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Abstract

Sarcopenia is a common geriatric disease characterized by the decline of muscle strength,
mass, and function. Its pathogenesis is complex and there is no unified conclusion.
Establishing appropriate mouse models is fundamental to studying this disease. Currently,
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methods for constructing sarcopenia mouse models include induced injection, aging

models, muscle atrophy models, and transgenic models. Each model has its applicable
conditions and limitations. Therefore, through a literature review of sarcopenia, this paper
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summarizes the modeling methods and mechanisms of sarcopenia in mice and provides an

overview, aiming to provide references for related research.
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Introduction

Sarcopenia, also referred to as muscle wasting syndrome, was
originally defined by muscle mass loss alone. In 2018, the European
Working Group on Sarcopenia in Older People (EWGSOP) revised
its definition to characterize sarcopenia as a prevalent geriatric
muscle disorder, clinically manifested by reduced muscle strength,
decreased muscle mass, and impaired physical function.! Studies
have shown that the prevalence rate of sarcopenia is 8%—-36% among
individuals under 60 years old and 10%—-27% among those over 60.
This condition tends to make older adults more prone to a decline in
their ability to take care of themselves, falls, fractures, disability, and
even death.? It is more prevalent among the elderly, but the decline in
muscle mass begins at the age of 40. Scholars both domestically and
internationally have conducted a series of studies on the pathogenesis
of sarcopenia and believe that age,® oxidative stress,* the ubiquitin-
proteasome system,’ the mammalian target of rapamycin (mTOR)
signaling pathway,® and myostatin levels’ are all related to the
occurrence of sarcopenia. Currently, there is no unified conclusion on
the mechanism of sarcopenia, which may be a combination of multiple
factors, and there is no definitive treatment.® As mouse models
serve as the cornerstone for sarcopenia research, a comprehensive
understanding of modeling methodologies is critical. This review
systematically summarizes the latest advances in sarcopenia mouse
model establishment strategies and their underlying mechanisms,
evaluates their respective advantages and limitations, and provides
insights for optimizing model selection in future studies.

Sarcopenia animal models

Commonly employed animal species for sarcopenia modeling
include rats,” mice, nematodes,'? rhesus monkeys,' zebrafish.!?

However, each has its limitations. Mouse models are the most
widely used due to their similarity in the aging process to humans,
as well as lower research costs and shorter timeframes.'* Based on
different experimental approaches, sarcopenia modeling methods can
be classified into the following four categories.

Drug injection: Drug injection refers to the injection of substances
that induce muscle aging into animals to induce sarcopenia. Currently,
dexamethasone and D-galactose are commonly used as inducers in
research.

Dexamethasone is a synthetically produced glucocorticoid with
anti-inflammatory and immunosuppressive effects.* Long-term and
high-dose injection of dexamethasone can lead to skeletal muscle
degradation and inhibit skeletal muscle protein synthesis, resulting
in sarcopenia'® Lee et al.' demonstrated that intraperitoneal injection
of dexamethasone in mice results in a decrease in the proportion of
lean tissue and atrophy of the gastrocnemius muscle, indicating the
feasibility of the model. This modeling method often uses young
mice, and the changes in muscle strength and function it induces are
similar to those in humans. However, the manifestation of weight loss
differs somewhat from that in human age-related sarcopenia.'” There
are differences in molecular mechanisms compared to natural aging.'®
While this approach is widely accepted globally, further optimization
of dosage and treatment duration is required to enhance translational
relevance.

D-galactose, a reducing sugar, has been widely used in establishing
murine aging models."” Wang Jing® reported that D-galactose
intervention induces significant declines in muscle strength and
exercise capacity in mice. Additionally, treated mice exhibit multiple
aging-related phenotypes,?' attributed to D-galactose-induced
perturbations in functional metabolism that mimic physiological aging
processes.” This method can gradually increase the degree of aging
but has little impact on the recovery ability of the mice. Attention
should be paid to this point if developing drugs for the treatment of
sarcopenia.

Aging: Aging is a major influencing factor of sarcopenia,” so aging
models are widely used in the establishment of sarcopenia models.
Currently, the more commonly used methods for establishing aging
models include natural aging mice, rapidly aging mice, and high-fat
feeding.

The natural aging model is often used in sarcopenia research
because the muscle atrophy pattern in this model is closest to that of
the elderly, and it is easy to operate. The expected lifespan of mice
is 24 months, and a 15-month-old mouse is equivalent to a 50-year-
old human. Oh et al.** found that the muscle strength, mass, and
fiber size of aged mice were significantly lower than those of young
mice, which can be diagnosed as sarcopenia. In addition, regarding
gender selection, most researchers tend to choose male mice. This
is because male mice have a longer lifespan than female mice, and
using male mice can avoid high hormonal variability. Compared with
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male mice, female mice secrete more estrogen. Estrogen can reduce
fat content, possess antioxidant activity, and decrease the occurrence
of inflammation,? all of which are pathogenic factors of sarcopenia.

Senescence-accelerated mice exhibit a short lifespan and display
age-related characteristics similar to elderly humans during their
geriatric phase, with modeling requiring 6-8 months. Noguchi et al.?¢
fed senescence-accelerated mice to 35 weeks of age and confirmed
sarcopenia by measuring muscle mass, muscle fiber cross-sectional
area, and protein levels controlling skeletal muscle breakdown. This
model is widely used in studies evaluating exercise interventions for
sarcopenia?’ and novel drug therapies for sarcopenia.?®

The high-fat diet (HFD) model has a relatively short modeling
duration compared to other aging model establishment methods.
Dowling et al.” fed mice a high-fat diet for 8 weeks and observed
increased body weight, reduced endurance, and decreased muscle
mass ratio. Perry et al.’® similarly reported muscle mass loss and
increased heart weight following HFD. However, long-term HFD
feeding causes damage to organs such as the liver,’! and kidneys,*
limiting its widespread use.

Muscle atrophy models: Muscle atrophy models refer to neurogenic
or disuse sarcopenia induced by denervation or joint immobilization.
This method has a short modeling duration and low infrastructure
requirements but demands high-level technical proficiency from
experimenters.

Surgical resection refers to the establishment of a mouse
sarcopenia model by resecting mouse nerves. Motor nerves are crucial
for controlling the growth and development of skeletal muscles.
Denervation leads to abnormalities in the morphology and structure of
muscle cells, resulting in muscle weakness and inducing sarcopenia.
Jeong et al.* found that transection of the right hindlimb sciatic nerve
in mice resulted in atrophy of muscle fibers, as well as disorder in their
morphology and structure. Resection of the sciatic nerve leads to an
increase in serum angiopoietin-like protein levels and a decrease in
reactive oxygen species content.’* The levels of these two substances
are related to skeletal muscle atrophy. Due to the higher surgical skill
requirements for establishing denervated mouse models, researchers
often choose to use rats for modeling.

The hindlimb unloading model is an animal model developed by the
aerospace industry to simulate weightlessness. This method involves
fixing the mouse tail to a metal disk, lifting the mouse’s hindlimbs, and
causing skeletal muscle atrophy after 15 days.’® However, this model
results in type I muscle atrophy. This type of muscle fiber mainly
undergoes oxidative metabolism and is responsible for maintaining
posture and endurance exercise. It is prone to damage when there is
a long-term lack of mechanical load, which highly coincides with the
characteristics of muscle loss in conditions such as weightlessness and
long-term bed rest. This is inconsistent with the type I muscle atrophy
caused by aging. This type of muscle fiber relies on glycolysis for
energy supply and is related to explosive power and rapid contraction
functions. Its atrophy is directly associated with the decline in strength
in the elderly and has no impact on the recovery ability of mice.’
Therefore, it is highly effective for studying sarcopenia induced by
bed rest, microgravity, or immobilization.

Joint immobilization is a method used to simulate disuse sarcopenia
caused by plaster cast fixation following fractures. Immobilizing
murine legs with plaster casts restricts limb movement and induces
sarcopenia. Burks et al.*” used surgical screws to fix the leg joints of
mice for 21 days and found that the muscle loss after fixation was due
to the loss of muscle fibers in the skeletal muscle rather than atrophy of
the muscle fibers. Joint fixation can effectively mimic the sarcopenia
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model of being bedridden due to illness, but its disease characteristics
differ from those of age-related sarcopenia. Therefore, this model is
not suitable for studying sarcopenia in the elderly.

Transgenic models: The development of sarcopenia is closely
associated with oxidative stress, inflammation, and mitochondrial
dysfunction. Transgenic models manipulate gene expression to affect
muscle mass in mice, offering the advantage of shorter modeling
duration compared to senescence-accelerated mice. This approach
includes gene knockout models and gene overexpression models.

Gene knockout models involve disrupting or replacing a target gene
to create a mouse model. For example, knocking out interleukin-10
in mice leads to a shortened lifespan and accelerated aging, but this
is accompanied by an inflammatory response in the small intestine.?
Ahn et al.** found that the absence of superoxide dismutase 1 results
in the loss of muscle mass in mice, due to metabolic imbalance caused
by oxidative stress, which reduces skeletal muscle protein synthesis.
In mice with double knockout of the Optic Atrophy 1 (OPAI) and
Dynamin-related protein 1 (DRP1) genes, both the gastrocnemius and
soleus muscles exhibit decreased mass.*’ This also leads to systemic
inflammation, accelerated aging, and a shortened lifespan in these
mice.*!

Gene overexpression models involve artificially increasing the
expression of a target gene in mice to induce sarcopenia. Some studies
have found that excessive accumulation of inflammatory factors in
the body can lead to the occurrence of sarcopenia, such as tumor
necrosis factor-a, interleukin-6,* C-reactive protein, interleukin-
1B, and others. Li et al.* demonstrated that TNF gene replacement
in mice leads to elevated TNF-a levels in gastrocnemius muscles,
accompanied by reduced muscle strength. Additionally, the mass
of the tibialis anterior, soleus, and gastrocnemius muscles in aged
mice was lower compared to young mice. Yoshida et al. Yoshida et
al.* found that activation of the Wnt/B-catenin signaling pathway
induces muscle atrophy, and expression of the (projrenin receptor
[(P)RR] can activate this pathway, thereby promoting sarcopenia in
mice. Inhibition of (P)RR expression ameliorates age-related muscle
atrophy. Researchers can select different transgenic mouse models
based on their research objectives.

The four modeling methods discussed above each have their own
advantages and disadvantages. Researchers should select appropriate
modeling approaches based on research objectives (pathophysiology
and its progression or evaluation of therapeutic effects), budget,
equipment, and time requirements.

Mechanisms of sarcopenia development
Aging

Aging is a fundamental characteristic of individual life, defined
as the progressive decline in biological structure and function over
time, ultimately leading to organismal death.** With the global
aging population, health issues associated with aging have become
increasingly prominent. Key manifestations of aging include
gradual physiological decline, such as mitochondrial dysfunction,*
DNA damage,*” elomere attrition,* lipid peroxidation,* and protein
oxidation modification.®® These changes not only accelerate the
aging process but also serve as significant risk factors for various
aging-related diseases. Aging is accompanied by various diseases,
such as cancer, metabolic disorders, skeletal muscle atrophy, and
cardiovascular diseases.’! These conditions may further lead to
embolism, infarction, and life-threatening complications in severe
cases.”
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Sarcopenia, as a neurodegenerative disease, is closely related to
aging.® With the onset of aging, muscle function and muscle mass
gradually decline,* Studies have shown that from the age of 50,
skeletal muscle mass decreases at a rate of 0.8% to 2.0% per year,
and muscle strength decreases at a rate of 1.5% to 5.0% per year.
The rate of decline in skeletal muscle mass and strength accelerates
with increasing age.” Kim et al.’*¢ demonstrated that aging inhibits
muscle protein synthesis while promoting muscle protein breakdown,
disrupting the balance between the two processes and leading to
skeletal muscle mass loss. Cruz-Jentoft et al.’” reported that aging
induces morphological changes in skeletal muscle fibers, characterized
by a reduction in fiber number and thinning of muscle fibers.
Annamaria Zaia et al.®® proposed that aging results in intramuscular
and intermuscular fat infiltration, which plays a critical role in the
development and progression of sarcopenia by causing both muscle
dysfunction and mass reduction.

Oxidative stress

Oxidative stress plays a critical role in the pathophysiology
of sarcopenia. Under normal conditions, endogenous antioxidant
activity in skeletal muscle is activated to maintain reactive oxygen
species (ROS) at physiological levels. As cellular metabolites, ROS
production is accelerated when pathological changes occur in the
body, leading to ROS accumulation, disrupting the balance between
antioxidant capacity and oxidative reactions, and ultimately causing
oxidative stress. The increase in ROS in the body can damage cellular
structure and function, leading to various diseases. Oxidative stress
has been identified as a core mechanism in skeletal muscle aging
and sarcopenia.” The accumulation of ROS generated by metabolic
products has a significant impact on muscle.® In sarcopenic muscle,
ROS are inefficiently cleared and accumulate within cells.®! This
has also been identified in cells exhibiting aging phenotypes.®* The
occurrence of oxidative stress in the body leads to skeletal muscle
atrophy. This is because oxidative stress promotes the expression of
genes related to cellular autophagy, raises the level of free calcium
between cells, which activates calpain, and oxidatively modifies
myofibrillar proteins, making them more sensitive to proteases. As
a result, protein breakdown in skeletal muscle is accelerated, giving
rise to sarcopenia.

Inflammation

Inflammation is a significant factor in the development and
progression of sarcopenia,” promoting skeletal muscle atrophy and
serving as an important characteristic of age-related sarcopenia. It
can induce the onset of sarcopenia through various pathways. The
excessive accumulation of inflammatory cytokines leads to skeletal
muscle atrophy,* including tumor necrosis factor-a, interleukin-6,
C-reactive protein, interleukin-1f, and others.®® Studies have shown
that tumor necrosis factor-o inhibits the regenerative capacity of
skeletal muscle by suppressing the production of myogenin (MyoG).%
The nuclear factor kappa B (NF-kB) pathway is also a classic
inflammatory signaling pathway.®® Research by Mukund et al.® has
demonstrated that the target genes of NF-«B act on the ubiquitin ligase
E3 system, thereby promoting skeletal muscle protein atrophy.

Ubiquitin-proteasome system

The ubiquitin-proteasome pathway represents the primary
intracellular protein degradation machinery, exerting significant
effects on muscle atrophy.” It is responsible for the specific
degradation of most intracellular proteins and is an efficient protein
degradation pathway. It plays a crucial role in skeletal muscle
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atrophy. The ubiquitin-proteasome pathway consists of ubiquitin
and a series of enzymes involved in degrading intracellular proteins.
It is mainly composed of three parts: ubiquitin, ubiquitin-related
enzymes, and the proteasome.’”’ Ubiquitin’s role is to tag proteins
for degradation by the proteasome.” Ubiquitin-related enzymes
include E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating
enzyme, E3 ubiquitin ligase, E4 ubiquitin chain extension enzyme,
and deubiquitinating enzymes.” The ubiquitination of natively folded
proteins is achieved through the first three enzymes. E3 ubiquitin
ligase is a specific substrate-binding component that plays a key role
in the ubiquitin-mediated protein degradation cascade. E3 ligases
undergo auto-ubiquitination, making them susceptible to proteasomal
degradation. In the ubiquitin-proteasome system, E3 ligases are key
enzymes, including muscle ring finger 1 (MuRF-1) and atrophy gene-
1 (Atrogin-1), which have been shown to be closely related to skeletal
muscle atrophy.”

Hormones

The anabolic level of hormones significantly declines with aging.”
Growth hormone (GH) exerts an influence on bodily growth and
metabolism.” As a potent anabolic agent, it promotes protein synthesis
within muscle cells, thereby increasing muscle mass.”” Studies have
found that serum GH levels in women significantly decline starting
from the age of 50.® GH and insulin-like growth factor 1 (IGF-1)
are important growth hormones that regulate cellular homeostasis,
playing crucial roles in cell differentiation, function, and survival.
IGF-1 levels change over time, reaching a peak during puberty and
gradually decreasing with age.” IGF-1 promotes protein synthesis
by activating the PI3K/Akt pathway and regulates growth hormone
secretion through a negative feedback mechanism.®

Summary and prospects

Methods for constructing mouse models of sarcopenia include drug
induction, aging simulation, muscle atrophy induction, and transgenic
technologies. Each model has its own advantages and disadvantages in
simulating pathological features, cost, and timeliness. The occurrence
of sarcopenia is driven by the interaction of multiple factors such as
aging, oxidative stress, inflammation, and others. Current research
needs to further optimize model standardization and deeply explore
the laws of multi-mechanism synergies. In the future, more precise
models can be constructed using gene editing technologies to discover
novel molecular targets. Additionally, efforts should be strengthened
to translate model findings into clinical treatments, providing a more
solid theoretical foundation for intervention strategies for sarcopenia.
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