian intuit something? –Digit:* You also taught me to sing with my heart. *–Surprisingly, she invites Digit:* Tell them if we come from the same biospecies. *–Digit:* [Moves or shakes his head denying, similar to the human movement] No, although we know how to sing the same with our hearts. *–Abdus:* [Bhrikiam and Abdus smile] I call that intelligence; I mean Digit's answer. *–Ruth:* Bhrikiam is perplexed and doesn't know what to say... *–Dian, what do you opine? –Dian:* I continue to learn from them, because their feelings are not affected by what they experienced. *–Ruth:* Spontaneously, Dian asks Digit: When they killed you, how do you live it? *–Digit:* I don't know what you're telling me, I'm here and fine. *–Abdus, how about Digit's intelligence? –Abdus:* Remarkable!¹

Innate numerical aptitude

Daniel Tammet speaks of the “numerical instinct” complementary to the Chomskian “instinct of language” and is based on studies some authors have carried out on five-month-old infants who fix their gaze for a longer time when the number of objects they are looking at on a screen change. Moreover, in children who do not yet know the rules of arithmetic, researchers have also been able to demonstrate that they can do addition and subtraction. Just like Abdus Salam has also emphasized before (see above: *BEL mathematics* paragraph),¹ both Chomsky and Tammet, at different BELCs, have agreed that the personal BEG plays an outstanding role in both to learn a language and to do some arithmetic operations in early childhood.²⁻⁴

Conclusions

1. Every number composed by even and/or odd natural units, consecutive or discontinuous, still by adding their decimals just as natural numbers, can be reduced ($>n<$) to one of the first four odd natural numbers by means of this new operator.⁵
2. This sequence of first four odd natural numbers could give the opportunity to store large quantities of numerical data regarding four different varieties of events, subjects, objects or information.
3. An expert on informatics could ratify and widen these findings and prepare an algorithm to store any kind of data, information, traits or values, based on these first four odd numbers. Also, he/she could find other possible applications.
4. Electronics could also benefit with this new operator ($>n<$).
5. Game theory could make one based on this new operator.
6. When one remembers someone, it is very likely that the personal BEG and that of the other person are biocommunicating. Which happens both between BEGs that are in the BMLU, just as we know that it happens between a BEG of the BMLU and another of the BELU (or both in the BELU). In this way events, experiences or sensations are also induced, or that these do not occur.
7. Remembering that one knew what one does not remember means that one still knows it.
8. This is different from not remembering that one knew what one does not remember. Like who are the sons or daughters of the person, who is her partner, or that the affected person has to eat or breathe, as happens in severe senile dementia.¹⁻²

Acknowledgments

I acknowledge Ruth A. López-Téllez for her clever assistance and permanent help and I thank Antonio Chaac Velázquez-Rincón for his comments of 1995 about this mathematical proposal. I also thank DCR for reviewing this article.

Conflicts of interest

None.

References

1. Cuevas-Sosa A. *Bioenergemal communication with alien bioenergemes*. Grosvenor House Publishing, 2019.
2. Cuevas-Sosa A. *Authorized biography of Jesus, Mary, Joseph and their disciples*. 2nd ed. London: Grosvenor House Publishing Ltd; 2019, 7-554.
3. Tammet Daniel. *Embracing the wide sky*. Free Press, 126-7, 2009.
4. Cuevas-Sosa A. BEL communication of 12/19/2021.