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Introduction
Cellulose is a linear polysaccharide consisting of a chain of β 

(1-4) linked D-glucose units.1 Although vegetable origin cellulose 
is widely applied at industrial level, the productive scale generates 
serious problems on ecosystems where the pulp mills mega industries 
known as “pasteras” are located.2 Numerous processes make up the 
Kraft method, traditionaly employed to obtain microcrystalline grade 
cellulose. Each of the steps in this method requires large consumption 
of energy and corrosive and contaminating chemical compounds in 
even more large volumes. Although the balance of mass and energy of 
the process is economically beneficial, it results in an environmental 
imbalance, particularly in underdeveloped countries where the 
premise of productivity is above caring for the people and the planet.3 
While high productivity is positive for growth in developing countries, 
environmental balance and moderation in pollution levels must be 
taken into consideration. The dumping of highly harmful industrial 
waste into river beds, streams, groundwater tables and underground 
freshwater reservoirs is a clear disadvantage when science think about 
sustainable processes.4 In emerging countries such as Argentina and 
Uruguay, the location of these “pasteras”  generates great concern. 
A report presented by the University of the Republic of Uruguay 
(UDELAR) in 2006, summarizes the scientific evidence available 

on the environmental impacts of the installation of cellulose plants 
from vegetal origin and the associated forestry model.5 The report 
presents analysis and studies of the effects of forestry cultivation 
on the ecosystem, the benefits provided by natural pastures and the 
effects generated by liquid effluents at hierarchical levels (molecular, 
individual, population, community and ecosystem).5 In our province 
Tucuman Argentina, we live with one of the oldest paper mills 
or “pasteras” in the country.6,7 Concern about the environmental 
pollution it generates, has reached debates at a legal, political and 
scientific level.8 Furthermore, the reuse of waste products from the 
paper and sugar industries, such as sugarcane bagasse, is an imaginary 
solution to a huge problem. These types of actions constitute only 
patches. We wonder how many liters of agrochemicals are poured 
into the fields, how many towns are fumigated, how many hectares of 
forest are devastated by monocultures. Putting the environment first, 
we wonder how many thousands of liters of vinase and toxic waste 
run through our watersheds to end up reusing some bagasse to extract 
cellulose. It is not about demonizing the product, but rather applying 
cleaner production technologies to obtain it in a sustainable and 
ecologically friendly way. The development of a conscious process, 
where environmental scientists take a leading role. The breadth of 
applications that cellulose has at industrial level in all areas and its 
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Abstract

While high productivity is positive for growth in developing countries, environmental 
balance and moderation in pollution levels must be taken into consideration. The dumping 
of highly harmful industrial waste into river beds, streams, groundwater tables and 
underground freshwater reservoirs is a clear disadvantage when thinking about sustainable 
processes. Putting the environment first, we wonder how many thousands of liters of vinase 
and toxic waste run through our watersheds to end up reusing some bagasse to extract 
vegetal origin cellulose. It is not about demonizing the product, but rather applying cleaner 
production technologies to obtain it in a sustainable and ecologically friendly way. The 
main objective of this review is to propose nanocellulose of bacterial origin as an inert 
support material for biosensors that detect heavy methals on surface waters. This alternative 
is sustainable, resistant to temperature and high humidity levels, optical transparency, 
porous nanostructure and possibilities for surface functionalization. This material has 
advantages over vegetable cellulose, not only functional, but also from the aforementioned 
environmental perspective. Heavy metals contamination on surface waters is a global 
problem. The development of reliable, lightweight and portable biosensors is a necessity 
for in situ detection of the degree of contamination, without the need for cumbersome and 
often complex sample taking. The performance of a biosensor depends on its ability to 
immobilize receptors, maintaining their natural activity, against targets in solution, as is the 
case of our interest. When we propose bacterial nanocellulose as a support it is due to its 
ability to form covalent bonds and trap by cross-linking. Although due to their high surface 
area per unit of volume, physical methods are also a possibility that provides versatility of 
processes that adapt to multiple biosensor formats. Each new discovery of the potential 
functionalization for bacterial nanocellulose allows us to think of new, more efficient, more 
environmentally friendly sensors for a multitude of applications. As the contamination of 
water with heavy metals increases alarmingly due to over-industrialization, it is time to ask 
ourselves about the cognitive dissonance of using cellulose obtained by traditional means 
and the aforementioned contamination that they carry to generate sensors to measure the 
degree of pollution that we generate when producing it.
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still undeveloped potential, led scientists around the world to look 
for sustainable and ecologically friendly options to obtain this raw 
material with high added value.9

Objetive
The main objective of this review is to propose nanocellulose of 

bacterial origin (BNC) as an inert support material for biosensors 
that detect heavy methals on surface waters. This alternative is 
sustainable, resistant to temperature, high levels of humidity, with 
high optical transparency, porous nanostructure and possibilities for 
surface functionalization. This material has advantages over vegetable 
cellulose, not only functional, but also from the aforementioned 
environmental perspective.

​How can we do better?

Although there are proposals about other plant sources of cellulose 
that involve the reconversion of industrial waste to obtain it. It is the 
enzymatic, mechanical and chemical treatments of the cellulosic 
precursors that generate the ecological imbalance. Although they 
prevent the felling of trees, intensive cultivation for timber production 
and its consequent damage, waste effluents represent a problematic 
barrier.10 In the context of the environmental crisis and climate 
change that is no longer “imminent” but has become a reality that 
we are experiencing as a planet, we need a bottom-up approach 
where cellulose is obtained through biosynthesis using glucose 
and/or fructose as a precursor through the direct action of specific 
bacterial strains.11 Argentina takes relevance in the concern about 
climate change and its direct relationship with deforestation caused 
by agribusiness, and presented a series of measures contemplated in 
the Climate Change Adaptation and Mitigation Plan12 presented in 
Egypt during COP27.13–15 This plan proposes environmental impact 
studies and the criteria that we need to uphold as scientists and as 
active citizens to protect forests from logging and the action of 
deforestation on wetlands.12

What bacteria can we use for bnc obtention?

Bacterial species such as Pseudomonas fluorecens, 
Gluconacetobacter xylinus, Gluconacetobacter hansenni produce 
cellulose as one of their metabolites. Gluconacetobacter xylinus is 
one of the first strains studied as a producer of bacterial nanocellulose 
(BNC) and has become a model system for the study of the biosynthetic 
mechanisms of BNC.16,17 The mechanism of cellulose production by 
the bacterium G. xylinus is the construction of a nanofiber film at 
the air/culture medium interface.18–21 BNC is a primary metabolite 
synthesized inside the bacterial cell that is then twisted into 
nanofibrils which is mechanically amplified to form microfibrils.22,23 
During the biosynthesis of cellulose chains, they go Van Der Waals 
forces and hydrogen bonds between hydroxyl groups and oxygen 
from adjacent molecules promotes the parallel stacking of multiple 
cellulose chains that form elementary fibrils that then aggregate into 
larger microfibrils.24 BNC has distinctive characteristics due mainly 
to its size and fibrillar arrangement that introduces modifications in its 
biological and physicochemical properties such as biocompatibility 
and biodegradability.25 In addition, the fibers are lighter, have greater 
optical transparency, its surface is chemically adaptable because 
allows the annexation of multiple functional groups, improving its 
mechanical properties.26 Among the potentialities of BNC are some 
highly relevant pharmaceutical applications such as biomedical, with 
the production of implants or scaffolds, translucent films, controlled 
release systems,27,28 immobilization of enzymes, tissue engineering.29 
They also exhibit high chemical resistance to dilute acidic and alkaline 
solutions, organic solvents, proteolytic enzymes and antioxidants.30,31

The extensive studies carried out on GRAS bacteria that produce 
cellulose and the recent discoveries of the possibility of taking 
advantage of the methods of the cleaner production philosophy, lead 
us to optimize the production of bacterial cellulose, on a nanometric 
scale.31,32 This reality of the process opens up an even wider plethora 
of possibilities for the applications of a product already widely used 
in the industry and with a new origin. These are ecologically friendly, 
sustainable processes from the beginning of production and with 0 
waste, since the waste components are reused, adding value through 
the creation of new products.

Biosensors as devices to detect heavy metals in surface 
waters

A biosensor is an instrument for measuring biological or chemical 
parameters. It combines components of biological and physical-
chemical nature. It is made up of three parts: the biological sensor can 
be a tissue, a culture of microorganisms, enzymes, antibodies, chains of 
nucleic acids trapped in an inert support;33 the detector can be optical, 
piezoelectric, thermal, magnetic, among others; the transducer couples 
the other two elements and translates the signal emitted by the sensor. 
Heavy metals contamination on surface waters is a global problem. 
The development of reliable, lightweight and portable biosensors 
is a necessity for in situ detection of the degree of contamination, 
without the need for cumbersome and often complex sample taking.34 
Biosensors use specific molecules as elements recognition that meet 
the premises of high specificity and the possibility of remaining inert 
for long periods of time to extend the useful life of the biosensors.35

Why is it necessary to trap biosensor enzymes in inert 
materials?36, 37

In the case of enzymatic biosensors in general, immovilization is 
necessary to increase the performance and durability of the biosensor 
by increasing thermal stability, decreasing degradation against pH 
and increasing solvent stability, recyclability and storage.33,34 The 
performance of a biosensor depends on its ability to immobilize 
receptors, maintaining their natural activity, against targets in 
solution, as is the case of our interest. It is also related to non-specific 
adsorption to the solid support.38–40 Inmobilization techniques by 
physical methods are: adsorption, entrapment or encapsulation. 
Encapsulation techniques by chemical methods are the formation of 
covalent bonds and cross-linking. When we propose BNC as a support 
it is due to its ability to form covalent bonds and trap by cross-linking. 
Although due to their high surface area per unit of volume, physical 
methods are also a possibility that provides versatility of processes 
that adapt to multiple biosensor formats. Determine which of the 
techniques generate improvement in the characteristics of a biosensor 
allow making decisions regarding the process of manufacturing, for 
example, Shahar et al. 2019 fabricated a microsphere holder from 
a polymer, this was modified by functional groups that attributed 
improvements in inmobilization separately in the adsorption and 
covalent bonding method.41,42

Noble metal nanoparticles as sensors of metal ions in 
water

Within the new universe represented by particles on a 
nanotechnological scale, new possibilities arise that amplify 
the sensitivity of existing sensors, and the design of other types 
of sensors.43 Their simple synthesis, high surface area and 
physicochemical malleability make nanoparticles one of the most 
promising approaches.44 The fact that the immobilization is reversible 
or irreversible implies that the biological material may or may not be 
separated from the support matrix.45 The possibility of removing the 
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biosensor to recover the material makes the separable support matrices 
an economic and environmental advantage due to the possibility of 
reusing the materials.46,47 Flexible plasmonic substrates facilitate the 
reading of the plasmon wavelength, or dispersion, as a function of 
the chemical change that the surface of the particles undergoes.48,49 
The concept of “flexible plasmonic substrates” refers to plasmonic 
nanoparticles (metals such as Au and Ag) impregnated into flexible 
solid substrates such as bacterial nanocellulose.50–52 Which presents 
advantages over conventional rigid substrates in terms of cost, 
processability and sustainability.53 Flexible substrates can be used, for 
example as packaging, can be wrapped around non-flat substrates, or 
as swabs to collect wound samples.54,55 In the future, it is expected that 
flexible plasmonics can be combined with new generation electronics 
with various functions in the same device.56 The possibility of using 
NBC reduces costs and includes improvements, such as its optical 
transparency compared to the cellulose fibers of conventional paper, 
also used as a support, improving the efficiency of the sensor.57 Other 
flexible substrate that are used to impregnate them with low-cost 
plasmonic nanoparticles are: filter paper, nanofibers, elastomers, 
plastics, carbon nanotubes and graphene. Organic material has been 
used for the synthesis and stabilization of nanoparticles simultaneously, 
taking advantage of the structure of natural polymers such as cellulose 
and gum arabic, where the hydroxyl groups and oxygens not only 
hold metal ions in their structure by interactions ion-dipole, but also 
stabilize the nanoparticles due to the strong interactions of these with 
the surface atoms, this has been carried out using chemical reductants.

Bacterial nanocellulose advantages

Nanocellulose in its native form, that is, of plant origin, presents 
limiting barriers in its applicability as a chemical sensor. BNC 
compounds expand the concept of versatility and sustainability, being 
of great interest as supports in the design of chemical sensors. Its surface 
functionalization possibilities open up a plethora of possibilities with 
respect to other inert supports.Transforming into a nanostructured, 
porous polymer that receives chemical groups, modifying its 
specificity according to the functional need of the biosensor. It is 
anticipated that the surface possessing electrical properties will be 
an excellent sensing mediator. The electrostatic interactions found 
between the different charges found in nanocellulose also represent 
an advantage. Compounds and analytes play an important role in 
manufacturing ion exchange and permselective membranes. These 
developed from BNC compounds can be modified by changing the 
functionality of its surface and its selective permeability properties for 
new sustainable, biodegradable biosensors design.

Conclution
Studies on the functionalization of bacterial nanocellulose with 

other nanomaterials useful for the early detection of pollution in 
surface waters are still in their first stages. There are several other 
types of nanomaterials that would potentially behave as good 
conductors capable of improving and expanding the properties 
of bacterial nanocellulose compounds used in heavy metal and 
agrochemical detection applications. This is a still incipient area of 
research. But each new discovery of the functionalization potential of 
bacterial nanocellulose allows us to think of new, more efficient, more 
environmentally friendly sensors for a multitude of applications. As 
the contamination of water with heavy metals increases alarmingly 
due to over-industrialization, it is time to ask ourselves about the 
cognitive dissonance of using cellulose obtained by traditional means 
and the aforementioned contamination that they carry to generate 
sensors to measure the degree of pollution that we generate when 
producing it.
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