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Introduction
The most used life-line structure of the modern day is the bridges, 

which has been developed significantly, with the most recent 
introduction being of the curved bridges. They provide an aesthetic 
look and are also very convenient at various crossings and cross-over. 
However, curved bridges have been observed to have poor seismic 
response. Pounding between the adjacent segments, in-plane deck 
rotation and deck abutment interaction make the curved bridges very 
susceptible during such activities, resulting in deck unseating, shear 
failure, torsional failure and the interfacial concrete failure.1

San Fernando earthquake, in 1971, saw the first deck un-seating 
in the Golden state - Antelope Valley freeway interchange in 
California.1,2 Many other devastations observed in the Loma Prieta 
earthquake, Northridge earthquake,1,3 Chile earthquake,4 Christchurch 
earthquake5‒7 and others brought out the necessity of making structures 
earthquake resistance, especially in the case of the curved bridges. The 
first experimental study, on curved bridges, was conducted in 2014 
to observe and analysis the rotation of segmental curved bridges, the 
governing mechanics and the pounding failure patterns.8,9 However, a 
proper thorough analytical analysis on the pounding of curved bridges 
is very limited; whereas, straight and skew bridges have a significant 
amount of studies in the current literature.4,10‒20 Therefore, analysing 
the impact behaviour of the S-oriented curved bridges is a first and 
this study aims to fill a very important gap in the literature.

Compliance method forms the usual method used for modelling 
pounding mechanisms, simulating the entire phenomenon with 
contact elements, such as, damped springs (Kelvin elements)21‒23 
and non-linear springs (Hertz)24‒26 considering impact to be centric 
and allowing penetration during contact. Other significant studies 
include the two-dimensional study by Andreaus et al.,27 SDOF 
oscillator without friction28 and considering friction29,30 and observing 

the forced motion of a oscillator, having friction, which is limited 
by both rigid an deformable bodies.31 However, Chanda et al.,32 & 
Banerjee et al.,33studied the behaviours of the various impact models 
and concluded that the unilateral contact is the most suited method in 
the field of non-smooth dynamics for calculating impact between two 
segments, because time-lag due to penetration will always take place in 
the case of compliance methods.34‒37 Moreau38 & Panagiotopoulos39,40 

first applied this method in the impact analysis, by transforming the 
inequality forms of the laws of impact. Following comprehensive 
works by Abbas et al.41 Glocker42 and others helped in the usual 
personification of the ideas of convex study and laws in the method of 
unilateral contact. Further studies by Leine et al.,43 on simulated toy 
structures, such as, woodpecker, the tumbling toy and the waddling 
duck, have helped in establishing the method firmly into the field 
of impact analysis. Subsequently, Theodosiou et al.,44 analysed the 
dynamic response involved in multiple unilateral contacts in the large 
scale, using finite element approach. Dimitrakopoulus10 then extended 
the work for observing the seismic behaviour experienced by skewed 
bridges, which is further extended in this study.

Newton’s impact and Coulomb’s frictional laws, are implemented 
to study the stick slip possibilities, due to the various pre-impact 
conditions, in curved bridges, in the normal and transverse directions 
respectively. The governing geometry greatly influences the post-
impact deck responses, which is again dependent on the pre-impact 
conditions and this complex phenomenon is analytically studied for 
single impact conditions during deck-deck pounding of a curved 
bridge with two successive segments forming an S , both the decks 
being rigid. All the possible cases of slip and stick, when the two 
furthest points of each deck are in contact with the other’s contour, 
are elucidated in Figure 1. The study helps to observe the safety 
conditions in constructing such bridges with future references for 
designers and analysists.

Fluid Mech Res Int. 2017;1(2):33‒43. 33
©2017 Chanda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and build upon your work non-commercially.

Oblique frictional unilateral pounding analysis in two 
successive curved bridge (s type) segments

Volume 1 Issue 2 - 2017

A Chanda,1 A Banerjee,2 Raj Das3

1Center for Advanced Composite Materials, The University of 
Auckland, New Zealand 
2Department of Mechanical Engineering, The University of 
Auckland, New Zealand
3Sir Lawrence Wackett Aerospace Research Centre, RMIT 
University, Australia

Correspondence: Avishek Chanda, PhD Student, Center for 
Advanced Composite Materials, Department of Mechanical 
Engineering, The University of Auckland, 20 Symonds Street, 
1010, Auckland, New Zealand, Tel +64226792780 
Email 

Received: July 03, 2017 | Published: October 02, 2017

Abstract

Structures lying in close proximity experience multi-body dynamics, the impact 
phenomenon of which is known as pounding. This may lead to deck-unseating or 
in-plane deck rotation, phenomenon usually observed during high seismic activities. 
This leads to the important aspect of calculating the possibility of stick and slip to 
understand the safety of the design. The calculation is carried out by employing a 
linear complementarity in both the linear and tangential directions for observing 
the interaction between the two decks, which are considered to be rigid. The 
various conditions of the pre-impacting parameters, for all the possible stick-stick 
combinations, in the case of single impact are analytically determined. It is observed 
that the rotational potential of the deck, in-plane, is present for curved bridges having 
S-type configuration and needs to be considered while designing.
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Figure 1 The classification of the entire frictional post-impact phenomenon.

Methodology and governing parameters
Oblique unilateral frictional contact method is based on the 

Newton’s impact law along the normal direction and the Coulomb’s 
frictional law in the transverse or oblique direction.45,46 Therefore, 
the coefficient of friction ( )µ and the coefficient of restitution ( )Nε  
constitute the two important parameters for simulating the frictional 
effect. Thus, the two laws are used to formulate a problem on the 
linear complementarity (LCP), which can depicted as y Ax B= +
, in which A and B are the known quantities, with the constraint

0, , 0Ty x x y= ∀ ≥ , and representing that either x or y is zero or 
else positive. The LCP is solved using the Lemke’s algorithm.47,48 The 
ratio between the relative post-impact ( )Nγ

+ and pre-impact ( )Nγ
−

velocities is known as the coefficient of restitution ( )Nε . It can be 
followed from the work of Banerjee et al.,49 that based on these and 
using Newton’s Impact Law and Coulomb’s Frictional Law, with the 

range of the coefficient of restitution being [0,1]Nε ∈  and assuming 
0Tε = in the oblique direction, the linear complementarity equation, 

in a coupled set, is represented as:
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					                                  (1)

where, Λ  is the impulse, Nυ  is the velocity jump, Tγ
±  is the 

relative velocity at post and pre-impact conditions in the transverse 
direction and xxG  represents the effective mass for different conditions. 
Various states of impact, such as ‘stick’ and ‘slip’, for single impact as 
well as double impact, can be evaluated using the LCP formulation, 
illustrated in Eq. (1). The biggest advantage of the LCP method is 
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the availability of all the elements in the form of matrices, instead 
of being in scalar quantities, as found in the Compliance Method. It 
should be noted that j represents the number of the deck ( )1,2 and k
represents the inner or outer point ( ),i o  of each deck. The widths of 
the decks ( )W are also considered to be equal and constant and so are 
the thicknesses ( )t .

Determination of the governing parameters
The post-impact behaviour of the bridge segment is dependent 

mainly on the effective mass of impact ( )NNG and the mass matrix
( )M . The other dependent parameters are estimated based on the 
pre-impact conditions and the different impacting orientations of the 
deck segment as illustrated in Figure 2. The decks are in contact at 
the lower parts of each and thus, only the distances of the lever arms 
are considered for the lower part of each. The considerable distances, 
the plan area, the centre of masses and the moments of inertia are 
calculated based on the similar formulations thoroughly elucidated in 
the work presented by Banerjee et al.49 Therefore, the mass matrix is 
calculated to be:

	 { }1 21 1 2 2m mM diag m m I m m I=  	            (2)

The lever arms are also calculated based on the same formulation 
for both the conditions of decks not rotating and the decks rotating 
about the centre of mass.

Therefore, considering the rigid body rotation, the value of the 
lever arms change to:
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where, &
i oj jN Nr r   ( )1,2j= represent the distance from the centre 

of mass of the normal drawn on the inner and outer potential impacting 
points of the decks and &

j
T Ti oj
r r  denote that of the transverse drawn 

on the same points.

The direction matrices for the two decks due to rotation by 

1 2
&θ θ angles respectively are derived and the normal and tangential 

distances of the centre of mass are deduced as:
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where, ĵ is complementary to j , which means ˆ1 2j j= → =  and 
vice versa. The direction matrix helps to calculate the relation between 
the relative velocities between the two points of impact, with respect 

to the relative velocities between the two decks.

Therefore, the normal ( )
1

NW and transverse ( )1TW  directional 
matrices, when deck-1 is in impact at the contour 2( )σ of deck-2 are:
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In the same way, the direction matrices when deck-2 is in impact 
with that of the contour 1( )σ of deck-1 are:
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In Eqs. (5) and (6), the respective directional distances of the 
impacting points from the centre of masses are represented as 

1 1
&N Tr r

σ σ
   and 

2 2
&N Tr r

σ σ
   respectively.

Similarly, following the work done by Banerjee et al.,49 on single 
segment curved bridges, the distance vector, Dr , is calculated as:
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Therefore, with respect to the contours of impact, the normal and 
tangential coefficients of the distance vector, after the decks rotated by

1 2&θ θ respectively, are:

		

1 1

1 11 1

2 2

2 22 2

sin cos
cos & sin

0 0

sin cos
cos & sin

0 0

n t

n t

θ θ
θ θ

θ θ
θ θ

   
   

= − =   
   
   

   − −
   

= = −   
   
   

 			 
						                   (8)

The respective impact points are thus calculated by considering 
the two instances separately. The first instance is the inner and outer 
edges of the deck-2 interacting with 1σ , an unknown point on contour 
of deck-1, and the second being the exact thing occurring for deck-1. 
The unknown points are calculated as:
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Similarly, it is also derived that:
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The exact values of 1 2&σ σ is calculated from the Eqs. (9) and (10) 
by considering:
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The value of ˆ 2j
Wσ = − is considered when the inner point of 

deck-2 is in contact and ˆ 2j
Wσ = when the impact occurs on the 

outer point.

The gap, when deck-2 is in impact, is calculated from the vector 
equation, T
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On the contrary, the gap, when deck-1 is in impact, is also 
calculated as:
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Results and discussion
The possible impacting points can be observed from Figure 2, 

only considering in-plane deck-rotation. The stick-slip calculations 
are carried out with respect to the coordinate system of deck-2. The 
various conditions, during impact, as illustrated in Figure 1, are used 
to calculate the ratio between the pre-impact velocities, the most 
important pre-impact parameter to be considered by the designers 
during the design phase. The stick-slip occurrence, at the instance of 
impact, is significantly affected by the ratio of oblique and normal 

pre-impact velocities T

N

γ
γ

− 
 − 
 

 and by the geometrical parameters of 

the deck, such as, the decks’ curved angles ( )1 2&β β , the radii of the 

two decks ( )1 2&R R and the angles of rotation ( )1 2&θ θ experienced 
by the decks. Thus, the pre-impact velocities are calculated, based 
on the directional matrices calculated from Eqs. (2,5,6) for each case 
of single impact, following the same trend as presented in the work 
presented by Banerjee et al.49 It is observed that, the variation of the 
entire phenomenon of single impact is based on a single parameter, 
coined ∂ , with the width ( )W of both the decks being 10 meters. The 

entire parametric analysis is carried out based on the variations in the 
values of the curve angles ( )60 ,90 ,120   , radii of each bridge (100 
meters and 200 meters), values of the coefficient of friction (0.5 and 
1) and the value of the coefficient of restitution in the normal direction
( )Nε being 0.5 for all the cases.

The phenomenon, when one of the four potential impacting 
points comes into contact with the surface of the other deck at jσ , 
is known as single impact. This occurs due to the pre-impact angular 
velocity experienced due to the deck rotation. When frictional impact 
is considered, the body starts slipping, when the resisting frictional 
force is surpassed, which may result in the un-seating of the deck due 
to the amplified in-plane deck rotation. Graphs are plotted based on 
the pre-impact velocity ratios observed for each case. 

The parametric analysis, illustrated in Figures 3‒6, is conducted on 
the curved deck geometries for different curved angles of 600 and 900 

for the two decks, each having two radii of 100meters and 200meters. 
(Figure 3) (Figure 4) represent how the variation in sticking and 
slipping regions take place for 2 sets of β values when both the inner 
and outer points are in contact with the surface of the other deck. The 
increase in stick region is obvious with the increase in the coefficient 
of friction, as more force is required to overcome it. When deck-2 
is in impact with the contour of deck-1, the stick region gradually 
increases for both inward and outward slip, when the inner point is in 
contact; whereas, an opposite trend is observed when the outer point 
is in contact.

A unique feature is observed at the instance of deck-1 hitting deck-
2, when the radius of deck-1 is 200m and that of deck-2 is 100m, 
where the amount stick region is more when the inner point of deck-1 
is in contact and gradually decreases when the outer point is in impact.

Figures 5 & 6 elucidates that the variation in sticking and slipping 
regions for 2 other sets of β values respectively, when either the 
inner or the outer points are in impact. The variation between the 
deck-1 hitting the surface of deck-2 and deck-2 hitting the surface 
of deck-1 are shown and it can again be observed that the increase in 
friction also results in the increase of the sticking region.

Maximum linear stick is again observed when the deck-1 is in 
contact with the contour of deck-2 and the frictional coefficient is 0.5. 
Variations in the stick regions can be observed with the amount of 
stick region being more when the inner point of deck-2 is in contact 
with the contour of deck-1.

The upper and lower planes, in Figures 3‒6 represent the region 

of sticking with varying ratios of tangential and normal post-impact 

velocities in the z-axis, pre-impact rotation of deck-2 along the y-axis 

and that of deck-1 along the x-axis. -10 to 10 is considered to be the 

range of rotation of both the decks; whereas, -12 to 12 is taken in the 

range of T

N

γ
γ

−
− . The portions in graphs, above and below the sticking 

region, represent the various slipping conditions, namely, the inner 

point inward and outward slip and the outer point inward and outward 
slip for each deck.

These conditions are classified based on the thorough analytical 
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concepts elaborated in the previous sections. The classification of 
the stick and slip regions, as represented by the graphs provided for 
studying the phenomenon of single impact, are explained in details in 
Figures 7 & 8.

The regions of inward and outward slip along with the 
representation of the specific point of impact, when the inner or outer 
point of deck-1 is in impact with the contour of deck-2, are elucidated 
in Figure 7. The inner-point impact occurs when deck-2 rotates in 
the positive direction; whereas, the impact is experienced at the outer 
point when deck-1 rotates in the positive direction. An opposite trend 
in the direction of inner point impact and outer point impact can be 
observed when single impact phenomenon is experienced by deck-2 
on the contour of deck-1. The impact on the inner point is experienced 
when deck-1 rotates in the positive direction and that on the outer 
point is experienced when deck-2 rotates in the positive direction, the 
graphical representation of which is given in Figure 8.

It is known that the value of 
k j

Nγ
− is always negative and for the 

existence of outward slip the value of 
k j

Tγ
− should be positive. Thus, 

the ratio between 
k kj j

T Nγ γ− − is always negative (<0) and therefore 
the direction of the outward slip is represented by the lower part 
(negative region) of the T Nγ γ− − axis, for both the cases. Similarly, the 
value of 

k j
Tγ
− is always negative which results in the representation 

of the inward slip on the upper part (positive side) of the T Nγ γ− −

axis. A comparatively linear variation, between the outward and 
inward slip, for both inner and outer point impacts is observed for 
all the cases, when the radii of both the decks are equal. The post-

impact phenomenon is predictable and no abrupt variation is observed 
when the decks have equal radii, thus making the designs relatively 
convenient and safer. With 1 2R R> , the region of sticking is observed 
to be higher when the inner point of deck-1 is in contact with the 
contour of deck-2, when the inner point of deck-2 is in contact with 
the contour of deck-1 and the coefficient of friction is 0.5 and when 
the outer point of deck-2 experiences impact with the contour of deck-
1 and the coefficient of friction is 1.

On the other hand, with 1 2R R< , the amount of stick is linear for 
both the points of impact when deck-1 experiences contact with deck-
2 and the coefficient of friction is 0.5 and the region of stick is higher 
when the outer point of deck-1 hits deck-2 and the coefficient of 
friction is 1 and when the inner point of deck-2 hits deck-1 with both 
the coefficients of friction. Moreover, the tendency of outward slip is 
observed to be higher in general when deck-1 is in contact with deck-2 
for all the variations of the radii; although, quite a few cases, with the 
coefficient of friction being unity, have almost proportional amount of 
outward and inward slip. In the case of the impacting points of deck-2 
coming in contact with the contour of deck-1, the tendency of outward 
slip is higher at the instance of the outer point being in contact and 
that of the inward slip is higher at the instance of the inner point being 
in contact, when 1 2R R< and also when 1 2R R> and the coefficient of 
friction is 1. On the contrary, when the coefficient of friction is 0.5 
and 1 2R R>  the tendency of inward slip is higher at the instance of 
the outer point of deck-2 being in contact with the contour of deck-
1 and the outward slip is more when the inner point of deck-2 is in 
contact. The frictionless cases will be accompanied by only outward 
and inward slip, with a single demarcating plane along the axis, for 
describing the regions of the two slips (Table 1).

Figure 2 Deck geometry of the curved bridge showing the position of center of mass and the different impacting parameters without in-plane deck rotation.
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Figure 3 Illustration of the parametric study of the curved decks having 2 sets of values and with 1 2 60β β= = 

, when compared between the two cases of 
impact, namely, deck-1 is in impact with deck-2 and vice-versa, for different coefficients of friction.

Figure 4 Illustration of the parametric study of the curved decks having 2 sets of values and with 
0 0

1 260 & 90β β= = , between the two cases of impact, 
namely, deck-1 is in impact with deck-2 and vice-versa, for different coefficients of friction.

Figure 5 Illustration of the parametric study of the curved decks having 2 sets of jR  values and with
0 0

1 290 & 60β β= = , between the two cases of 
impact, namely, deck-1 is in impact with deck-2 and vice-versa, for different coefficients of friction.

https://doi.org/10.15406/fmrij.2017.01.00006


Oblique frictional unilateral pounding analysis in two successive curved bridge (s type) segments 39
Copyright:

©2017 Chanda et al.

Citation: Chanda A, Banerjee A, Das R. Oblique frictional unilateral pounding analysis in two successive curved bridge (s type) segments. 
Fluid Mech Res Int. 2017;1(2):33‒43. DOI: 10.15406/fmrij.2017.01.00006

Figure 6 Illustration of the parametric study of the curved decks having 2 sets of jR  values and with 0 090 & 901 2β β= = , between the two cases of impact, 
namely, deck-1 is in impact with deck-2 and vice-versa, for different coefficients of friction.

Figure 7 The different post-impact phenomenon, depicted by the graphs when both the inner and outer points of deck-1 is in contact with the contour of 
deck-2, during single impact.
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Figure 8 The different post-impact phenomenon, depicted by the graphs when both the inner and outer points of deck-2 is in contact with the contour of 
deck-1, during single impact.

Table 1 List of notations

Notations Explanation

µ Coefficient of friction

ε Coefficient of restitution

LCP Linear Complementarity Problem

A and B Known quantities in the general form of LCP

Zγ
± Relative directional pre and post-impact velocities (Z=N,T; +=Post-impact; -=Pre-impact)

ZΛ Impulse in normal and tangential directions

Nυ
Velocity jump
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Notations Explanation

ZZG Effective mass

M Mass matrix

I Moment of inertia

mj Mass of the decks (j=1,2)

i Inner point of the deck

o Outer point of the deck

jlZr
Distance of the lever arm (l=i, o)

θ Angle of rotation of each deck

l jZr
Distance of the lever arm due to rotation

jZW
Directional mass matrices

rD Distance vector for the lever arm

g Gap between the two decks

&j jx y Distances

&j jn t Directional coefficient of the distance vector

1σ
Point on the contour of deck-1 where deck-2 is in impact

2σ
Point on the contour of deck-2 where deck-1 is in impact

Rj Radius of curvature of the two decks

,
jmj

X Ym
Center of masses of each deck

jβ
Curvature of the decks (600 and 900)

W Width

Table Continued

Conclusions
Curved bridges with two successive rigid abutments, with S-type 

orientation, and their post-impact effects due to in-deck rotation are 
investigated in the present work. The rotational mechanics involved in 
the in-deck interaction, for curved bridges, have not been theoretically 
studied in the past and this paper illustrates a thorough non-smooth 
event based parametric analysis for identifying the possibility of 

stick and slip, after impact. The post-impact rotational potential is 
observed to depend on the total angle of the curve, the ratio of the 
pre-impact relative velocities in the tangential and normal directions 
and the coefficient of friction. Specifically, the post-impact slip and 
stick phenomenon, during single impact, in dependent entirely on the 
value of ∂ and the main focus of the designers should lie on this and 
its related parameters. The validity of inward slip is negligible when 
the coefficient of friction is greater than 0.25. Thus, it can be inferred 
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that the slipping tendency of curved bridges, during single impact, is 
considerably high and is an aspect which needs to be reduced in order 
to increase the safety of the structure.
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