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to extracellular aggregation during the course of AD development.5 
This peptide is the main component of the extracellular Aβ plaque 
(Figure 1, black arrows). In addition, we know that the Aβ plaque 
presents preferentially a spherical shape that can be clearly observed 
around the limbic area (Figure 1, black arrows). Unfortunately and 
despite this remarkable finding, the gene mutation corresponding as 
causal mechanism only accounts for the hereditary form of AD.6 In 
this regard, the second and most predominant form of AD is sporadic, 
and for this particular type, the mechanism remains unknown.6 We 
need to mention that the sporadic form of AD accounts for more than 
95 percent of the cases.6

Figure 1 Phosphorylation of tau protein is a signature of Alzheimer’s diseases. 
Phosphorylation at sites Ser396/404 labelled by PHF-1 are clearly seen in the 
tau aggregates (red arrows), but importantly, this event is also present in the 
formation of the Aβ aggregates (black arrows). Scale bar 50µm.

Evidence in support of the case for tau protein; of note, remains 
far more complex and under extensive study.3,6 What we know is 
that tau protein is susceptible of suffering several posttranslational 
modifications such as conformational shifts, cleavages and several 
phosphorylation events.1,3 The current hypothesis holds that a 
combination of those events prompts the tau protein to an aggregation 
state. Thus giving rise to the neurofibrillary tangle (NFT), which 
normally adopts a flame like shape (Figure 1, red arrows). Important 

to note that opposite to the Aβ plaque which is an extracellular protein 
deposit, the NFTs are intracellular protein aggregates.1,3 In agreement 
with previous published data, we have observed that the NFTs are 
mainly comprised of phosphorylase tau protein.3 

Clearly, both aggregates are related to the AD pathological 
development; however the main question is how do the aggregates 
can affect the hippocampal function? Although the answer is far from 
simple, one thing is clear; both structures can affect the homeostasis 
of neuronal function. In one hand the Aβ plaque locates preferentially 
in the proximity of synaptic terminals with the capacity of modifying 
the neuronal responses.4,7 On the other hand the extensive tau 
accumulation within the neuron takes all the intracellular space that 
ultimately leads to neuronal death (Figure 1). Despite this data, we 
cannot definitively name either of these structures as the cause of the 
disease. In fact, the chronology of events remains under extensive 
study. In this vein, we found that phosphorylation of tau protein is 
an early event that can function as an early stage developmental 
biomarker in tau pathologies such as Pick disease, Down syndrome 
and AD.8,9 More recently, by using transgenic mouse models, we have 
found that abnormally phosphorylase tau protein is actually present 
before any signs of Aβ peptides (in preparation). This data is extremely 
important if we take into consideration that Aβ has traditionally 
been suggested as the effector of tau alterations.10 This data opens a 
new perspective in terms of chronology and pathology effectors. In 
addition, our data could offer an explanation of the current failure for 
therapeutic strategies directed against Aβ proteins.10 Most likely, we 
are working with agents directed against the wrong therapeutic target, 
although this remains to be proven.10 

Overall, it is clear that both structures, the Aβ plaques and the 
NFTs, are intimately related to AD and several associated brain 
pathologies such as hereditary cerebral hemorrhage with amyloidosis 
Dutch type, vascular dementia, Pick disease, Down syndrome and 
Parkinson’s disease.3,8,9,11 However, only the neuropathological 
studies will provide a differential diagnosis between brain diseases. 
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Alzheimer’s disease (AD) has been historically defined by protein 

accumulation around critical areas of the brain, i.e. hippocampus.1 
The hippocampus is a relatively small brain structure located within 
the limbic system.1 Functionally, this particular structure has been 
correlated with cognitive functions such as learning, memory and 
spatial navigation.2 In line with this reasoning and thinking in terms 
of brain disease development, is not difficult to imagine hippocampal 
damage associated with pathologies like AD.1,3 Here two proteins are 
the major players circumscribing the pathological development of AD: 
amyloid beta (Aβ) and tau proteins.3,4 Although the exact or the mayor 
mechanism of protein deposition remains under extensive study, the 
reality is that we do not know how or why these proteins elicit the 
accumulation process. However, we need to acknowledge that several 
pieces of evidence are clues of the putative mechanism. Evidence in 
support of the case for Aβ: we know that gene mutation in the amyloid 
precursor protein generates a 42amino acid peptide that is susceptible 
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As a consequence, they remain as the most accurate predictors of 
neurodegeneration stage.
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