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between HIV RNA content in the cells and liver fibrosis.5 Hepatocytes 
are mildly damaged by HIV-1, but the exposure of HCV-pre-sensitized 
hepatocytes to HIV leads to increased hepatocyte damage.7,8 

The liver and activated immune cells

Due to its central anatomical position, the liver plays a significant 
role in the maintenance of immune responses to HIV, since it is largely 
responsible for the clearance of virus from the bloodstream and is 
supplemented by activated immune cells originated from the gut.9 
The liver is considered as a graveyard of activated immune cells that 
are attracted to dying (apoptotic) hepatocytes and to chemoattractants 
released by non-parenchymal cells (NPC).10,11 In the liver, there is 
accumulation of HIV-activated immune cells, and these cells undergo 
apoptosis.12 In addition to apoptotic hepatocytes, immune cells 
themselves become a significant source of apoptotic bodies in this 
organ.

Liver fibrosis 

Accompanies intensive hepatocyte death and is characterized 
by enhanced synthesis and secretion of extracellular matrix (ECM) 
proteins and its reduced degradation. The main source of ECM during 
fibrogenesis are hepatic stellate cells (HSC). Fibrosis occurs when 
ECM proteins accumulate in excessive amounts leading to scarring 
that increases tissue stiffness.13 To reverse fibrosis, degrading ECM 
matrix metalloproteinases (MMPs) must overcome the effects of 
tissue inhibitors of MMPs (TIMPs).14 When apoptosis is massive, 
apoptotic bodies are captured by liver NPC, Mph and HSC, thereby 
inducing inflammation and fibrosis.15–17 After massive hepatocyte 
death, the HSCs are activated into proliferative, fibrogenic and 
contractile myofibroblasts expressing prostaglandin D receptor that 
actively produce ECM components, such as type I collagen. Numerous 
cytokines (like TGFβ) activate HSC for pro-inflammatory response. 
HIV-1 was reported to infect HSCs in a CD4/chemokine receptor 
independent manner, resulting in increased expression of collagen-1 
and the pro-inflammatory monocyte chemoattractant protein 1 (MCP-
1).18 Inflammasome (IFS) plays a role in pro-inflammatory activation 

of HSC.19 Also, increased density of matrix during liver fibrosis leads 
to increasing liver stiffness, which is now believed to correlate and 
contribute to the progression of liver fibrosis.

HIV potentiates fibrosis progression un HCV-infected 
livers

Recently, we have shown that co-infection of hepatocytes with 
HIV and HCV induces prominent apoptosis in these cells, and 
apoptotic bodies engulfed by HSC promote the production of ECM. 
Interestingly, apoptotic bodies generated from hepatocytes serve 
as more efficient pro-fibrotic triggers than apoptotic immune cells, 
which induce pro-inflammatory effects. These effects are HIV-and 
HCV-specific since the magnitude of pro-fibrotic response is lower 
when apoptotic bodies were made from HIV-and HCV-negative 
hepatocytes. To ensure long-term persistence and efficient infection 
of hepatocytes in cells culture, we have used Huh7.5 cells transfected 
with CYP2E1 (named RLW cells) and plated on synthetic 2D gels, 
which makes cultured cells hepatocyte-like.20,21 The obtained data 
allowed hypothesizing that HIV infection of hepatocytes followed 
by apoptotic cell death plays a substantial role in the progression 
of HCV-triggered liver injury. This “second hit” system based on 
interaction between double-infected apoptotic liver parenchymal and 
non-parenchymal cells is crucial for further fibrosis development.

 Taken together 

Co-infection of hepatocytes with HIV and HCV induces apoptotic 
cell death; Internalization of these apoptotic bodies by hepatic stellate 
cells promotes liver fibrosis development.
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Editorial
HIV and HCV is an often combination, with 7 million people being 

co-infected worldwide. This co-infection accelerates liver fibrosis 
even when HIV-replication is controlled by anti-retroviral therapy 
(ART).1 The alarming factor for co-infection is a high incidence of 
decompensated liver cirrhosis and HCC, which exceeds the one in 
mono-infections.2 In the liver, only hepatocytes are productively 
infected with HCV, while the productive infection of other cell 
types is questionable. HCV induces oxidative stress and apoptosis 
in hepatocytes.3 In contrast to HCV, the level of HIV infection in 
hepatocytes is low or this infection is even latent.4,5 While immune 
cells expressing CD4 receptor are HIV-permissive, liver transaminases 
are frequently elevated in the sera of HIV-infected patients even in the 
absence of accompanying viral hepatitis,6 and there is an association 
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