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Introduction
Plants are sessile organisms and therefore must continuously adapt 

their growth and architecture to a constantly changing environment. 
Plants monitor changes in their environment and are able to memorize 
and anticipate these changes.1 Plants that perceive some of these 
changes as stress signals activate signalling pathways to modulate their 
development and to enable them to survive. The complex responses to 
environmental cues are to a large extent mediated by plant hormones 
that together coordinate the final plant response. In plants cytokinins 
(CKs) are a class of growth-promoting phytohormone regulating 
a wide range of growth and developmental processes.2‒4 CKs are a 
family of ligands synthesized enzymatically from adenine,5,6 which 
play a important role in various physiological events such as cell 
expansion and differentiation, seed germination, leaf and chloroplast 
senescence.7,8 Numerous evidences indicate that CKs have both 
positive and negative effects on stress tolerance. Prior to drought 
irrigation with CKs increased the tolerance of bean plants, but in 
maize and sugar beet, had no effect and a negative effect on tolerance 
respectively.9 Arabidopsis plants grown on media supplemented with 
cytokinins had a higher survival rate when exposed to freezing or 
dehydrating conditions than non-supplemented plants.10,11 At the earth 
surface the substantial reduction in the stratospheric ozone layer has led 
to a remarkable increase in the solar UV-B radiation.12 The depletion 
of the ozone layer has raised concerns over the ecological implication 
on agricultural production and natural plant ecosystems.13,14 Solar 
radiation in the UV-B range accounts for a minor percentage of the 
total solar energy, but still could be potentially harmful because in 
the cells these short wave lengths are capable of causing deleterious 

effects.15 Probably the genetic damages are most important effects 
of UV radiation on plants, because macromolecules such as DNA, 
RNA and protein have strong absorption at the level of 280-315.16 

Moreover, negative effects of UV-B radiation can be significantly 
increased or decreased by a variety of interacting stress factors in the 
natural habitat.17 The effects of UV-B on plant’s vegetative growth 
are variable.18 but reductions in shoot length and leaf expansion were 
generally found.19,20 Plants are photoautotrophic organisms and thus 
light in particular is an environmental factor of utmost importance for 
plants.21 It was earlier observed that UV-B dosage alter reactive oxygen 
species (ROS) metabolism in cucumber cotyledon and leaves.22‒24

Studies have shown that exogenous application of hormones 
provides protection to plants against abiotic stress and increases crop 
yield.25‒27 Exogenous application of cytokinins has been reported to 
increase the stress-tolerance capacity of plants indicating a beneficial 
effect of CKs in the regulation of plants adaptation to environmental 
stresses. Thus several studies with abiotic stresses like heavy metals, 
drought, salt and high temperature have reported that CKs could be 
involved in regulating antioxidant defence, while information on 
regulation of antioxidant metabolism under UV-B stress by CKs is 
lacking. Taking into account the potential significance of CKs in 
alleviating stress, the present review contains an overview of the 
impact of cytokinins and UV-B on plants, together with their related 
defence mechanisms and the role of CKs to alleviate the UV-B stress. 
Cucumber (Cucumis sativus L.) is one of the most common vegetable 
species in the world and it has been frequently used as a model plant 
for cytokinins and UV-B studies because of its sensitivity to UV-B 
and CKs.3,28,29
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Abstract

The negative effect on plant responses are expected due to increased amounts of 
ultraviolet-B (UV-B) radiation reaching on the Earth’s surface by stratospheric ozone 
depletion. Cytokinins (CKs) are essential phytohormones in plant growth and development. 
Perusal of relevant literature reveals that CKs mitigate the oxidative damage caused by 
abiotic stresses like salt, drought, high temperature and heavy metal due to their antioxidant 
effects. However, very few reports are available on the interaction of CKs with UV-B stress 
on the expansion growth of the cucumber cotyledons. CKs induced the expansion growth 
of the excised cucumber cotyledons in the darkness. CKs induced expansion growth of 
cucumber cotyledons in darkness was inhibited by supplemental UV-B. UV-B radiation 
enhanced the level of oxyradicals like superoxide and hydroxide radicals in the excised 
cucumber cotyledons, which was evident by EPR spectroscopy. CKs like Zeatin, TDZ, BAP 
and FAP reduced the level of oxyradicals produced in the dark grown cucumber cotyledons, 
while promoting the expansion growth of the cotyledons. Production of oxyradical in UV-B 
exposed cotyledons showed that these oxyradicals might partially account for inhibition 
of expansion growth. Since considerable amount of oxyradicals were quenched by CKs 
at higher concentrations (10 and 20 µg/ml) it partially restores the inhibition of expansion 
growth caused by UV-B stress. It indicates that overproduction of oxyradicals by UV-B 
could not be entirely responsible for the inhibition of CKs induced expansion growth of 
cotyledons; which might be caused by some other physiological changes caused by UV-B 
irradiation in addition to the production of oxyradicals. UV-B is also known to inactivate 
protein inhibitor of peroxidase in cucumber cotyledons. This may reduce the antioxidants 
defence and enhance the damaging effects of oxyradicals for the growth of cotyledons.
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Role of Cytokinins in plants

At normal growth conditions CKs are important phytohormones 
which play a key role in several aspects of plant growth, metabolism 
and development. For example for cotyledon growth and development, 
CKs are the main responsible phytohormones.30 CKs are compounds 
with a structure resembling adenine which promote cell division and 
have other similar functions to kinetin. Kinetin was the first cytokinin 
discovered and so named because of the compounds ability to promote 
cytokinesis (cell division). Zeatin the most common form of naturally 
occurring cytokinin in plants today was isolated from corn (Zea mays). 
In almost all higher plants as well as mosses, fungi, bacteria, and also 
in tRNA of many prokaryotes and eukaryotes CKs have been found. 
CKs concentrations are highest in meristematic regions and areas of 
continuous growth potential such as roots, young leaves, developing 
fruits and seeds.31,32 It is usually established that CKs are produced in 
the root tips and translocated through the xylem to shoots.33

By the alleviation of stresses such as salinity, drought, heavy 
metals and oxidative CKs are also able to enhance seed germination.34 

CKs have been long known to regulate cell CKs are also able to 
enhance seed germination, growth and yield of plants.35,36 CKs have 
been long known to regulate cell division, differentiation as well as 
many aspects of plant development—including root growth, root/
shoot branching architecture and vascular development.37,38 CKs are 
needed for the formation of leaf cells, bud formation and probably 
synthesised in the areas with meristemic activity in the plant stems.38 

To regulate plant growth and development CKs actively interact with 
other phytohormones. It has been known that the interaction between 
cytokinin and auxin, another key growth promoting phytohormone, 
has an influential role in root development.39 In the cotyledons of 
Amaranthus mangostanus L. seedlings IAA had an antagonistic 
effect on the light-induced or cytokinin-stimulated accumulation of 
amaranthine. Cytokinins in darkness have been shown to induce, a 
number of processes which are normally controlled by light, including 
amaranthin synthesis, chloroplast development, and differentiation of 
leaves and cotyledons.39,40

To establish the relative biological activity of plant hormones 
compared with et al., bioassays are used. The role of cytokinin-
induced cotyledon expansion has been studied by several groups. 
During germination, Ikuma and Thimann41first reported that CKs 
caused expansion of lettuce cotyledons. Similarly these effects have 
been found on excised cotyledons of other plants, including mustard,42 

radish,43 watermelon44 and cucumber.45 To study the cytokinin-induced 
growth and related metabolism excised cotyledons have been widely 
used as experimental system.46 The cytokinin induced expansion 

growth in darkness was used as a bioassay for CKs by Banerji and 
Laloraya.47 It has been established that cytokinin-induced cotyledon 
expansion was dependent on nucleic acid synthesis.48 Thomas et al.49 

found that when CKs aggravates absorption of solutes or production 
of reducing sugars, which results in growth promotion additionally 
from loosening of cell walls during zeatin-induced growth. Both cell 
expansion and cell division are involved in BAP induced cotyledon 
expansion in cucumber in which cell expansion contribute more 
to cotyledon expansion.50 The enlargement of excised cucurbita 
cotyledons is based both on cell growth and cell proliferation.51 

During the life cycle of eukaryotic cells, microtubules are capable 
of performing various tasks which may relate to cell expansion and 
cell division.52,53 Li & Ma54 found that light enhanced the cucumber 
(Cucumis sativa L.) cotyledon expansion as compared with dark 
and benzylaminopurine (BAP) further enhanced the expansion 
of cotyledons. In cucumber cotyledon expansion, BAP treatment 
markedly increased the contents of endogenous cytokinins and 
induced α-tubulin gene expression.54

Effect of UV-B stress on plants

The solar radiation which strikes the Earth’s atmosphere also 
contains ultraviolet (UV) radiations besides visible light. Ultraviolet 
radiation (UVR) can be divided into three spectral regions (based on 
wavelengths) UV-C (200–280nm), UV-B (280–315nm) and UV-A 
(315–400nm). UV-C, the most dangerous, is completely absorbed by 
the stratospheric ozone layer in the atmosphere. UV-B radiation is not 
completely absorbed by stratospheric ozone layer; therefore, it reaches 
to the Earth’s surface and is harmful to living organisms.18 UV-B 
radiation is an important component of natural sunlight with a strong 
impact on terrestrial ecosystems.55,56 In general, the effects of UV-B 
radiation on plants can be broadly divided into two classes reflecting 
the function of the response firstly, UV-B damage causing heightened 
stress response that will help the plant to endure exposure to high levels 
of UV-B and secondly UV-B causing a photomorphogenic response in 
the plant, a non-damage response that establishes UV-B protection and 
modifies development.57 The phenotypic responses evoked in plants, 
ranging from hypocotyl growth inhibition, cotyledon expansion, 
phototropic growth and regulation of stomatal opening to the 
induction of UV protective secondary metabolites such as flavonoids 
and sinapic acid esters.58‒60 Elevated UV-B radiation produces a wide 
range of morphological and physiological damages to plant growth 
and metabolism, photosynthetic performance, DNA damage, repair 
and photo reactivation and chloroplast membrane components.61‒63 

Protecting plants from UV-B stress the UV-B-absorbing compounds 
such as flavonoids are considered as a critical barricade.64

For changes in growth, general development and flowering, 
UV-induced changes in DNA and/or plant growth regulators are 
the probable molecular reasons. Several of these responses can be 
directly linked to effects of solar UV-B on key cellular components; 
nucleic acids, lipids, photosynthetic pigments and proteins.65 DNA 
lesions caused by UV-B photons may have inhibitory effects on plant 
growth.65 An elevated level of UV-B causes the production of reactive 
oxygen species (ROS) and activates the general stress signaling 
pathways.66 Furthermore, the UV-B-dependent formation of dimers 
between adjacent pyrimidines in DNA strands may be both mutagenic 
and genotoxic due to blocking the progress of DNA polymerase.67 As 
a consequence, the exposure of plants to high levels of UV can lead 
to cell death dependent on ROS signaling.68 Suchar & Robberecht69 

found out that repair mechanisms could not solely prevent the UV-B 
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radiation interference with the cell division; resulting in significant 
reductions in leaf growth and development. Staxén et al.70 found that 
the exposure of cells to UV radiation has been shown to lead to a 
delay in the onset of mitosis using Petunia hybrida protoplasts. The 
divisions that occur through leaf expansion were more vulnerable 
to inhibition by UV-B.71 Any changes in the concentrations of plant 
growth regulators influence the processes which are dependent on 
them.72

The specific UV-B photoreceptor called UV RESISTANCE 
LOCUS 8 (UVR8)78 through which plants can directly perceives UV-B 
photons.73 UVR8 induces UV-B acclimation and UV-B stress tolerance 
in the plants (Figure 1).74,75 UVR8 is a seven-bladed β-propeller 
protein that exists as a homodimer held together by interactions 
between charged amino acids.74,75 The UVR8 homodimer converts to 
monomers that initiate a signalling cascade after UV-B absorption, 
which ultimately leads to transcriptional regulation of target genes.74,76 

A combination of protective as well as repair measures involve in 
acclimation to UV-B; including the accumulation of UV-B-absorbing 
substances in the vacuoles of epidermal cells, increased levels of 
antioxidants, protection of the photosynthetic apparatus and increased 
levels of DNA repair enzymes. The expression of numerous genes that 
strengthen photomorphogenic responses to UV-B which ultimately 
lead to UV protection and acclimation are specifically regulates by 
UVR8 (Figure 1).74,77 Besides mediating UV-B acclimation, UVR8 
have a much broader effect on plant growth and development. UVR8 
has also been implicated in UV-B-mediated entrainment of the 
circadian clock,78 hypocotyl growth inhibition,74 stomatal closure,79 

phototropic bending,80 leaf development60 and osmotic stress81 and 
pathogen responses.82 Clarification of these mechanisms will ease 
the understanding of the interactive effects of solar UV-B radiation 
and other environmental factors on plant growth and ecological 
relationships. 

Figure 1 UV radiation activates UVR8 dependent photo-morphogenesis: 
increased level of UV-absorbing sunscreens gives acclimation response; 
increased antioxidative proteins can act as ROS scavengers; increased level of 
DNA repair enzymes can act on CPDs and 6-6 PPs lesions and caused overall 
growth inhibition.

Role of Cytokinins on abiotic stresses

CKs are hormones well known for its role in numerous aspects of 
growth and development, although abundant evidence also indicates 
that CKs functions in stress responses as well. Interestingly, previous 
studies have also reported that cytokinins can have protective effects 

against the damage caused by reactive oxygen species.83‒85 Several 
plant growth aspects and developmental processes, including 
cell division, apical dominance, chloroplast biogenesis, nutrient 
mobilization, leaf senescence, vascular differentiation, shoot 
differentiation, photomorphogenic development and anthocyanin 
production regulated by CKs.6,85 Increase in plant salt tolerance was 
reported after seed priming with Cytokinins.86 In plants CKs are often 
considered as ABA antagonists and auxin antagonists/synergists 
during various processes.87 In wheat plants by interacting with other 
plant hormones, especially auxins and ABA, cytokinins could increase 
the salt tolerance.88 CKs are generally considered to be antagonists 
of ABA, with the two hormones having opposing effects in several 
developmental processes including stomatal opening.89 cotyledon 
expansion and seed germination.90 A general view has come out that 
during stress; a reduction of CKs supply from the root alters the gene 
expression in the shoot and thereby brings out appropriate responses 
to ameliorate the effects of stress.91

Figure 2 Possible mechanism for the inhibition of cytokinins induced 
expansion growth by UV-B.

Moreover, under stress conditions the observed reduction in 
endogenous CKs points towards the possibility that CKs levels could 
be a limiting factor under stress conditions. It can thus explain the 
fact that an exogenous application of kinetin resulted in increased 
growth of chickpea seedlings.92 Oxidative stress induced by salt stress 
is also detrimental to plants exposed to saline conditions, while due 
to its antioxidant effects CKs may mitigate salt-induced oxidative 
damages.93,94 Zhang & Ervin95 found that foliar spray of CKs could 
alleviate drought-induced leaf senescence of creeping bentgrass. 
During salt stress, exogenous CKs applications have been shown to 
enhance the salt tolerance in various plant species, such as eggplant 
(Solanum melongena), which displayed increased photosynthetic 
activity, biomass accumulation of roots and shoots and stem width 
along with decreased superoxide radical production rate and 
malondialdehyde (MDA) content.96 Tekchandani & Guruprasad2 found 
that Kinetin caused an enormous increase in the activity of peroxidase 
in UV-B exposed cucumber cotyledons. Ma et al.97 demonstrated 
that 6-benzylaminopurine effectively reduced salt-induced cellular 
damages by suppressing oxidative and ionic stresses in perennial 
ryegrass. The previous study indicated that application of BAP could 
increase endogenous contents of CKs such as zeatin ribosides (ZR), 
dihydrozentin riboside (DZR) and Isopentenyl adenine ribosides 
(iPA) and decrease ABA content in Kentucky bluegrass under drought 
stress.98 For Pisum sativum L. seedlings, 10μM of kinetin has been 
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reported to enhance Mn tolerance and also increase seedling growth 
by improving ammonium assimilation and the antioxidant defence 
system.99 

Interaction of Cytokinins with UV-B stress 

Cell proliferation and expansion are two closely coordinated 
processes in dicotyledonous species for leaf growth.100,101 The 
integration of both external (environmental) and endogenous signals 
(phytohormones) are involved in the regulation of cell proliferation 
and expansion, eventually which determines the shape and size of the 
mature leaf and resultant in alterations in cell turgor and cell wall 
extensibility.102‒104 In the plants, UV-B radiation is a key environmental 
signal stimulating diverse metabolic or developmental responses.3,105 A 
range of morphogenic changes, including the inhibition of hypocotyl, 
stem and leaf expansion, stimulation of axillary branching in roots 
and shoots, and redirection of growth along the adaxial–abaxial axes 
induces by UV-B irradiance.105 According to Hóllosy65 a protective 
mechanism against damage caused by UV radiation was specifically 
interpreted as an increase in thickness. 

In several plant species expansion growth of cotyledons is promoted 
in dark by CKs like Cucurbita pepo, radish and cucumber.43,47,106,107 

Visible radiation also caused the expansion of cotyledons and 
leaves and this photoresponse is mediated by phytochrome.3,29,108 
Photoresponses to UV-B (280–315nm) radiation has been in focus 
as UV-B radiation continues to increase at the Earth surface due to 
depletion of the stratospheric ozone layer. Reduction in whole plant 
biomass, plant height and expansion growth of leaves/cotyledons has 
been observed by elevated and ambient levels of UV-B radiation in 
several plant species.18,19,20,109 UV-B caused reduction in the expansion 
of cotyledons has been observed in soybean,110 Cucurbita pepo,111and 
Datura ferox,112 cowpea113 and cucumber.3,28,114,115 CKs like BAP, 
Furfuryl amino purine (FAP), Zeatin and thidiazuron (TDZ) promoted 
the expansion growth of cucumber cotyledons in the darkness and 
exposure of cotyledons to UV-B inhibited the CKs-induced expansion 
growth, which varied with the type of cytokinins used; inhibition was 
found more in FAP and zeatin compared to BAP and TDZ.115

Figure 3 shows the dramatic change in the cytokinins induced 
expansion growth of cucumber cotyledons by UV-B. According to 
Tekchandani & Guruprasad3 two mechanisms might be involved in 
the inhibition of cytokinins induced expansion growth of cucumber 
cotyledons by UV-B; it may have an inhibitory effect on cell division 
or reduce the cell elongation by the destruction of phytohormones. 
The enzyme cytokinin oxidase/dehydrogenase (CKX) inactivated the 
CKs;116 these enzymes catalysing the cleavage of their unsaturated 
bond. In previous studies it was shown that cytokinin levels and CKX 
activity are closely related.117,118 Irina et al.119 found that an inactivation 
of endogenous cytokinins may be involved in the reduction of leaf 
area, plant biomass and delayed development of pea cultivars after 
UV-B irradiation; they have suggested that this was not due to 
increased activity of CKX because the enzyme tends to be inhibited by 
UV-B irradiation. On the other hand, they have suggested that another 
way of cytokinin inactivation in the UV-B irradiated tissues might be 
involved in reduction of plant growth.119 By changing turgor pressure 
or cell wall extensibility UV-B irradiation may possibly reduce the cell 
expansion and Tevini & Iwanzik120 suggested that UV-B irradiation 
reduces the cell wall expansion by the direct oxidation of indole acetic 
acid. This might be the cause of the typical slight curling of the leaf 
surface, which is often seen under high UV-B irradiances.121 Recently, 

Vanhaelewyn et al.122 concludes that the effects of UV-B on hormonal 
regulation can be roughly divided in two, inhibition of growth-
promoting hormones (like CKs, GA and auxins) and the enhancement 
of environmental stress-induced defense hormones. In addition, CKs 
crosstalk with HY5 in regulating flavonoid biosynthesis,123 suggesting 
that an interplay with UVR8 signalling may exist. Previous studies 
suggested that UV-B-reduced leaf expansion is completely due to 
UV-B-mediated inhibition of cell division in Lactuca sativa and 
Avena sp,124 A. Thaliana,125 cucumber cotyledons,126 parsley,127 wheat 
leaves,128 barley leaves,129 tomato hypocotyls58 and petunia leaf 
protoplasts.130 Repair of UV-B damage to DNA before replication and 
direct UV-B-induced oxidation of tubulin are mechanisms responsible 
for reduced cell division include oxidation of tubulin, which could 
delay microtubule formation.130

Figure 3 Inhibition of cytokinins induced expansion growth by UV-B (1h UV-
B/ 24h Dark) in dark72h Dark).

Staxen & Bornman130 reported that the microfibrils, depolymerized 
when irradiated by UV-B and morphology of leaves altered by 
change in cell shape due to the disruption of the cortical microtubule 
network of epidermal cells. UV-B radiation may also affect the key 
stages of cell division through transcriptional repression of the genes 
encoding for a mitotic cyclin.130 The reduction in leaf size of UV-B 
exposed Arabidopsis plants has been associated to decrease in the cell 
expansion of the adaxial epidermal cells.131 Jansen105 found that the 
UV-B-induced reduction in plant growth, and more specifically in leaf 
area, has been attributed either to cell division or cell expansion or a 
combination of both. Some authors suggested that UV-B treatment 
reduced both the cell division and cell expansion in Pisum sativum,71 

Triticum aestivum,132 & Trifolium repens.133 Fasano et al.81 found 
that UVR8-mediated accumulation of flavonoid and changes in 
auxin homeostasis are the basic mechanism for the reduced size of 
Arabidopsis rosette leaves and that UVR8 have an important role for 
integrating plant growth and stress signals. 
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Free radicals interact with the processes of hormonal regulation. 
Correlations have been found between superoxide formation and the 
increase in ethylene production.134 It has been shown that cytokinins 
inhibits the activity of xanthine oxidase, one of the cellular free radical 
sources, and also act as a direct free radical scavenger.135 Gidrol et al.83 

suggested that the endogenous CKs might have a direct protective 
effect against oxidative stress, by scavenging superoxide radicals in 
addition to CKs role as a phytohormone. CKs are able to quench the 
superoxide anion as demonstrated in soybean seeds and E. coli.83 They 
have found that protective role of zeatin riboside may be due to a 
stoichiometric direct quenching of superoxide anions and may help to 
maintain seed viability by detoxifying reactive oxygen species. Yang 
et al.136 suggest that trans-Zeatin prevents UV-B induced collagen 
damage by inhibiting UV-B induced matrix metalloproteinases 
(MMPs) expression. It is well known that UV-B causes an oxidative 
stress by the production of superoxide radical (O2

.-), hydroxyl radical 
(OH.) and hydrogen peroxide (H2O2). Jain et al.22 found a direct 
evidence for the production of oxyradicals by EPR spectroscopy in 
the cucumber cotyledons after UV-B exposure. Due to an oxidative 
stress caused by excessive production of active oxygen radicals UV-B 
suppress the expansion growth.115 Kataria et al.115 found correlation 
between quenching of oxyradicals by cytokinins (showed in Figure 
4) with the promotion of expansion growth in dark grown cucumber 
cotyledons.

Figure 4 Quenching of oxyradical by different cytokinins- Zeatin, TDZ, BAP 
and FAP in A) Chemical system generated by 1µl Potassium super oxide 
(KO2) + 100µl Phosphate saline buffer (PBS) + 5µl Phenyl N-t butylnitrone 
(PBN, a spin trapping agent) + required concentration of cytokinins, B) in 
tissue system cotyledons expansion growth in dark and after UV-B exposure. 

(Std.- control without cytokinins). For tissue system 100 mg of cotyledons 
were homogenized in 1.0 ml phosphate saline buffer (pH 6.0) containing 100 
mM ethylenediaminetetraacetic acid (EDTA), 100 mM diethyldithiocarbamaic 
acid (DDC, a superoxide dismutase inhibitor) and 500mM phenyl N-tert-
butylnitrone (PBN, a spin trapping agent+ required concentration of 
cytokinins).

They also found the concentration response of FAP to UV-B 
exposure (5.6mW cm-2sec-1) in excised cucumber cotyledons, and 
showed that a considerable amount of the radicals were quenched at 
higher concentrations of FAP (64.4% at 10µg/ml and 65.5% at 20mg/
ml) (Figure 4). It indicates that the oxyradicals might partially account 
for inhibition of growth in the cucumber cotyledons although the 
quenching did not result in any reversal in the inhibition of expansion 
growth.115 They have suggested that inhibition of cytokinin induced 
expansion growth by UV-B might be caused by other physiological 
changes induced by UV-B in addition to production of Oxyradicals. 
Tekchandani & Guruprasad2 found that the inhibition of cytokinins 
induced expansion growth of cucumber cotyledons by UV-B is 
accompanied by the increased activity of peroxidase and they have 
suggested the existence of an inhibitor of peroxidase which is 
susceptible to UV-B. Inactivation of peroxidase inhibitor may have 
an important role in higher plants to provide the protection against 
UV-B stress.28 Of the various defence mechanisms available to 
the plants, cucumber cotyledons have preferentially adapted the 
enormous increase in peroxidase as a stress alleviating mechanism 
when exposed to UV-B.2,28,137,138 

Conclusion and perspective
In conclusion, the reduction in expansion growth of cucumber 

cotyledons was found to be due to an effect of UV-B on the rate and 
duration of both cell division and elongation. A lot of work has been 
done to determine the cytokinin levels under the water stress, high 
salinity and flooding. Thus when plants are exposed to various types 
of stress their hormone levels undergo significant and rapid changes. 
These changes result in the regulation of various physiological 
processes such as membrane permeability and water potential, protein 
synthesis and degradation, photosynthesis and respiration, and 
enzyme regulation. Various structural and morphological changes are 
also elicited indirectly by these sudden and dramatic changes. The 
role of inhibitor of peroxidase in this regulation of expansion growth 
assumes importance as a stress regulating factor. The inhibition in 
growth of the cotyledons may be the result of this stress management 
since the prevention of oxidative stress by the photo oxidants produced 
by UV-B may dominate the response of the cotyledons (Figure 2).
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