Antioxidant Activities of Four Dominant Species of *Trentepohlia* (*Trentepohliales, Chlorophyta*)

Abstract

The evaluation of antioxidant activities of four *Trentepohlia* species (i.e. *T. abietina*, *T. arborum*, *T. diffracta* and *T. umbrina*) *in vitro* revealed a remarkable result where all four studied species were found to be rich in phenolic compounds. Comparatively *T. abietina* extract contained the highest amount of total phenolic content and flavonoids content as well, and it exhibited the maximum scavenging activity with the lowest IC₅₀. The scavenging activity of the four *Trentepohlia* species extracts was observed to decrease in the following order *T. abietina* > *T. arborum* > *T. diffracta* > *T. umbrina*. Moreover, both DPPH radical scavenging activity and superoxide anion radi-cal scavenging activity varied significantly between the four species. In case of reducing power, extracts of all four species were concentration dependent where high reducing power was observed at higher concentration and gradually decreased with decrease in concentration of the extracts. Comparing amongst the species, *T. abietina* again showed highest reducing power at all the concentrations. The result of correlation showed a positive increase in scavenging activities with increase in flavonoids content. This clearly indicated that in this case, the scavenging effect exhibited by the extract of all four species of *Trentepohlia* mainly the DPPH scavenging activity could be attributed to the presence of mainly flavonoids constituent.

Keywords: Trentepohlia; Subaerial Algae; Antioxidant; Phenolic; Flavonoids; Free radicals; DPPH; Superoxide anions; Carotenoids; Inhibition concentration

Abbreviations: ROS: Reactive Oxygen Species; OH: hydroxyl; H₂O₂: Hydrogen Peroxide; TBHQ: Tertiary Butylhydroquinone; PG: Propyl Gallate; NBT: Nitroblue Tetrazolium; DPPH: 2,2-Diphenyl-1-picrylhydrazyl; EDTA: Ethylenediaminetetraacetic Acid; PMS: Phenazine Methosulphate; ANOVA: One-way Analysis of Variance

Introduction

An antioxidant is a substance that is present at low concentrations and significantly delays or prevents oxidation of the oxidizable substrate. Antioxidants are effective because they can donate their own electrons to Reactive Oxygen Species (ROS) and thereby neutralizing the adverse effects of the latter [1]. Reactive oxygen species (ROS) is a collective term used for a group of oxidants, superoxide (O₂⁻) radicals, hydroxyl (OH) radicals and hydrogen peroxide (H₂O₂), which is either free radical or molecular species capable of generating free radicals [2]. ROS are generated as by-product of biological reactions such as the mitochondrial respiratory chain or from exogenous factors or environmental stresses [3,4]. They are highly reactive transient chemical species formed in all tissues during normal aerobic cellular metabolism, with the potential to initiate damage to the various intracellular components (nucleic acids, lipids, proteins) on which the functioning of normal cell depends.

The most active dietary antioxidants belong to the family of phenolic and polyphenolic compounds. Flavonoids and phenolic acids are the most important groups of secondary metabolites and bioactive compounds in plants and are good sources of natural antioxidants in human diets [5]. They are also a kind of natural product capable of scavenging free superoxide radicals, reducing the risk of cancer and protecting biological systems against the harmful oxidative processes on carbohydrates, proteins, lipids and DNA [6-10]. The most commonly used antioxidants are butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tertiary butylhydroquinone (TBHQ), and propyl gallate (PG), however, there has been growing concern over their safety and toxicity. Therefore, the development and utilization of more effective antioxidants of natural origin are desired. Of various kinds of natural antioxidants, phenolic compounds have received much attention [11,12]. Phenolic antioxidants are reported to quench oxygen-derived free radicals as well as the substrate-derived free radicals by donating a hydrogen atom or an electron to the free radical. The antioxidant activity of phenolics in several systems has been proved to be as active as BHA or BHT.

Algal organisms are rich sources of structurally novel and biologically active metabolites. Many potential bioactive compounds produced by these organisms as primary or secondary metabolites had raised interests in the pharmaceutical industry [13-15]. Microalgae are known as rich source of natural antioxidants. They may serve as a continuous and reliable source of natural products, including antioxidants, because they can be cultivated in bioreactors on a large scale [16]. Recently, many research works have been carried out for screening of various microalgae for production of natural antioxidants [17-21]. Moreover, it was reported that carotenoids are well known class of antioxidants from microalgae that play an important role in quenching reactive oxygen species (ROS) generated during...
Antioxidant Activities of Four Dominant Species of Trentepohlia (Trentepohliales, Chlorophyta)

Preparation of algal extract

Air-dried algal material (1g) was extracted using methanol at room temperature. The extract was filtered through filter paper (Whatman no.1) and then evaporated to dryness. The dry crude extract was dissolved in methanol and stored at -20 °C until they were used in the tests.

Quantitative analysis of antioxidative compounds

Determination of total phenolic content: Total phenolic content was determined with Folin & Ciocalteau reagent following Sinkard & Singleton [40] using gallic acid as standard phenolic compound. 1ml of the extract (1mg/ml) in a volumetric flask was diluted with 46 ml of distilled water. 1ml of Folin-Ciocalteau reagent was added and mixed thoroughly. After 3 minutes, 3ml of 2% sodium carbonate was added and then the mixture was kept in the dark at room temperature for 2 hours, and the mixture was shaken frequently every now and then. The absorbance of the mixture was then measured at 760nm in a Cary 100 UV-visible spectrophotometer against blank consisting of all the reagents except the algal extract.

A calibration curve of gallic acid was prepared and the results were expressed as mg GAE (gallic acid equivalent)/ mg dry weight of extract.

Determination of total flavonoid content: Total flavonoid content was determined by spectrophotometric method [41] using quercetin as standard. 1ml of a 2% methanolic AlCl₃ solution was mixed with 1ml of 1mg/ ml extract, and its absorbance was determined at 415nm. The mixture was incubated at room temperature for 10 minutes, and the absorbance was measured at 415nm. Negative control, without extract was used as the blank. A calibration curve of Quercetin was prepared and the results were expressed as μg QE (Quercetin Equivalent) / mg dry weight of extract.

Antioxidant activity

DPPH radical scavenging activity

The DPPH radical scavenging activity of the algal extract was measured using the method described by Brand-Williams et al. [42] with some modifications. Two-fold dilution of the extract was made to get a concentration of 500, 250, 125, 62.5 and 31.25μg/ml. Diluted solutions of extract (1ml each) were mixed with 2 ml of methanol solution of DPPH radical (0.05 mg/ml). The mixture was shaken vigorously and allowed to stand for 30 minutes at room temperature. Then the absorbance was measured at 517nm against a blank solution that contained 2ml methanol and 1ml algal extract. A solution containing 2ml DPPH and 1ml methanol was used as the control. Ascorbic acid was used as a standard.

The ability of extract to scavenge DPPH free radical was calculated using the following equation:

\[\text{DPPH scavenging effect \%} = \left(\frac{A_0 - A_1}{A_0} \right) \times 100 \]

Where \(A_0 \) is the absorbance of the negative control (2ml of methanol solution of DPPH radical + 1 ml of methanol) and \(A_1 \) is the absorbance of reaction mixture or standard.

The inhibition concentration at 50% inhibition (IC₅₀) was used.
to measure the radical scavenging activity. A lower IC$_{50}$ meant better radical scavenging activity.

Reducing power: The reducing power was determined according to the method of Oyaizu [43]. Two-fold dilution of the extract was made to get a concentration of 500, 250, 125, 62.5 and 31.25 μg/mL. Each extract (1ml) was mixed with 2.5 ml of phosphate buffer (0.2 M, pH 6.6) and potassium ferricyanide (2.5 ml, 1%). The mixtures were incubated at 50°C for 20 minutes. Trichloroacetic acid (10%, 2.5 ml) was added to the mixture and centrifuged. Finally, the upper layer (2.5 ml) was mixed with distilled water (2.5 ml) and ferric chloride (0.5 ml; 0.1%). The absorbance of the solution was taken at 700nm in spectrophotometer. Blank was prepared with all the reaction agents without extract. Increased absorbance of the reaction mixture specified that the reducing power is high. Ascorbic acid was used as positive control.

Superoxide anion radical scavenging activity: Superoxide anion radical scavenging activity of the algal extract was measured following Nishimaki et al. [44]. Two-fold dilution of the extract was made to get a concentration of 500, 250, 125, 62.5 and 31.25 μg/mL. Each extract (0.1 ml) was mixed with 1 ml nitroblue tetrazolium (NBT) solution (156μM in 0.1 M phosphate buffer, pH 7.4) and 1 ml nicotinamide adenine dinucleotide (NADH) solution (468 μM in 0.1 M phosphate buffer, pH 7.4). The reaction was started by adding 100μL of phenazinemethosulphate (PMS) solution (60μM in 0.1 M phosphate buffer, pH 7.4). The mixture was then incubated at room temperature for 5 minutes, and the absorbance was measured at 560nm. Phosphate buffer was used as the blank. Decreased absorbance indicated increased superoxide anion radical scavenging activity. Ascorbic acid was used as standard. The percentage inhibition of superoxide anion generation was calculated using the following formula:

\[
\text{Superoxide anion scavenging activity} (\%) = \left[\frac{A0 - A1}{A0}\right] \times 100
\]

Results

Total phenolic and flavonoid content

Total phenolic and flavonoid content of methanol extract of *Trentepohlia abietina*, *T. arborum*, *T. diffracta* and *T. umbrina* are presented in Table 1. *T. abietina* contained the highest amount of Phenolic compound (75.69 ± 1.8 μg GAE/mg of dry weight of extract) followed by *T. arborum* (28.75 ± 2.9 μg GAE/mg of dry weight of extract) and *T. umbrina* (27.55 ± 2.2 μg GAE/mg of dry weight of extract) and least was in *Trentepohlia diffracta* (24.87 ± 1.2 μg GAE/mg dry weight of extract). The flavonoid constituent of the extract was highest in *T. abietina* (25.32 ± 1.2 μg QE/mg of extract) and followed by *T. arborum* (22.82 ± 3.4) and *T. diffracta* (20.21 ± 0.8) and lowest amount was observed in *T. umbrina* (17.34 ± 1.6 μg QE/mg of extract). The phenolic and flavonoid content varied significantly between the four species (P= 0.000004 and P= 0.0002 respectively).

DPPH radical and superoxide anion scavenging activity

DPPH radical scavenging and superoxide anion radical scavenging activity of four species of *Trentepohlia* extract are summarised in Table 2. DPPH scavenging activity and superoxide anion scavenging activity of methanol extract of four species of *Trentepohlia* at different concentration varied between the species (Figures 1 & 2). Amongst the four species, *T. abietina* exhibited the maximum scavenging activity with the lowest IC$_{50}$ value (197.93 ± 1.7μg/ml), followed by *T. arborum* (387.25 ± 1.3 μg/ml), *T. diffracta* (484.71 ± 0.9 μg/ml) and *T. umbrina* (598.77 ± 2.0 μg/ml).

Similarly, in case of superoxide anion scavenging activity, *T. abietina* showed better scavenging capacity than the other species of *Trentepohlia* with lowest IC$_{50}$ value (281.68 ± 1.9μg/ml). *T. umbrina* in both the cases showed lesser scavenging activity with higher IC$_{50}$ value of 598.77 ± 1.8 and 801.12 ± 0.7 respectively.

The scavenging activity of the extracts of four *Trentepohlia* species decreased in the following order *T. abietina* > *T. arborum* > *T. diffracta* > *T. umbrina*. However, comparing with Ascorbic acid as reference standard, *Trentepohlia* extracts showed lower DPPH radical and superoxide anion radical scavenging activity. A significant difference could be observed in both DPPH radical scavenging activity.

Statistical analysis

Assays were performed in triplicate and results are shown as mean ± standard deviation. Calculation of linear correlation coefficient and Pearson correlation analysis were carried out using MS Office Excel 2007 and XLSTAT 2009 respectively. One-way analysis of variance (ANOVA) was used to find out the significant difference between the samples. A statistical significance of p < 0.05 was considered to be significant.
Antioxidant Activities of Four Dominant Species of Trentepohlia (Trentepohliales, Chlorophyta)

scavenging activity ($P = 0.000000007$) and superoxide anion radical scavenging activity ($P = 0.0000001$) between the four species of Trentepohlia.

The correlation between phenolic content and flavonoids content with DPPH radical scavenging activity (Figure 3) and with Superoxide anions (Figure 4) of the four extract taken in term of IC$_{50}$ was further carried out. The result showed no correlation at all between phenolic content with either DPPH radical and superoxide anion scavenging activity; however, a strong correlation was observed only between flavonoids content with DPPH scavenging activity of the extract ($p=0.01, R^2 = 0.96$), whereby an increased in flavonoids content lead to a lower IC$_{50}$ values.

Table 2: DPPH radical scavenging activity and superoxide anion scavenging activity of methanol extract of Trentepohlia abietina, T. arborum, T. diffracta and T. Umbrina.

<table>
<thead>
<tr>
<th>Species</th>
<th>DPPH Radical Scavenging Activity IC$_{50}$ (μg/ml)</th>
<th>Superoxide Anion Scavenging Activity IC$_{50}$ (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trentepohlia abietina</td>
<td>197.93 ± 1.7</td>
<td>281.68 ± 1.9</td>
</tr>
<tr>
<td>Trentepohlia arborum</td>
<td>387.25 ± 1.3</td>
<td>588.58 ± 1.6</td>
</tr>
<tr>
<td>Trentepohlia diffracta</td>
<td>484.71 ± 0.9</td>
<td>712.82 ± 1.1</td>
</tr>
<tr>
<td>Trentepohlia umbrina</td>
<td>598.77 ± 1.8</td>
<td>801.12 ± 0.7</td>
</tr>
<tr>
<td>Reference standard</td>
<td>7.40 ± 0.1</td>
<td>117.69 ± 0.2</td>
</tr>
</tbody>
</table>

Figure 1: DPPH radical scavenging activity expressed as percentage inhibition of the four Trentepohlia species extract at different concentration.

Figure 2: Superoxide anion scavenging activity expressed as percentage inhibition of the four Trentepohlia species extract at different concentration.

Figure 3: Correlation between DPPH radical scavenging activity IC$_{50}$ (μg/ml) with Total phenolic content and flavonoid content.

Figure 4: Correlation between Superoxide anion scavenging activity IC$_{50}$ (μg/ml) with Total flavonoid content.

Citation: Kharkongor D, Ramanujam P (2017) Antioxidant Activities of Four Dominant Species of Trentepohlia (Trentepohliales, Chlorophyta). Int J Complement Alt Med 8(5): 00270. DOI: 10.15406/ijcam.2017.08.00270
Reducing power

The reducing power in all the four species of *Trentepohlia* extract was concentration dependent. High reducing power was observed at higher concentration and gradually decreased with decrease in concentration of the extracts. The absorbance of *Trentepohlia* extract is presented in Table 3. Comparing with Ascorbic acid as reference standard, four species of *Trentepohlia* exhibited moderate reducing power. Comparing amongst the species, *Trentepohlia abietina* showed highest reducing power at all the concentrations followed by *Trentepohlia arborum*, *T. diffracta* and it was minimum in *T. umbrina*. The reducing power between the four species of *Trentepohlia* varied significantly (P=0.000001) at different concentration (P = 0.03).

Table 3: Reducing power of methanol extract of *Trentepohlia abietina*, *T. arborum*, *T. diffracta* and *T. Umbrina*.

<table>
<thead>
<tr>
<th></th>
<th>1000 µg/ml</th>
<th>500 µg/ml</th>
<th>250 µg/ml</th>
<th>125 µg/ml</th>
<th>62.5 µg/ml</th>
<th>31.25 µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trentepohlia abietina</td>
<td>0.55</td>
<td>0.38</td>
<td>0.29</td>
<td>0.24</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>Trentepohlia arborum</td>
<td>0.55</td>
<td>0.36</td>
<td>0.27</td>
<td>0.24</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Trentepohlia diffracta</td>
<td>0.34</td>
<td>0.29</td>
<td>0.25</td>
<td>0.19</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>Trentepohlia umbrina</td>
<td>0.18</td>
<td>0.14</td>
<td>0.09</td>
<td>0.05</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Reference Standard</td>
<td>1.98</td>
<td>1.96</td>
<td>1.92</td>
<td>1.74</td>
<td>0.82</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Discussion

The present evaluation of antioxidant activities of four *Trentepohlia* species in vitro revealed a remarkable result. All four species of *Trentepohlia* studied were found to be rich in phenolic compound. Comparatively *T. abietina* extract contained the highest amount of total phenolic compound and flavonoids content and also exhibited the highest DPPH radical scavenging activity, superoxide anion radical scavenging activity and reducing power. An increased in phenolic and flavonoids content was observed to be accompanied by higher scavenging activities (low IC₅₀ values) which indicated that phenolics might be the constituents that are also responsible for the scavenging effect in these four *Trentepohlia* species. However taken into account the correlation result, it clearly indicated that total phenolic content itself in this case did not influence the scavenging activities of the *Trentepohlia* extract. Although some reports had shown the correlations between antioxidative activities of algae and phenolic content [45,46], this might not always be true as total phenolic content in many cases did not correlate with antioxidative activities as reported by other researchers [47] Hence in this present scenario the scavenging effect exhibited by the extract of four species of *Trentepohlia* mainly the DPPH scavenging activity could be attributed to the presence of mainly flavonoids constituent. Therefore with increase in flavonoid content of the *Trentepohlia* extract there was a significant increase in scavenging activities. Hence *T. abietina* with significant higher amount of flavonoids showed better scavenging properties followed by *T. arborum*, *T. diffracta* and *T. umbrina* respectively. It was also well documented that Flavonoids are a class of secondary plant phenolics with significant antioxidant and chelating properties. Several workers had also reported that Flavonoids can directly scavenge hypochlorous acid, hydroxyl, singlet oxygen and lipid peroxyl radicals, by metal chelation and by inhibiting lipoxygenase activity [48]. Rice-Evans et al. [49] explained that the antioxidant properties of flavonoids and other phenolics are mainly due to their redox properties, which allow them to act as reducing agents, hydrogen donors and singlet
Antioxidant Activities of Four Dominant Species of Trentepohlia (Trentepohliales, Chlorophyta)

We also declare that this manuscript has not been published elsewhere and is not currently under consideration by another journal. The submission of the Manuscript is approved by the Head of Botany Department, for financial support and to the Head of Botany Department, for especially developing fast culturing methods are very essential to source of antioxidants. Hence, further researches in this line, abietina, T. arborum, T. diffracta and T. umbrina Exhibition of good antioxidant activities by these four species ([51-56]). Therefore, in this situation too Carotenoids also could contribute to the increased scavenging activities of Trentepohlia extract along with flavonoids.

Conclusion

Assessment of antioxidant activities of four dominant species of Trentepohlia indicated that the extract from all four species had considerable antioxidant potential in vitro. All the four studied species contained considerable amount of flavonoids contents which are potent antioxidants as shown by their high scavenging activity and reducing activity. From this work it can also be concluded that flavonoids which are potent antioxidant compounds contributed to the antioxidant properties of four Trentepohlia species besides the well documented carotenoids. Exhibition of good antioxidant activities by these four species (T. abietina, T. arborum, T. diffracta and T. umbrina) also added to the knowledge on potential of Trentepohlia as a candidate for natural source of antioxidants. Hence, further researches in this line, especially developing fast culturing methods are very essential to make use of this natural resource commercially.

Acknowledgements

We are thankful to North Eastern Hill University for the financial support and to the Head of Botany Department, for providing us all the laboratory facilities.

Conflict of Interests

This work had been done by us in the Algal Ecology Laboratory in North-Eastern Hill University, a Central University of India.

Therefore, "we the authors hereby declare that there is no conflict of interests regarding the publication of this article".

"We also declare that this manuscript has not been published elsewhere and is not currently under consideration by another journal. The submission of the Manuscript is approved by the Institution.

References

Citation: Kharkongor D, Ramanujam P (2017) Antioxidant Activities of Four Dominant Species of Trentepohlia (Trentepohliales, Chlorophyta). Int J Complement Altern Med 8(5): 00270. DOI: 10.15406/ijcam.2017.08.00270

