A pneumatic photonic structure and precise optical indication of pressure over time inside the fluid flow

Abstract

In this work, a gas-filled 1D elastic pneumatic photonic crystal is proposed as an optical indicator of pressure which can unite several pressure scales of magnitude. The indicator includes layered elastic platform, optical fibers and switching valves, all enclosed into a chamber. We have investigated the pneumatic photonic crystal band gap structure and light reflection changes under external pressure. At the chosen parameters the device may cover the pressure interval (0, 10) bar with extremely high accuracy (1 μbar) for actual pressures existing inside the body fluid systems of biological organisms. The size of the indicator is close to 1 mm and may be decreased. The miniaturized optical devices considered may offer an opportunity to organize simultaneous and total scanning monitoring of biofluid pressure in different parts of the circulatory systems.

Keywords: photonic crystal, optical devices, elastic layered structure, light reflection, precise pressure measurement, blood pressure

Abbreviations: PhCr, photonic crystal; OPM, opto-pneumatic medium; EMF, electromagnetic field; TIR, total internal reflection

Introduction

The artificial periodic structures like layered photonic crystals may serve as a means of measurement for the processes periodic in time peculiar to living organisms. There are a lot of periodic phenomena concerned with the blood and lymph system functioning in a living body. One of them is so called Mayer waves of pressure in arteries caused by oscillations in human receptor control systems.1-3 The time dependeding processes of such kind and many other reasons like nature of the hypertension manifestations put forward precise pressure indication as important optical instruments in the Biometry. The outstanding optical features of photonic crystals have been first written as d

\[D \Delta^2 \xi = \delta P \] (1)

where the stiffness parameter of the plate \(D = E d^3/(12(1-\sigma^2)) \), \(E \) is the Young modulus, and \(\sigma \) is the Poisson’s ratio; \(\delta P \) is the pressure difference. For our mathematically 1D case the Laplace operator is written as \(d^2/dx^2 \) and, following, one can find the solution of (1) satisfying the edge boundary conditions for a fixed long separate elastic strip plate.14,15 A stack of \(N \) optically transparent thin plates divided by closed air voids is a system, whose optical properties depend on the external pressure and temperature. Initially, the pressures inside the system coincide with the external pressure and for the above mentioned geometry of incidence we have a 1D photonic crystal with period \(d_{1} = d_{1} + d_{2} \) and the corresponding reflection coefficient \(R(\theta) \), where \(\theta \) is the external pressure. The increase of the external pressure causes the compression and a decrease in the thickness of air layers \(d_{1} \), which changes, in turn, the total reflection pattern. Combining pressures and volumes in neighbouring air voids divided by elastic

© 2018 Glushko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and build upon your work non-commercially.

Received: February 15, 2018 | Published: May 21 2018

E Ya Glushko,1 Stepanyuk AN2

1Department of Semiconductor Photonic Structures, Institute of Semiconductor Physics, Ukraine
2Krivyi Rih State Pedagogical University, Ukraine

Correspondence: E Ya Glushko, Department of Semiconductor Photonic Structures, Institute of Semiconductor Physics, Nauki Prsp 41, 03028, Kyiv, Ukraine, Tel +038 044 525 2309, Email scientist.com_eugene.glushko@mail.com

Abbreviations: PhCr, photonic crystal; OPM, opto-pneumatic medium; EMF, electromagnetic field; TIR, total internal reflection

Volume 4 Issue 3 - 2018
plates, we arrive at a chain of equations

\[P_i = \frac{Q P_0}{Q - P_{i-1} + 2P_i - P_{i+1}}, \ i=1,2,3,\ldots,N \tag{2} \]

Where \(Q=45D_d/R^2 \) is the effective elastic pressure of a plate, \(P_\infty \) is the initial pressure of the device calibration. It is worth noting that boundary conditions of the system (2) may be chosen as \(P_{0/\infty} = P_\infty \) in case of two-sided access of external pressure to the PhCr and \(P_{i/\infty} = P_\infty \). In the limit when the number of plates is large enough, system (2) describes a continuous pneumatic medium with distributed air pressure inside and corresponding deformation of the PhCr. In Figure 1B, a scheme of one-sided measurement of pressure in a fluid-filled pipe is shown where the PhCr body 1 is placed into the closed chamber 2 penetrating through the pipe membrane in biofluid. The strip A device represents a scale of first level embracing interval (10, 10\(^4\)) mbar, whereas the scale B serves to measure more fine-tuned dynamical changes. Another scheme of measurement - two-sided, supposes a free access of measured pressure to the upper chamber 2 and possesses higher sensitivity in comparison with one-sided one.

The opto-pneumatic medium as a multiscale pressure indicator

We will consider \(p \)-polarized electromagnetic field in the compressed 1D PhCr pneumatic structure consisting of \(N \) periods of glass plates divided by air voids. The declared problem can be considered in external pressure. The first one corresponds to external incidence of light beam whereas the latter touches standing EMF waves trapped inside the TIR. In Figure 2 (vertical panel), the band gap structure of glass/air 16 period 1D PhCr is shown inside the propagation angle interval \((44^\circ, 54^\circ)\) of the TIR region at photon energies between 0 and 1.4 eV. The width of glass plates was taken \(d_1=0.5 \mu m \) and air voids \(d_2=0.8 \mu m \) at external pressure of \(P=P_\infty=1 \) bar, glass dielectric function \(\varepsilon_1=2.1 \). The band gap structure exhibits 16 trapped modes in every band. According to Figure 1A, the first one is placed in the interval \((0, 0.71)\) eV at \(\theta_1=44^\circ \) whereas in upper part at \(\theta_1=54^\circ \) the band is narrowed and now occupies the interval of energies \((0.78, 0.99)\) eV. The second band begins with 1.15 eV at \(\theta_2=44^\circ \). It is clear from Figure 2 that on the boundary of the total internal reflection area and area of external incidence in vicinity of \(\theta_2 \sim 90^\circ \) a typical whispering reflection arises which replicates the beginning of the bandgap structure inside the total internal reflection region on vertical panel. In Figure 2 (horizontal panel), the calculated reflection color diagram is presented at the horizontal panel in energy interval \((0 \sim 1.4)\) eV and angular interval \(\theta_2 \) \((0^\circ \sim 90^\circ)\). An all-energy transparency band near \(54.4^\circ \) illustrates the well known Brewster effect.

Both the band gap structure and reflection map of the OPM are strongly dependent on the external pressure in two variants of measurement – one-sided (Figure 1B) and two-sided. Taking into account the chain of correlations (2) we have calculated the pressure influence on the EMF interaction with a deformed photonic crystal. With the pressure growth, bands were destroing and local states have been arisen. In Figure 3A, the calculated reflection at quasi-normal incidence is plotted in energy interval \((1.1 \sim 1.3)\) eV for a 15 period glass/air OPM with parameters \(d_1=0.5 \mu m \) and \(d_2=0.8 \mu m \) at quasi-normal angle of incidence \(\theta_1=1^\circ \). In this case, the reflection window (frequency gap) is observed in energy interval \((1.17 \sim 1.27)\) eV. Due to elasticity of OPM, any change of external pressure is accompanied with a shift of the frequency gap. One of the gap sides can be used as the working frequency. We choose the low energy edge of the gap with \(\omega=1.17 \) eV (Figure 3A arrow). In Figure 3B, we calculate reflection measured by device B at chosen photon energy \(\omega=1.17 \) eV for pressure interval \((1000 \sim 1002)\) mbar where the reflection coefficient decreases from 0.83 to zero (curve 1). The isothermal sensitivity \(\eta=(d\rho/dP) \), changes from zero at \(P=1001.86 \) mbar to the maximal magnitude 0.698 mbar\(^{-1} \) at \(P=1001.18 \) mbar.

Fine structure of pressure in a fluid flow

We have discussed above two ways of organizing the measurement procedure: one-sided acting pressure as it is shown in Fig. 1b and top-bottom acting pressure (two-sided) when measured fluid pressure inside the pipe is transferred into the upper chamber of the device. As a result, the deformation of elastic plates inside the PhCr is symmetric relatively its body’s center. Due to well expressed scale invariance of the band gap structure\(^4\) for a 1D PhCr an opportunity exists to unite on a substrate several OPM devices which have identical calibration scales for different intervals of the measured physical quantity.

Citation: Glushko EY, Stepanyuk AN. A pneumatic photonic structure and precise optical indication of pressure over time inside the fluid flow. Int J Biosen Bioelectron. 2018;4(3):99–102. DOI: 10.15406/ijbsbe.2018.04.00107
(Figure 1A). In our case, for the chosen parameters the first pressure calibration curve occupies interval $(10^{-10} - 10^{-2})$ bar (A, $R=200 \mu m$). The interval of measured pressures for the second device B ($R=300 \mu m$) embraces interval $(10^{-2} - 10^{-5})$ bar in area close to 1000 mbar with average accuracy 1 μbar. During the second, compensating, stage of the measurement procedure some μbar corrections will be added to result obtained at scale A.

Figure 2 Vertical panel: the bandgap structure of glass/air 1D PhCr inside TIR region at the propagation angles θ in glass from 44° to 54°. N=16, $d_1=2 \mu m$, $d_2=2 \mu m$, photon energy up to 1.4 eV. Horizontal panel: color diagram for reflection R of the external incident beam at external (air medium) incident angles θ from 0° to 90°. Right column: color scale for reflection coefficient R.

Figure 3 (A) Quasi-normal incidence ($\theta=1^\circ$) reflection vs photon energy. Two-sided measurement. 15 period glass/air 1D PhCr. $d_1=0.5 \mu m$, $d_2=0.8 \mu m$. Energy gap ($R=1$) is distinguished by color; arrow shows the chosen operating energy $\omega=1.17$ eV (arrow). 1, reflection vs pressure dependence (right axis), 2, sensitivity vs pressure dependence (left axis).

Conclusion

From a physical point of view, any living organism is an extremely complex system of pipes with flowing biofluids inside. The pressure pattern is controlled by several intrinsic biological pumps and differs for different parts and organs depending on health and other factors. Together with temperature, their distribution inside parts of the body, their time dependencies are important characteristics for describing normal or abnormal functioning of the human organism. Here, we have discussed the possibilities of the gas-filled elastic photonic structures as sensitive optical indicators which can unite several pressure scales of accuracy. The indicator includes layered elastic platform, optical fibers and switching valves, all enclosed into a chamber. At the chosen parameters the device may cover the pressure interval (0, 10) bar with extremely high accuracy (1 μbar) for actual pressures existing inside the biofluid systems of biological organisms. The size of the indicator is close to 1 mm and may be decreased. The miniaturized optical devices considered above may offer an opportunity to organize simultaneous and total scanning monitoring of biofluid pressure in different parts of the circulatory systems.

Acknowledgements

Authors declare that there is no conflict of interest.

Conflict of interest

None.

References

