

Review Article

Central and peripheral modulation of visceral pain and visceral hypersensitivity by the CRF-CRFR system

Abstract

Visceral pain refers to the pain originating from the internal organs and is the common symptom shared by many disorders. The corticotrophin releasing factor (CRF) family encompasses CRF, urocortin (Ucn) 1, Ucn2, and Ucn3 (collectively termed as CRFs in this review), while CRF receptors (CRFR) include CRF receptor type 1 and type 2 (CRF₁ and CRF₂)and their different splice forms. CRFs and CRF receptors are extensively expressed in both the brain and the peripheral tissues including the gastrointestinal (GI) tract, the spinal cord and so on. The CRF-CRFR system has been shown to play key roles in modulating visceral pain and visceral hypersensitivity by multiple groups in the past two decades. However, a comprehensive review to summarize and integrate the different, even contradictory results is lacking. This review summarizes the role of the CRF-CRFR system in modulation of visceral pain and visceral hypersensitivity at the layers of the brain, the spinal cord and the GI tract.

Keywords: visceral pain, visceral hypersensitivity, corticotropin releasing factor (crf), corticotropin releasing factor receptor type 1 and type 2 (Crf₁ and Crf₂)

Volume 6 Issue 5 - 2017

Zhe Zhang, Wen Xie Xu

Shanghai Jiao Tong University School of Medicine, China

Correspondence: Wen-Xie Xu, College of Basic Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China, Email wenxiexu@sjtu.edu.cn

Received: March 19, 2017 | Published: April 12, 2017

Introduction

Visceral pain is defined as the pain sensed as arising from the internal organs of the body. It has five clinical characteristics, including not being evoked from all viscera, not always being linked to injury, poor localization, referred pain and being accompanied with motor and autonomic reflexes. Etiological factors are, but not limited to, inflammation, mechanical disruption, neoplasms, and alterations in neurotransmission from the viscera, and ischemia. Visceral hypersensitivity refers to the altered pain sensation to physiological stimuli, consisting of allodynia and visceral hyperalgesia. Visceral pain and visceral hypersensitivity is the common feature of many disorders, including inflammatory bowel disease (IBD), interstitial cystitis/painful bladder syndrome, pancreatitis, and many gastrointestinal functional diseases, especially irritable bowel syndrome (IBS).

Irritable bowel syndrome is a functional bowel disorder that is not associated with detectable structural and biochemical abnormalities.⁴ The prevalence of IBS is 7%-21% of the general population,⁵ casting a huge economic burden.^{6,7} In addition to visceral pain, IBS is characterized by stool irregularities and bloating. According to the predominant stool pattern, the Rome III criteria divide IBS into four subtypes, IBS with constipation, IBS with diarrhea, mixed IBS and unsub typed IBS. The pathological mechanisms of IBS remain largely unknown. Disruption of epithelia barrier, dysbiosis, lowgrade inflammation, and altered brain-gut axis has been proposed to contribute to the pathogenesis and symptoms of IBS.⁴ An interesting observation is that IBS is highly comorbid with stress-related psychiatric disorders.8 Depression and anxiety accounts for 20%-60% of these comorbidities9 and psychological stress contributes to the exaggeration of visceral pain. Therefore, elaborating the roles of stress in development of visceral pain may provide insights to the underlying mechanisms of IBS.

CRF is the key mediators of stress and visceral pain. CRF is commonly believed to promote the releasing of the ACTH by binding to its receptors. However, the role of CRF and its related peptides extends far beyond mediating the endocrine component of stress. ¹⁰ Intravenous administration of CRF induces visceral hypersensitivity after repetitive rectal distention in healthy humans and mimics an IBS-specific visceral response, ¹¹ indicating that the CRF-CRFR system contributes to the pathogenesis of visceral pain and hypersensitivity and IBS. Indeed, the role of the CRF-CRFR system in visceral pain modulation has been repetitively demonstrated in both the patients and animal models.

In this review, the relationship between CRF-CRFR system and visceral pain is summarized, especially focused on the expression pattern of CRFs and CRF receptors in the brain, the spinal cord and the peripheral tissues, and on the dynamic change of the CRF-CRF system in different physiological conditions. Finally, it is analyzed how the CRF-CRFR system modulates visceral pain at both peripheral tissues and the brain.

Corticotropin-releasing factor sand CRF receptors

Corticotropin-releasing factor and its related peptides

The mammalian corticotropin releasing factor (CRF) family consists of four members, CRF, urocortin (Ucn) 1, urocortin 2 and urocortin 3.¹² The first member of CRF family was a 44-amino acid peptide, first isolated from ovine brain and found to stimulate the secretion of adrenocorticotropin hormone (ACTH) and beta-endorphin.¹³ Thereafter, it was named corticotropin-releasing factor (CRF). The CRF peptides are highly conserved across different species, with human, mouse and rat CRF identical (therefore termed h/m/r CRF).¹⁴ In addition to CRF, CRF like peptides were subsequently identified in mammals, amphibians and fish.¹⁵ vaughan et al.,¹⁶ first, in the rat midbrain, cloned urocortin (later normalized as Ucn1 by

UPHARM guideline), which is a 40-amino acid peptide and shares 45% amino acid sequence identity with h/m/r CRF.^{16,17} Reye et al.,¹⁸ isolated a new member of CRF family, Ucn2, which is a 38-amino acid peptide and shares 34% and 42% homology with rat CRF and rat Ucn1 at amino acid level, respectively.¹⁸ Ucn3 is a 38-amino acid protein and was found to be relatively more closely related to Ucn2 than CRF and Ucn1.^{19,20} Similarly to CRF, Ucn peptides share high identity among mammals in terms of amino acid sequence of the mature peptides. Mouse Ucn1 and rat Ucn1 are identical, which share 95% identity with that of human.¹⁶ Human Ucn3 and mouse Ucn3 are 90% identical with each other.^{19,20}

The biological activity of CRFs relies on the amino-terminals containing the first 21 amino acid residues, the carboxyl-terminals containing the last 5 amino acid residues, and their internal segments that have a high average probability of alpha helix formation. ^{15,21,22}

Corticotropin-releasing factor receptors (CRFR)

The receptors for CRFs are CRF receptor type 1 and 2 (CRF $_1$ and CRF $_2$, respectively), which belong to the secret in-like, family B1 of G protein-coupled receptors (GPCR). The structure of CRF $_1$ and CRF $_2$ are typical of GPCR, consisting of 7 alpha-helical transmembrane segments, an extracellular amino-terminal and an intracellular carboxyl-terminal.

CRF, and CRF, have different splice forms. CRF, a is the main

receptor variant, which is composed of 415 amino acids.²⁴ CRF₁b, CRF₁c-CRF₁m have been identified and their functional roles remains elusive.²⁵ For simplicity, the CRF₁ variant, designated as CRF₁ below in this paper, refers to CRF₁a. CRF₁splice variants are differently localized, which is discussed later in this article. CRF₂ encompasses 3 main is of orms, a, b and c.^{26–29} As CRF₁, CRF₂ variants are expressed differentially in tissues. However, CRF₂ splice variants exert similar pharmacological properties as compared to those of CRF₁.^{26–29} CRF₁ are highly conserved across different species with human and mouse CRF₁only differing in 10 amino acids.³⁰ The CRF₂ shares approximately 70% amino acid sequence identity with CRF₁.²⁶

The primary cellular functions of CRF₁ and CRF₂ are mediated through Gαs. Binding of CRFs to the receptors initiates a series of conformational change, which conveys extracellular stimuli into intracellular domains of CRF receptors, resulting in the activation of Gαs-adenylatecyclase-cAMP-PKA pathway.³¹ The signaling cascade manifests its diverse cellular effects by activating ERK1/2, p38 MAPK, and so on.^{32–35} Additionally, CRF₁ and CRF₂ may couple to different G proteins and regulate both cAMP-dependent and cAMP-independent signaling.³⁶

The natural ligands of CRF₁ and CRF₂ are CRF, Ucn1, Ucn2 and Ucn3. OCRF is relatively selective for CRF₁, while Ucn2 and Ucn3 are significantly selective for CRF₂. The other natural ligands are lack of specificity for CRF receptors (Table 1).

Table I Pharmacological Properties of CRF Receptors

Linad			K _{is} or EC _{s0} (nM)	
Ligan d			CRF,	CRF,
Natural Ligands	CRF _i selective	oCRF ^a	1.2	52
	CRF ₂ selective	mUcn2 ^b	>100	0.66
		hUcn2⁵	>100	0.5
		mUcn3⁵	>100	1.8
		hUcn3⁵	>100	13.5
		r/hCRF ^a	1.0	6.2
	Non-selective	rUcn I ^b	0.32	0.62
		hUcn1°	0.1	0.5
		Urotensin ^b	0.4	2.2
		Sauvagine ^b	0.7	4.3
Non-endogenous Antagonist (Peptide)	CRF _i selective	YAM19d,e	5.9	-
	CRF ₂ selective	astressin2-Bf	>500	1.3
		anti-sauvagine 30f	400	1.1
	Non-selective	α -helical CRF9-41f	19	1.1
		D-PheI2 CRF ₁ 2-4If	19.2	4.4
		astressinf	0.7	0.6
		astressin-Bg	0.3	1.2
Non-endogenous Agonist (Peptide)	CRF _i selective	Cortagineh	2.6	540
		stressin l a	1.7	222

Non-endogenous agonists and antagonists for CRF receptors are classified into peptidic and non-peptidic groups according to the chemical nature. The non-peptidic group distinguishes from the peptidic group by its ability to freely cross the blood-brain barrier.³⁷ The difference in crossing the blood-brain barrier enables their differential applications for studying the CRF-CRFR system at central and peripheral levels. Specifically, for the peptidic group of antagonists, it may be subdivided into three subgroups, CRF₁ selective, CRF₂ selective and non-selective (Table 1). CRF₂ selective peptidic agonists include astressin2-B and anti-sauvagine 30. The representative peptides of non-selective group areα-helical CRF9-41, D-Phe12 CRF₁2-41, a stress in-B and a stress in. As shown in Table

1, the selective peptidic antagonists for CRF₁ and peptidic agonists are relatively underdeveloped. Non-peptidic agonists and antagonists for CRF receptors and their therapeutic utility have been extensively reviewed by John H Kehne & Christopher K Cain,³⁷ which is not discussed elaborately in this article. a,b,c,d,h The Kis value was determined by competitive radio ligand displacement as says by using radio labedsauvagine(a, b, c), astressin (d) or h/rCRF(h). eAccording to this article, YAM19 is a CRF₁ selective peptide. However, the supporting data is not shown. f, g EC50 was determined by measuring alteration of CRF-induced release of ACTH by rat anterior pituitary cells in culture.

Central expression of CRFs and CRF receptors

To investigate the role of the CRF-CRFR system in visceral pain modulation, characterization of the expression pattern is prerequisite. The pain sensation pathway provides insights to the sites and layers that we focus in this part. The gastrointestinal (GI) tract is diffusely sensed by the afferent fibers from the vagal, pelvic and splanchnic nerves, which ascend via the vagal nerves, sympathetic and parasympathetic pathways. Secondary processing occurs at the spinal cord and at the brain stem. In the spinal cord, primary visceral afferents terminates in laminael and V, constituting the spinothalamic tract, or in laminae VII and X, constituting the dorsal column pathway. Then secondary neurons diffusely project into the pain matrix, including the prefrontal cortex (dorsolateral), the insula, the thalamus, the amygdala, and the anterior cingulated cortex (ACC). Thereafter, we focus the expression of CRF and CRF receptors at the levels of the GI tract, the spinal cord and the brain

By immunehistochemical staining, CRF was found to be densely localized, in rat, in the cell bodies of the extra-hypothalamic areas of nucleus accumbenssepti, basal nucleus of the striaterminalis (BNST), the medial preoptic region, and the central amygdaloid nucleus, and of hypothalamic areas of paraventricular nucleus (PVN).48 For fibers, CRF is enriched in the lateral septal region and throughout the external layer of the median eminence.⁴⁸ The distribution pattern has later been repetitively confirmed by different methods, including in situ hybridization in voles,49 immunohistochemical labeling by CRF specific polyclonal antibody in mice, rats, 50 and tree shrews,51 and immunofluorescence by anti-GFP antibody targeting CRF-Venus fusion protein in the knock-in mice.⁵² These studies demonstrate that the expression pattern of CRFs is conserved among species. Compared with CRF, Ucn peptides are more restrictedly expressed. Ucn1 is primarily expressed in Edinger-Westphal nucleus (EWN)⁴⁹ and the lateral superior olive.⁵³ In rats, Ucn2 neurons are mainly present in PVN with a few existing in the supraoptic nucleus of the hypothalamus, and Ucn3 are similarly expressed in PVN and in the extra-hypothalamus areas of the medial nucleus of the amygdala.54 Throughout the spinal cord, CRF fibers were found to predominate the laminaeI, V-VII, and X of Rexed while Ucn1 fibers the laminae VII and X, by immunofluorescence and in situ hybridization.⁵⁵ As expected, the expression of CRF and its related peptides is a dynamic process in accordance with different physiological conditions, for example, diverse stressful states. Evidence includes that CRF and Ucn3 are differentially expressed in eusocial naked mole-rats and solitary cape mole-rats⁵⁶ and that Ucn1 expression in mouse brain is strain-dependent.53

CRF, is expressed with different intensity throughout the whole brain, with enrichment in neo cortices, the olfactory bulb, the hippocampus and sub cortical limbic structures in the septal region and the amygdala of the forebrain, in certain relay nucleus of the brain stem, and in the cerebellum.⁵⁷⁻⁵⁹ The expression of $\mathrm{CRF}_2\mathrm{isoforms}$ is disparate. $\mathrm{CRF}_{2\mathrm{a}}$ and $\mathrm{CRF}_{2\mathrm{c}}$ predominate the brain while CRF_{2b} mainly locates in the peripheral tissues.^{29,60} In the brain, CRF₂₀ is enriched in the olfactory bulb, the lateral septum, BNST, the ventromedial hypothalamus, the raphe nuclei, the amygdala, the ventral hippocampus, the solitary tract, and the area postrema.^{58,60-63} ${\rm CRF}_{\rm 2b}$ is primarily located in the choroid ${\rm plexus}^{62,63}$ and ${\rm CRF}_{\rm 2c}$ in the septum and the hippocampus. 29 In the spinal cord, CRF, is relatively widespread with occurrence in laminae III-X compared to the restriction distribution of CRF, in laminae III-VIII.55 Genetically or molecularly mimicking of stress does not change the general localization of CRF receptors but do influence the expression level.⁶³

The density of CRF receptors varies within different physiological conditions, for example, photoperiod and sociality.⁶⁴ and within disease conditions like depression and gastrointestinal function disorders.⁶⁵

The amygdala is a key component of the pain matrix. It consists of several nuclei, of which, the lateral (LA), basolateral (BLA), and central nuclei (CeA) are particularly important for sensory processing. The polymodal sensory, including nociceptive, inputs from thalamic nuclei and cortical areas are transmitted into the LA, and through the LA-BLA circuitry, sensory information is added with affective contents. ⁶⁶ The integrated information is finally relayed to the CeA, which is the major output nucleus for amygdala functions. ⁶⁷ Additionally, the laterocapsular division of the CeA (CeLC), through the spino-parabrachio-amygdaloid pathway, directly receives the nociceptive information. ⁶⁸

CRFs are apparently localized in both cell bodies and the fibers of the central nuclei of the amygdala among different species. 48-52 In the CeA, CRF is co-localized with GABA. 52 Another study using a transgenic mouse line, in which hr GFP was expressed under the control of CRF promoter demonstrates that CRF is primarily located in the interstitial nucleus of the posterior limb of the anterior commissure in addition to the central amygdala. 69 This study suggests that amygdalar CRF neurons are activated in certain stress conditions like social defeat stress and lipopolysaccharide (LPS) administration but not in restraint stress and forced-swimming stress. Neither Ucn1 nor Ucn2 is evidently expressed in the amygdala. Ucn 3 neurons are found in the dorsal division of the medial nucleus of the amygdala. 54

CRF₁ and CRF_{2a} are differentially localized in the amygdala, with CRF₁ predominant in the basolateral and medial nuclei, and CRF_{2a} in the posterior aspect of the medial nuclei. ^{59,61} CRF_{2e} is weakly expressed in the amygdala. ²⁹

Peripheral expression of CRFs and CRF receptors

CRFs and CRF receptors are widely expressed in the peripheral tissues, including the heart, the muscle and the skin, in which CRF₂a is the dominant form.^{29,62} Here, we focus the expression of CRFs and CRF receptors in the gastrointestinal tract. The CRF-CRFR system is expressed throughout the GI tract in a slightly different manner at different segments of the GI tract and at different layers in the same segment. Emphasis is put on the lower gastrointestinal tract, for example, the colon, for the usual involvement in multiple diseases manifesting visceral pain and visceral hypersensitivity.

CRF is expressed in the colonic mucosal epithelia, lamina propria, crypts, and the enteric neurons (both bodies and fibers) in the rat colon,⁷⁰ in healthy people and in patients with ulcerative colitis (UC).⁷¹ In the mice ileum, the expression pattern is slightly different with CRF primarily expressed in stromal cells and nerve fibers.⁷² Specifically, enterochramffin cells (EC) that synthesize serotonin (5-HT) constitute a large proportion of CRF positive cells in the epithelia.⁷⁰ Cells expressing CRF in the lamina propria includes macrophages⁷¹ and eosinophils,73 indicating roles of the CRF-CRFR system in the gut immunity. In the enteric neurons, CRF expressing bodies and fibers are more abundant in the sub mucosal plexus than in the myenteric plexus in the guinea pig⁷⁴ and in the rat, ⁷⁵ and almost all the CRF expressing neurons co-express vasoactive intestinal peptide (VIP), suggesting the VIP and CRF interaction in intestinal regulation.⁷⁵ Additionally, CRF is not co-expressed with CRF, in the same neurons and CRF positive neurons are usually in proximal with CRF, neurons, 74 suggesting that CRF-CRFR system modulates the neuronal activity enteric in a local circuit. Ucn1 is expressed primarily in the macrophages of the mucosa in the colon of healthy human⁷⁶ and in the plasma cells and the EC of the mucosa in the patients with UC,⁷⁷ and both experiments detect weak signals of Ucn1 in the epithelial cells and in the enteric neurons. Ucn2 is expressed in the leukocytes and the external muscular layer in the wall of rat ileum.⁷² Ucn3 is expressed ubiquitously in the epithelial cells and the myenteric neurons through the GI tract in rats.⁷⁸

In the rat colon, CRF₁ and CRF₂ are expressed differentially in the crypts. CRF₁ is also expressed in the lamina propria and in the enteric plexus, while CRF₂ is expressed in the blood vessels of the sub mucosa.⁷⁹ Similar results were obtained in healthy human.^{80,81} Specifically, macrophages account for 79% of the cells that express CRF₁ in the lamina propria with the rest being mast cells and other cells.⁸⁰

The expression level and sites of CRFs and CRF receptors are dynamically regulated in different diseases. CRF expression is upregulated especially in the sub mucosa plus muscular layers in response to LPS administration in a corticosteroid-independent manner in the rat colon⁷⁰ and the number of CRF expressing eosinophils is increased in the UC rat. 73 In the human UC patients, CRF is only slightly increased in the mucosal epithelia but considerably increased in the mucosal macrophages.71 The number of Ucn1 expressing cells increases in proportion to the severity of inflammation in the UC patients,77 however, Ucn3 is down-regulated in UC.78 CRF, expressing cells with macrophages in particularly increase in mucosa of UC patients.80 In contrast, CRF, is down-regulated in the epithelial cells, but not the lamina propria, of mild-moderately active UC and of recovery from UC.81 In general, CRF, and its natural ligands, including CRF and Ucn1, are up-regulated, while CRF, and its natural ligand, Ucn3 are down-regulated in the inflamed state. However, in the patients of functional bowel disease, the expression CRF₂ is similar to that in healthy people.81

Modulation of visceral pain by the CRF-CRFR system Central modulation of visceral pain by CRF-CRFR system

Intracerebroventricular (icv) injection of α-helical CRF9-41 was found to block the visceral pain induced by colorectal distention or by icv injection of CRF, indicating that visceral hypersensitivity is modulated by CRF-CRFR systems in the brain.82 Consecutive experiments has shown that visceral pain is ameliorated by specifically blocking CRF, using small molecule antagonists including NBI-35965,83 CP154265,84,85 NGD 98-2, NGD 9002,86 antalarm in,87 E250888 in multiple stress models of maternal separation, acute water avoidance stress, 83,86, repeated psychological stress, 84,86 repeated stress in combination of colitis⁸⁵ and genetically anxious WKY rats.⁸⁷ These data demonstrate that CRF-CRF, is the common modulator of visceral pain and visceral hypersensitivity in multiple stress settings and that CRF, plays key roles in both the development and the maintenance of visceral hyper sensitivity.84 In these experiments, the small molecule CRF, antagonists are administrated orally, intravenous or subcutaneously. Due to the ability of small molecules to freely cross the blood brain barrier, the peripheral roles of the CRF-CRF, in modulation of visceral pain cannot be excluded. The experiments of brain sites specific injection of CRF, antagonists further consolidated the brain as the sites of pain modulation, as shown below.

Next questions are what parts of the brain are involved in pain modulation by the CRF-CRF₁ system. As mentioned above, the amygdala is the site playing key roles in visceral pain and visceral hypersensitivity. Initial data includes that microinjection of α -helical

CRF9-41 into the CeA significantly reduces anxiety. ⁸⁹ To further characterize the role of the CeA in visceral pain modulation, either the CRF₁ specific antagonist CP-376395 was administrated into the CeA, ⁹⁰ or CRF was site-specifically knocked down in the CeA. ⁹¹ In both experiments, rats showed decreased visceral pain in response to colorectal distension (CRD). Similarly, site-specific injection of CRF into the CeA evokes visceral hypersensitivity. ^{92,93} Additionally, expression of CRF and CRF₁ is up-regulated in the CeA in the visceral hypersensitivity models of cystitis ⁹⁴ and in models of comorbid depression and functional gastrointestinal disorders. ⁶⁵ Taken together, these experiments demonstrate that amygdala is the site of visceral pain modulation by CRF-CRF₁.

In addition to amygdala, CRF-CRF, may modulate visceral pain in PVN, BNST, EWN, the hippocampus, and locus coeruleus (LC). Under acute pain stress, expression of CRF and Ucn1 peaks at different time point in PVN, BNST and EWN, suggesting that CRF in the PVN acts in the initiation phase, while Ucn1 in the EWN acts in termination of the adaptation response to APS.95 Intra hippocampal administration of α-helical CRF or intra peritoneal administration of JTC-017, a CRF, specific antagonist, significantly attenuates hippocampal noradrenalin release and visceral hypersensitivity induced by acute distention. 6 In the anterio lateral BNST, micro infusion of CP-376395, a CRF, specific antagonist, reduces visceral pain in response to CRD under non-stressful baseline conditions or following water avoidance stress. 97 In the rats that experienced CRD in the neonatal phase, CRD during adulthood induces visceral pain by activating the microglial cells and CRF expressing neurons in the PVN, which are prevented by intra-PVN infusion of small interference mRNA that targets CRF.98 Injection of D-Phe12CRF,2-41 into LC attenuates the activation of noradrenergic LC neurons in response to CRD99,100 and similar results were obtained by LC-specific administration of CRF, antagonist, NBI-35965 in response to CRD and intracisternal injection of CRF. 100 Noradrenergic LC neurons also project into the CRF neurons of the CeA.¹⁰¹ And injection of CRF into the CeA increases noradrenalin release in the CeA and evokes visceral hypersensitivity, which is blocked by CRF, antagonists. 92 The CRF expressing neurons in the CeA and the noradrenergic neurons in the LC form a circuit that may underlie the mechanisms of visceral pain modulation.

The studies of the roles of CRF-CRF, in modulation of visceral pain are relatively scant and remain controversial. Ideas are borrowed from the somatic pain hypersensitivity, which may share similar mechanisms with visceral hypersensitivity. CeA-specific blockade of CRF, inhibits evoked responses and background activity in arthritis but not in healthy controls, while blocking CRF, in the CeA only increases neurons' response in healthy controls but has no effect in arthritis. 66,102 This indicates that in the CeA, CRF, is activated under arthritis but not normal conditions and contributes to pain sensation while CRF, is inhibitory to pain sensation under normal conditions but the inhibitory effect is lost in arthritis. This concept is in consistent with the observation that in stress models of WKY rats or maternal separation, CRF, mRNA was higher in the amygdala, PVN and dorsal raphe nucleus (DRN) while CRF, mRNA is lower in the dorsal raphe nucleus in comparison with control rats. 65 In BNST, the opposing roles of CRF, and CRF, holds true under different conditions. Specifically, under baseline conditions, blocking of CRF, reduces anxiety, somatic pain and visceral pain in response to high CRD pressure, but the ameliorating effect is lost under water avoidance stress. 97 Confusingly, in the normal rats in the absence of tissue damage, CRF increases somatic pain behavior, which is blocked by CRF, antagonists but not by CRF, antagonists. 103 The complexity of the CRF-CRF, in

modulating visceral and somatic pain may be attributed to the differential regulation of CRF_2 under different stress conditions and in different strains, to the differential localization of CRF_2 in the brains and to the different behaviors under investigation.

Concerning the upstream mediators that may modulate the CRF-CRFR system in the modulating visceral pain and visceral hypersensitivity, corticosterone (CORT) is of great interest, which is commonly considered as the stress hormone in the hypothalamuspituitary-adrenal gland (HPA) axis. Stereotaxic delivery of CORT into the amygdala induced anxiety-like behaviors and colonic hypersensitivity in rats, 104,105 which are mediated via glucocorticoid receptors (GR) or mineralcorticoid receptors (MR).¹⁰⁶ Decreased expression of GR and increased expression of CRF and HCN1 channel with no change of CRF, and CRF, expression was observed in the CeA in exposure to elevated CORT. 107 Visceral hypersensitivity was triggered by knocking down of steroid receptors (either GR or MR) in the CeA108,109 and was blocked by knocking down of CRF in the CeA.⁹¹ One of the interesting observations is that transient exposure of CeA to CORT resulted in long lasting increases of visceral sensitivity and anxieties.¹¹⁰ The maintenance of chronic anxiety and visceral hypersensitivity is mediated by epigenetically deacetylation of his tone 3 at lysine 9 (H3K9), which sequesters the GR expression, leading to disinibition of CRF. 111,112 However, contradictory results were found in WKY rats, a high anxiety strain, compared to the results from the low anxiety F344 rat strain. In WKY, visceral hypersensitivity is mediated by CRF, instead of steroid receptors. 90 The difference indicates the heterogeneous nature of visceral hypersensitivity in terms of strains¹¹³ and stresses.

Above all, the central mechanisms of visceral pain modulation by CRF-CRFRs systems include, but are not limited to, dysregulation of CRF and CRFR expression, loss of balance between CRF₁ and CRF₂, altered circuits plasticity in the brain pain matrix and dysregulation of noradrenergic release in different brain sites, in response to different stress and in different strains.

Peripheral modulation of visceral pain by CRF-CRFR system

Administration of small molecule CRF₁antagonists ameliorates visceral pain and visceral hypersensitivity, ^{83–88} as mentioned above. The pharmacological effects are likely to happen at both central and peripheral layers. The major peripheral organ we focus on is the GI tract. The peripheral role of the CRF-CRFR system has been corroborated by subcutaneous administration of astressin, a peptidic nonselective CRF₁ and CRF₂ antagonist, which blocks the visceral hypersensitivity induced by repeated water avoidance stress. ⁸⁴ Both CRF₁ and CRF₂ participate in the peripheral modulation of visceral pain and visceral hypersensitivity. Intraperitoneal injection of cortagine, a CRF₁ specific peptidic agonist exacerbates the visceral pain in response to CRD. ¹¹⁴ On the other hand, subcutaneously injection of astressin2-B, a CRF₂ specific peptidicantaogonist, blocks visceral hyposensitivity. ¹¹⁵

Sensitization of peripheral afferent nerves is the major mechanisms accounting for the visceral pain and hypersensitivity of peripheral origin. The nerves may be sensitized by lipids, hormone, cytokines, immune mediators and substances from the GI lumen. These sensitizers activate different neuronal receptors and ion channels that associates with pain signaling, such as transient receptor potential cation channel subfamily V type 1 (TRPV1), protease-activated receptors (PAR), cholecystokinin receptors, serotonin receptors, cannabinoid receptors, ATP gated ion channels, sodium channels,

calcium channels, and acid-sensing ion channel.¹¹⁶ The interaction between epithelia cells, EC, mast cells and other inflammatory cells, and neurons determines the synthesis and release of these sensitizers. The CRF-CRFR system regulates this interaction, therefore modulates visceral pain peripherally.

Increased permeability has been shown to induce visceral pain in response to acute CRD stress.¹¹⁷ Increased permeability results in the translocation of gut microbiota, antigens and other luminal contents, which activate gut immunity and facilitates nerve sensitization. Cortagine administered intraperitoneally induces visceral hypersensitivity, which is blocked by the CRF, specific antagonist, astressin. 114 In vitro experiments using healthy human colon tissues demonstrate that CRF increases mucosal permeability, which is inhibited by α-helical CRF9-41 and mast cell stabilizer, suggesting mast cells mediates the effect of increased permeability. 118 Interestingly, administration of astressin or antalarmin, which are CRF, and CRF, antagonists respectively, only induces partial inhibition, indicating both receptors on the mast cells regulates the permeability. Mast cells activated by CRF release proteases and TNF-α, and these molecules facilitate intestinal epithelia barrier injury, increased permeability and nerve sensitization.¹¹⁹ The increased permeability is facilitated via either the paracellular 117 or the transcellular¹¹⁸ pathway according to two different contradictory experiements. However, roles of different pathways in increased permeability under different conditions await clarification, as different pathways determine differential gut immune reactions in response to different substances leaked in.

Enter chromaffin cells are an important source of CRFs and express CRF receptors. Two independent studies using different BON cell lines, which share functional similarities with intestinal EC cells, demonstrate that CRF stimulates serotonin release and synthesis from BON cells in a cAMP-dependent manner. ^{120,121} In the experiment using BON-1N cell line, only activation of CRF₁, but not CRF₂ leads to increased release of 5-HT. ¹²¹ In the experiment using another BON cell line, increased CRF release is not inhibited by CRF₂ specific antagonists. ¹²⁰ The discrepancy indicates differential involvement of CRF₁ and CRF₂in BON cells, which is partially explained by differential expression of CRF receptors on different BON cell lines. Serotonin, as an enteric neurotransmitter, induces excitatory postsynaptic potentials (EPSPs) participating in mucosal sensory transduction and stimulates vagal and intrinsic afferent nerve fibers, contributing to the visceral pain and visceral hypersensitivity. ¹²²

The CRF-CRFR system also modulates visceral pain peripherally by regulating the local immune response. In a post-infectious IBS model, infection induces increased number of EC cells, mastocytosis and visceral hypersensitivity, which is blocked by T cell receptor knockout cells,123 indicating the involvement of immune cells and immune mediators in modulating visceral hypersensitivity. This is supported by the expression of CRF and CRF receptors in the immune cells including eosinophils, mast cells, macrophages, and plasma cells. Mast cells activated by CRF releases tryptase and histamine, directly sensitizing the nerve ends and contributing to visceral pain in IBS patients, as mast cells are in proximity with mucosal innervations. 124 In addition to directly regulate the activity of immune cells, CRF increases the permeability and exposes the luminal contents to these cells. CRF also promotes the release of immune mediators, such as TNFα, IL-1β and IL-6, from two lines of macrophages in vitro. 125 Antalarmin, a CRF, specific antagonist, administered before injection of LPS reduces TNFα, IL-1β and IL-6 production in the endo toxic shock mice model.¹²⁵ Blocking of IL-1,

IL-6 or CRF ameliorates the LPS induced visceral hypersensitivity in rats. ¹²⁶ In the model of visceral hypersensitivity induced by repeated CRD, CRD induces acute and chronic pain sensitization through CRF and IL-1, respectively. ¹²⁷ These two experiments indicate in the presence and absence of inflammation, the roles of the CRF-CRFR system are different as different immune cells are involved and the expression of CRF receptors is differentially regulated.

The specific roles of CRF₁ and CRF₂ remain controversial. Activation of CRF₂ by intravenously injection of Ucn2 induces visceral hyperalgesia in response to colorectal distention, which is reversed by the CRF₂ specific antagonist, astressin2-B.¹²⁸ This is believed to involve the peripheral neurons and the spinal cord as increased activity of inferior splanchnic nerve and phosphorylation of Erk in laminae II and I were recorded. Another mechanism that may contribute to the inhibitory role of CRF₂ is by inducing colonic hyperemia through nitric oxide pathway upon activation5.¹²⁹ However, other studies indicate that both CRF receptors contribute to the visceral pain by increasing the epithelial permeability, as mentioned above.

Summary

Visceral pain and visceral hypersensitivity is a common feature of many disorders including IBS. However, the underlying mechanisms are not fully understood. The CRF-CRFR system plays critical roles in modulating visceral pain and visceral hypersensitivity. CRFs including CRF, Ucn1, Ucn2 and Ucn3 initiate differential regulations of visceral pain and visceral hypersensitivity by binding selectively to CRF, or CRF,.

In the brain, the amygdala integrates the stress and pain information and is a key component of the pain matrix. Under stressful conditions, increased level of CORT leads to down-regulation of GR and MR but increased expression of CRF in the amygdala. In the pain matrix of the amygdala, the hippocampus, EWN, BNST, PVN and LC, activation of CRF-CRF₁ system leads to visceral pain and visceral hypersensitivity. Additionally, dysregulation of CRFs and CRFR expression, loss of balance between CRF₁ and CRF₂, altered circuit plasticity in the brain pain matrix and dysregulation of noradrenergic release in different brain sites all contribute to the visceral pain and visceral hypersensitivity.

In the GI tract, activation of CRF-CRF₁ results in epithelia injury and increased permeability, which is facilitated by the immune cells. Increased permeability exposes luminal contents to the local immune cells, including eosinophils, macrophages, mast cells, T cells and plasma cells. Activation of these cells results in increased synthesis and release of cytokines and other immune mediators. CRFs, luminal contents and the immune mediators sensitize the nerve ends, contributing to the visceral pain and hypersensitivity. Although the role of CRF-CRF₂ remains controversial in different experimental settings, it is generally accepted that in the normal conditions, CRF₂ activation inhibits visceral pain and hypersensitivity, and that the inhibitory roles are lost under pathological conditions.

Acknowledgments

None.

Conflicts of interests

Author declares there are no conflicts of interest.

Funding

None.

References

- 1. Cervero F, Laird JM. Visceral pain. Lancet. 1999;353(9170):2145-2148.
- Moloney RD, Siobhain MOM, Timothy GD, et al. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry. 2015;6:15.
- Farzaei MH, Bahramsoltani R, Abdollahi M, et al. The Role of Visceral Hypersensitivity in Irritable Bowel Syndrome: Pharmacological Targets and Novel Treatments. *J Neurogastroenterol Motil*. 2016;22(4):558–574.
- 4. Enck P, Aziz Q, Barbara G, et al. Irritable bowel syndrome. *Nature Reviews Disease Primers*. 2016;2:pp.16014.
- Chey WD, J Kurlander, S Eswaran. Irritable bowel syndrome: a clinical review. *JAMA*. 2015;313(9):949–958.
- Zhang F, Wei Xiang, Chun-Yan Li, et al. Economic burden of irritable bowel syndrome in China. World J Gastroenterol. 2016;22(47):10450– 10460
- Fortea J, M Prior. Irritable bowel syndrome with constipation: a European-focused systematic literature review of disease burden. *J Med Econ.* 2013;16(3):329–341.
- 8. Greenwood-Van MB, RD Moloney, AC Johnson, et al.Mechanisms of Stress-Induced Visceral Pain: Implications in Irritable Bowel Syndrome. *J Neuroendocrinol*. 2016;28(8):8.
- Moloney RD, Johnson AC, O'Mahony SM, et al. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neurosci Ther. 2016;22(2):102–117.
- Tache Y. Corticotrophin-releasing factor 1 activation in the central amygdale and visceral hyperalgesia. Neurogastroenterol Motil . 2015;27(1):1–6.
- Nozu T, M Kudaira. Corticotropin-releasing factor induces rectal hypersensitivity after repetitive painful rectal distention in healthy humans. J Gastroenterol. 2006;41(8):740–744.
- Perrin MH, WW Vale. Corticotropin releasing factor receptors and their ligand family. Ann NY Acad Sci. 1999;885:312–328.
- Vale W, Spiess J, Rivier C, et al. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and betaendorphin. *Science*. 1981;213(4514):1394–1397.
- Rivier J, J Spiess, W Vale. Characterization of rat hypothalamic corticotropin-releasing factor. Proc Natl Acad Sci U S A. 1983;80(15):4851–4855.
- 15. Liapakis ., Members of CRF family and their receptors: from past to future. *Curr Med Chem.* 2011;18(17):2583–2600.
- Vaughan J, Donaldson C, Bittencourt J, et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. *Nature*. 1995;378(6554):pp.287–292.
- Hauger RL, Grigoriadis DE, Dallman MF, et al. International Union of Pharmacology. XXXVI. Current status of the nomenclature for receptors for corticotropin-releasing factor and their ligands. *Pharmacol Rev.* 2003;55(1):21–26.
- Reyes TM, Lewis K, Perrin MH, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. *Proc Natl Acad Sci U S A*. 2001;98 (5):2843–2848.
- Hsu SY, AJ Hsueh . Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med. 2001;7(5):605–611.
- Lewis K, C Li, MH Perrin, et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF₂ receptor. *Proc Natl Acad Sci U S A*. 2001;98(13):7570–7575.

- Dathe M, Heinz F, Klaus G, et al. Conformational differences of ovine and human corticotropin releasing hormone. A CD, IR, NMR and dynamic light scattering study. *Int J Pept Protein Res.* 1996;47(5):383– 393.
- Pallai PV, M Mabilia, M Goodman, W Vale, et al. Structural homology of corticotropin-releasing factor, sauvagine, and urotensin I: circular dichroism and prediction studies. *Proc Natl Acad Sci U S A*. 1983;80(22):6770–6774.
- Harmar AJ. Family-B G-protein-coupled receptors. Genome Biol. 2001;2(12):1–10.
- Chen R, KA Lewis, MH Perrin, et al. Expression cloning of a human corticotropin-releasing-factor receptor. *Proc Natl Acad Sci U S A*. 1993;90(19):8967–8971.
- 25. Hillhouse EW, DK Grammatopoulos. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. *Endocr Rev.* 2006;27(3):260–286.
- Lovenberg TW, CW Liaw, DE Grigoriadis, et al. Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. *Proc Natl Acad Sci U S A*. 1995;92(3):836–840.
- Stenzel P, R Kesterson, Yeung W, et al. Identification of a novel murine receptor for corticotropin-releasing hormone expressed in the heart. *Mol Endocrinol*. 1995;9(5):637–645.
- Kishimoto T, RV Pearse, CR Lin, et al.A sauvagine/corticotropinreleasing factor receptor expressed in heart and skeletal muscle. Proc Natl Acad Sci U S A. 1995;92(4):1108–1112.
- Kostich WA, Chen A, Sperle K, et al. Molecular identification and analysis of a novel human corticotropin-releasing factor (CRF) receptor: the CRF, gamma receptor. *Mol Endocrinol*. 1998;12(8):1077–1085.
- Vita N, Laurent P, Lefort S, et al. Primary structure and functional expression of mouse pituitary and human brain corticotrophin releasing factor receptors. FEBS Lett. 1993;335(1):1–5.
- Grammatopoulos DK. Insights into mechanisms of corticotropinreleasing hormone receptor signal transduction. Br J Pharmacol. 2012;166(1):85–97.
- Kovalovsky D, Refojo D, Liberman AC, et al. Activation and induction of NUR77/NURR1 in corticotrophs by CRH/cAMP: involvement of calcium, protein kinase A, and MAPK pathways. *Mol Endocrinol*. 2002;16(7):1638–1651.
- 33. Brar BK, Chen A, Perrin MH, et al. Specificity and regulation of extracellularly regulated kinase1/2 phosphorylation through corticotropin-releasing factor (CRF) receptors 1 and 2beta by the CRF/ urocortin family of peptides. *Endocrinology*. 2004;145(4):1718–1729.
- Dermitzaki E, Tsatsanis C, Gravanis A, et al. Corticotropin-releasing hormone induces Fas ligand production and apoptosis in PC12 cells via activation of p38 mitogen-activated protein kinase. *J Biol Chem*. 2002;277(14):12280–12287.
- Markovic D, Punn A, Lehnert H, et al.Intracellular mechanisms regulating corticotropin-releasing hormone receptor-2beta endocytosis and interaction with extracellularly regulated kinase 1/2 and p38 mitogen-activated protein kinase signaling cascades. *Mol Endocrinol*. 2008;22(3):689–706.
- 36. Berger H, Heinrich N, Wietfeld D, et al. Evidence that corticotropinreleasing factor receptor type 1 couples to Gs- and Gi-proteins through different conformations of its J-domain. *Br J Pharmacol*. 2006;149(7):942–947.
- Kehne JH, CK Cain. Therapeutic utility of non-peptidic CRF₁ receptor antagonists in anxiety, depression, and stress-related disorders: evidence from animal models. *Pharmacol Ther.* 2010;128(3):460–487.

- Rivier J, Gulyas J, Kunitake K, et al. Stressin1-A, a potent corticotropin releasing factor receptor 1 (CRF₁)-selective peptide agonist. *J Med Chem*.2007;50(7):1668–1674.
- 39. Dautzenberg FM, Py-Lang G, Higelin J, et al. Different binding modes of amphibian and human corticotropin-releasing factor type 1 and type 2 receptors: evidence for evolutionary differences. *J Pharmacol Exp Ther*. 2001;296(1):113–120.
- 40. Mesleh MF. NMR structural characterization of a minimal peptide antagonist bound to the extracellular domain of the corticotropinreleasing factor1 receptor. *J Biol Chem.* 2007;282(9):6338–6346.
- Tache Y, M Million. Role of Corticotropin-releasing Factor Signalling in Stress-related Alterations of Colonic Motility and Hyperalgesia. J Neurogastroenterol Motil. 2015;21(1):8–24.
- 42. Rivier J, Gulyas J, Kirby D, et al. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists. *J Med Chem.* 2002;45(21):4737–4747.
- Rivier JE, CL Rivier. Corticotropin-releasing factor peptide antagonists: design, characterization and potential clinical relevance. Front Neuroendocrinol. 2014;35(2):161–170.
- 44. Tezval H, Jahn O, Todorovic C, et al. Cortagine, a specific agonist of corticotropin-releasing factor receptor subtype 1, is anxiogenic and antidepressive in the mouse model. *Proc Natl Acad Sci U S A*. 2004;101(25):9468–9473.
- 45. Grundy D. Neuroanatomy of visceral nociception: vagal and splanchnic afferent. *Gut*. 2002;51(Suppl1: i2–i5.
- 46. Rustioni, A, NL Hayes, S O'Neill. Dorsal column nuclei and ascending spinal afferents in macaques. *Brain*. 1979;102(1):95–125.
- 47. Bennett GJ, Seltzer Z, Lu GW, et al. The cells of origin of the dorsal column postsynaptic projection in the lumbosacral enlargements of cats and monkeys. *Somatosens Res.* 1983;1(2):131–149.
- Joseph SA, KM Knigge. Corticotropin releasing factor: immunocytochemical localization in rat brain. Neurosci Lett. 1983;35(2):135–141.
- Lim MM, NT sivkovskaia, Yaohui Bai, Distribution of corticotropinreleasing factor and urocortin 1 in the vole brain. *Brain Behav Evol.* 2006;68(4):229–240.
- Wang L, Goebel-Stengel M, Stengel A, et al. Comparison of CRFimmunoreactive neurons distribution in mouse and rat brains and selective induction of Fos in rat hypothalamic CRF neurons by abdominal surgery. *Brain Res.* 2011;1415:34–46.
- Shu YM, Ni RJ, Sun YJ, et al. Distribution of corticotropin-releasing factor in the tree shrew brain. *Brain Res*. 2015;1618:270–285.
- Kono J, Konno K, Talukder AH, et al. Distribution of corticotropinreleasing factor neurons in the mouse brain: a study using corticotropinreleasing factor-modified yellow fluorescent protein knock-in mouse. Brain Struct Funct.2016.
- Weitemier AZ, Tsivkovskaia NO, Ryabinin AE. Urocortin 1 distribution in mouse brain is strain-dependent. *Neuroscience*. 2005;132(3):729–740.
- 54. Mano-Otagiri A, Shibasaki T. Distribution of urocortin 2 and urocortin 3 in rat brain. *J Nippon Med Sch.* 2004;71(6):358–359.
- Korosi A, Kozicz T, Richter J, et al. Corticotropin-releasing factor, urocortin 1, and their receptors in the mouse spinal cord. *J Comp Neurol*. 2007;502(6):973–989.
- 56. Coen CW, Kalamatianos T, Oosthuizen MK, et al. Sociality and the telencephalic distribution of corticotrophin-releasing factor, urocortin 3, and binding sites for CRF type 1 and type 2 receptors: A comparative study of eusocial naked mole-rats and solitary Cape mole-rats. *J Comp Neurol* . 2015;523(16):2344–2371.

- Potter E, Sutton S, Donaldson C, et al. Distribution of corticotropinreleasing factor receptor mRNA expression in the rat brain and pituitary. *Proc Natl Acad Sci U S A*. 1994;91(19):8777–8781.
- Primus RJ, Yevich E, Baltazar C, et al. Autoradiographic localization of CRF₁ and CRF₂ binding sites in adult rat brain. Neuropsychopharmacology. 1997;17(5):308–316.
- Van Pett K, Viau V, Bittencourt JC, et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. *J Comp Neurol*. 2000;428(2):191–212.
- Lovenberg TW, Chalmers DT, Liu C, et al. CRF₂ alpha and CRF₂ beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. *Endocrinology*. 1995;136(9):4139–4142.
- Chalmers DT, Lovenberg TW, De Souza EB. Localization of novel corticotropin-releasing factor receptor (CRF₂) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF₁ receptor mRNA expression. *J Neurosci.* 1995;15(10):6340–6350.
- 62. Chen A, Perrin M, Brar B, et al. Mouse corticotropin-releasing factor receptor type 2alpha gene: isolation, distribution, pharmacological characterization and regulation by stress and glucocorticoids. *Mol Endocrinol*. 2005;19(2):441–458.
- 63. Korosi A, Veening JG, Kozicz T, et al. Distribution and expression of CRF receptor 1 and 2 mRNAs in the CRF over-expressing mouse brain. *Brain Res.* 2006;1072(1):46–54.
- Beery AK, Vahaba DM, Grunberg DM. Corticotropin-releasing factor receptor densities vary with photoperiod and sociality. *Horm Behav*. 2014;66(5):779–786.
- Bravo JA, Dinan TG, Cryan JF. Alterations in the central CRF system of two different rat models of comorbid depression and functional gastrointestinal disorders. *Int J Neuropsychopharmacol*. 2011;14(5):666–683.
- Ji G, Neugebauer V. Pro- and anti-nociceptive effects of corticotropinreleasing factor (CRF) in central amygdala neurons are mediated through different receptors. *J Neurophysiol*. 2008;99(3):1201–1212.
- Maren S. Synaptic mechanisms of associative memory in the amygdala. Neuron. 2005;47(6):783–786.
- 68. Gauriau C, JF Bernard. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol. 2004;468(1):24–56.
- De Francesco PN, Valdivia S, Cabral A, et al. Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model. *Neuroscience*. 2015;289:153–165.
- Yuan PQ, Wu SV, Wang L, et al. Corticotropin releasing factor in the rat colon: expression, localization and upregulation by endotoxin. *Peptides*. 2010;31(2):3232–31.
- Kawahito Y, Sano H, Mukai S, et al. Corticotropin releasing hormone in colonic mucosa in patients with ulcerative colitis. *Gut.* 1995;37(4):544– 551.
- Buckinx R, Bagyanszki M, Avula LR, et al. Expression of corticotropinreleasing factor and urocortins in the normal and Schistosoma mansoniinfected mouse ileum. *Cell Tissue Res*. 2015;359(2):453–463.
- Wallon C, Persborn M, Jönsson M, et al. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. *Gastroenterology*. 2011;140(5):1597–607.
- Liu S, Gao N, Hu HZ, et al. Distribution and chemical coding of corticotropin-releasing factor-immunoreactive neurons in the guinea pig enteric nervous system. *J Comp Neurol*. 2006;494(1):63–74.
- Sand E, Themner-Persson A, Ekblad E. Corticotropin releasing factordistribution in rat intestine and role in neuroprotection. Regul Pept. 2011;166(1-3):68-75.

- Muramatsu Y, Fukushima K, Iino K, et al. Urocortin and corticotropinreleasing factor receptor expression in the human colonic mucosa. *Peptides*. 2000;21(12):1799–1809.
- 77. Saruta M, Takahashi K, Suzuki T, et al. Urocortin 1 in colonic mucosa in patients with ulcerative colitis. *J Clin Endocrinol Metab.* 2004;89(11):5352–5361.
- Mahajan S, M Liao, P Barkan, et al. Urocortin 3 expression at baseline and during inflammation in the colon: corticotropin releasing factor receptors cross-talk. *Peptides*. 2014;54:58–66.
- Chatzaki E, Crowe PD, Wang L, et al. CRF receptor type 1 and 2 expression and anatomical distribution in the rat colon. *J Neurochem*. 2004;90(2):309–316.
- 80. Yuan PQ, S Vincent Wu, J Elliott, et al. Expression of corticotropin releasing factor receptor type 1 (CRF₁) in the human gastrointestinal tract and up regulation in the colonic mucosa in patients with ulcerative colitis. *Peptides*. 2012;38(1):62–69.
- Chatzaki E, Anton PA, Million M, et al. Corticotropin-releasing factor receptor subtype 2 in human colonic mucosa: down-regulation in ulcerative colitis. World J Gastroenterol. 2013;19(9):1416–1423.
- Gue, M, Del Rio-LC, Eutamene H, et al. Stress-induced visceral hypersensitivity to rectal distension in rats: role of CRF and mast cells. *Neurogastroenterol Motil*. 1997;9(4):271–279.
- 83. Million M, Grigoriadis DE, Sullivan S, et al. A novel water-soluble selective CRF₁ receptor antagonist, NBI 35965, blunts stress-induced visceral hyperalgesia and colonic motor function in rats. *Brain Res*. 2003;985(1):32–42.
- 84. Larauche M, Bradesi S, Million M, et al. Corticotropin-releasing factor type 1 receptors mediate the visceral hyperalgesia induced by repeated psychological stress in rats. Am J Physiol Gastrointest Liver Physiol. 2008;294(4):G1033–G1040.
- Saito-NK, Hasegawa R, Nagura Y, et al. Corticotropin-releasing hormone receptor 1 antagonist blocks colonic hypersensitivity induced by a combination of inflammation and repetitive colorectal distension. *Neurogastroenterol Motil*. 2008;20(10):1147–1156.
- 86. Million M, Zhao JF, Luckey A, et al. The newly developed CRF₁-receptor antagonists, NGD 98-2 and NGD 9002, suppress acute stress-induced stimulation of colonic motor function and visceral hypersensitivity in rats. PLoS One. 2013;8(9):e73749.
- BG-V Meerveld, Johnson AC, Cochrane S, et al. Corticotropin-releasing factor 1 receptor-mediated mechanisms inhibit colonic hypersensitivity in rats. Neurogastroenterol Motil. 2005;17(3):415–422.
- Taguchi R, Shikata K, Furuya Y, et al. Selective corticotropin-releasing factor 1 receptor antagonist E2508 reduces restraint stress-induced defecation and visceral pain in rat models. *Psychoneuroendocrinology*. 2017;75:110–115.
- Rassnick S, Heinrichs SC, Britton KT, et al. Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. *Brain Res.* 1993;605(1):25–32.
- Johnson AC, Tran L, Schulkin J, et al. Importance of stress receptormediated mechanisms in the amygdala on visceral pain perception in an intrinsically anxious rat. *Neurogastroenterol Motil.* 2012;24(5):479– 486.
- Johnson AC L Tran, BG-V Meerveld. Knockdown of corticotropinreleasing factor in the central amygdala reverses persistent viscerosomatic hyperalgesia. *Transl Psychiatry*. 2015;5:e517.
- Su J, Tanaka Y, Muratsubaki T, et al. Injection of corticotropin-releasing hormone into the amygdala aggravates visceral nociception and induces noradrenaline release in rats. *Neurogastroenterol Motil*. 2015;27(1):30– 39.

- 93. Ciprian AC, KS Gomes, RL Nunes-de-Souza. CRF receptor type 1 (but not type 2) located within the amygdala plays a role in the modulation of anxiety in mice exposed to the elevated plus maze. *Horm Behav*. 2016;81:59–67.
- 94. Nishii H, Nomura M, Aono H, et al. Up-regulation of galanin and corticotropin-releasing hormone mRNAs in the key hypothalamic and amygdaloid nuclei in a mouse model of visceral pain. *Regul Pept.* 2007;141(1–3):105–112.
- Rouwette T, Klemann K, Gaszner B, et al. Differential responses of corticotropin-releasing factor and urocortin 1 to acute pain stress in the rat brain. *Neuroscience*. 2011;183:15–24.
- Saito K, Toshiyuki K, Y Nagura, et al. Corticotropin-releasing hormone receptor 1 antagonist blocks brain-gut activation induced by colonic distention in rats. *Gastroenterology*. 2005;129(5):1533–1543.
- Tran L, J Schulkin, BG-V Meerveld. Importance of CRF receptormediated mechanisms of the bed nucleus of the stria terminalis in the processing of anxiety and pain. *Neuropsychopharmacology*. 2014;39(11):2633–2645.
- Zhang G, Yu L, Chen ZY, et al. Activation of corticotropin-releasing factor neurons and microglia in paraventricular nucleus precipitates visceral hypersensitivity induced by colorectal distension in rats. *Brain Behav Immun.* 2016;55:93–104.
- Lechner SM, Curtis AL, Brons R, et al. Locus coeruleus activation by colon distention: role of corticotropin-releasing factor and excitatory amino acids. *Brain Res.* 756(1-2):114–124.
- 100. Kosoyan HP, DE Grigoriadis, Y Tache. The CRF (1) receptor antagonist, NBI-35965, abolished the activation of locus coeruleus neurons induced by colorectal distension and intracisternal CRF in rats. *Brain Res*. 2005;1056(1):85–96.
- 101. Kravets JL, BAS Reyes, EM Unterwald, et al. Direct targeting of peptidergic amygdalar neurons by noradrenergic afferents: linking stress-integrative circuitry. *Brain Struct Funct*. 2015;220(1):541–558.
- 102. Ji G, V Neugebauer. Differential effects of CRF₁ and CRF₂ receptor antagonists on pain-related sensitization of neurons in the central nucleus of the amygdala. *J Neurophysiol*. 2007;97(6):3893–3904.
- 103. Ji G, Yu Fu, H Adwanikar, et al. Non-pain-related CRF₁ activation in the amygdala facilitates synaptic transmission and pain responses. *Mol Pain*. 2013;9:2.
- 104. Shepard JD, KW Barron, DA Myers. Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. *Brain Res.* 2000; 861(2):288–295.
- 105. Greenwood-VMB, Gibson M, Gunter W, et al. Stereotaxic delivery of corticosterone to the amygdala modulates colonic sensitivity in rats. *Brain Res.* 2001;893(1–2):135–142.
- 106. Myers B, B Greenwood-VM. Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. Am J Physiol Gastrointest Liver Physiol. 2007;292(6):G1622–1629.
- 107. Tran L, B Greenwood-VM. Altered expression of glucocorticoid receptor and corticotropin-releasing factor in the central amygdala in response to elevated corticosterone. *Behav Brain Res*. 2012;234(2):380–385.
- 108. Johnson AC, B-V Meerveld. Knockdown of steroid receptors in the central nucleus of the amygdala induces heightened pain behaviors in the rat. Neuropharmacology. 2015;93:116–123.
- 109. Moloney R, BG-V Meerveld. Knockdown of the glucocorticoid receptor in the central nucleus of the amygdala induces viscero-somatic hypersensitivity. *Psychoneuroendocrinology*. 2015;61:15.
- 110. Myers B, BG-V Meerveld. Elevated corticosterone in the amygdala leads to persistent increases in anxiety-like behavior and pain sensitivity. *Behav Brain Res.* 2010;214(2):465–469.

- Tran L. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry. 2015;20(10):1219–1231.
- Johnson AC, BG-V Meerveld. Central amygdala mechanisms regulating visceral pain. Psychoneuroendocrinology. 2015;61:8.
- 113. O'Malley D, Julio-Piepera M, Dinan TG, et al.Strain differences in stress-induced changes in central CRF₁ receptor expression. *Neurosci Lett.* 2014;561:192–197.
- 114. Larauche M, G Gourcerol, L Wang, et al. Cortagine, a CRF₁ agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways. Am J Physiol Gastrointest Liver Physio. 2009;297(1):G215–G227.
- 115. Nozu T, Miyagishi S, Nozu R, et al. Water avoidance stress induces visceral hyposensitivity through peripheral corticotropin releasing factor receptor type 2 and central dopamine D2 receptor in rats. Neurogastroenterol Motil. 2016;28(4):522–531.
- Akbar A, JR Walters, S Ghosh. Review article: visceral hypersensitivity in irritable bowel syndrome: molecular mechanisms and therapeutic agents. *Aliment Pharmacol Ther*. 2009;30(5):423–435.
- 117. Ait-Belgnaoui A, Bradesi S, Fioramonti J, et al. Acute stress-induced hypersensitivity to colonic distension depends upon increase in paracellular permeability: role of myosin light chain kinase. *Pain*. 2005;113(1–2):141–147.
- 118. Wallon C, Yang PC, Keita AV, et al. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. *Gut.* 2008;57(1):50–58.
- Overman EL, JE Rivier, AJ Moeser. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-alpha. *PLoS One*, 2012;7(6):e39935.
- 120. Von Mentzer B, Murata Y, Ahlstedt I,et al. Functional CRF receptors in BON cells stimulate serotonin release. *Biochem Pharmacol*. 2007;73(6):805–813.
- 121. Wu SV, Yuan PQ, Lai J, et al. Activation of Type 1 CRH receptor isoforms induces serotonin release from human carcinoid BON-1N cells: an enterochromaffin cell model. *Endocrinology*. 2011;152(1):126–137.
- Sikander A, SV Rana, KK Prasad. Role of serotonin in gastrointestinal motility and irritable bowel syndrome. *Clin Chim Acta*. 2009;403(1–2):47–55.
- 123. Wheatcroft J, Wakelin D, Smith A, et al. Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. *Neurogastroenterol Motil* .2005;17(6):863–870.
- 124. Barbara G, Stanghellini V, De Giorgio R, et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. *Gastroenterologym*. 2004;126(3):693–702.
- 125. Agelaki S, Christos T, A Gravanis, et al. Corticotropin-releasing hormone augments proinflammatory cytokine production from macrophages in vitro and in lipopolysaccharide-induced endotoxin shock in mice. *Infect Immun*. 2002;70(11):6068–6074.
- 126. Nozu T, Miyagishi S, Nozu R, et al.Lipopolysaccharide induces visceral hypersensitivity: role of interleukin-1, interleukin-6, and peripheral corticotropin-releasing factor in rats. *J Gastroenterol*. 2016;52(1):72– 80
- 127. Nozu T, Shima K, S Miyagishi, et al. Colorectal distention induces acute and delayed visceral hypersensitivity: role of peripheral corticotropin-releasing factor and interleukin-1 in rats. *J Gastroenterol*. 2015;50(12):1153–1161.
- 128. Million M, L Wang, Y Wang, et al.CRF₂ receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Gut. 2006;55(2):172–181.
- 129. Akiba Y, JD Kaunitz, M Million. Peripheral corticotropin-releasing factor receptor type 2 activation increases colonic blood flow through nitric oxide pathway in rats. *Dig Dis Sci.* 2015;60(4):858–867.