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Fractal geometry in medicine: an effective method

for identifying tumors

Abstract

Fractals are geometric shapes characterized by self-similarity, where patterns repeat at
different scales and are common in nature. The box-counting method is used to measure
their dimension, but it has a key limitation: it only offers a global and homogeneous
characterization, ignoring local variations in density or complexity within the structure.
Multifractal analysis solves this problem. Instead of a single dimension, it provides a
spectrum of dimensions that maps how regularity varies in different parts of the object,
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offering a more accurate description of complex and heterogeneous systems. These concepts

are relevant to endocrinology and medicine through the study of biological systems with
fractal geometry, such as the branching of blood vessels or neurons. Multifractal tools
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help researchers measure the complexity of these structures and dynamic processes (such
as hormonal rhythms), potentially improving the diagnosis and understanding of various

pathologies.
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Introduction

The concept of a fractal, coined in 1975 by the mathematician
Benoit Mandelbrot,'* refers to a geometric figure whose essence,
characterized by being irregular or fragmented, is reproduced at
different levels of magnitude. This phenomenon is called self-
similarity, and its analysis and theoretical formulation introduce us to
the field of mathematics related to infinite processes.’

This characteristic can be identified in the shape of certain types
of plants or trees, as in a cauliflower head, or in different varieties
of ferns, where each leaf resembles the overall shape of the plant.
Similarly, it is observed in the silhouette of some clouds, which from
a distance appear as a single unit, but upon closer inspection reveal
small fragments that are repeated at various scales.®

An example of what we now identify as a mathematical fractal
was presented in 1915 by the Polish scientist Wactaw Franciszek
Sierpinski, who lived from 1882 to 1969. His design, based on a
triangle, generates a series of geometric figures that enclose an
area approaching zero, while their perimeter approaches infinity.
This characteristic suggests that, to effectively capture its level of
irregularity and fragmentation, as well as its ability to occupy space,
the notion arises of linking a non-integer dimension to a fractal object
situated between line and surface. In the specific case of the Sierpinski
triangle, the linked self-similarity dimension is approximately 1.585.7

In reality, perfect and infinite self-similarity does not exist
in biological objects. In reality, no completely faithful, reduced
reproductions of the original object are found, and furthermore,
only a limited number of levels of self-similarity can be observed.
However, numerous components of nature exhibit complex forms,’ !
and through fractal analysis, a fractal pattern can be recognized that,
while not perfect, is an approximation. An example of this is its use
in digital image processing, which is frequently employed in the field
of medical diagnosis.

Considering that, although various cancer-related processes may
be externally visible, their form can vary considerably depending on
the scale of observation.’ In this context, a detailed analysis supported
by these images helps to evaluate the different morphological

characteristics present.

Scientific studies'? indicate that the initial stages of tumor
formation can be identified using fractal and multifractal geometry
techniques. These strategies facilitate the characterization of variations
in the irregularity of cell, tissue, and vascular system contours as
an abnormal mass develops. This allows for the assessment of the
extent of damage to the original tissue, which would help reduce both
diagnostic errors and ambiguity.

However, assigning a numerical value that accurately captures
the irregular shape of these natural elements is challenging. One
commonly used parameter is the box count dimension, which
establishes a relationship between observations at different scales of
the same examined fragment, facilitating the measurement of the rate
at which irregularities manifest. This counting method usually yields
good results when the examined contour conforms in some way to the
mathematical property of self-similarity. However, the complexity of
certain images can cause the value obtained for this parameter to not
adequately reflect their underlying structure. This can be improved
through multifractal.’

Multifractality deals with how the pixels defining the contour under
analysis are distributed, and not just with simply counting the boxes or
squares that cross that contour. This allows for a detailed exploration
of the internal structure at a local level and of the variations in the
studied morphology. Thus, instead of focusing on a single parameter
or dimension, it is crucial to manage a diverse set of values, known
as the multifractal spectrum,? facilitates the evaluation of different
scale and density properties that might be present. In contrast, in the
case of monofractality, such a spectrum would be limited to a set of
overlapping values.

Multifractal imaging is increasingly used for detailed analysis of
medical images, facilitated by recent technological advances.'? In
2015, a team led by Igor Sokolov and Craig Woodworth presented
findings demonstrating the existence of multifractal structures on the
surfaces of cells in the pre-cancerous stage. These features are not
found in healthy cells or in cells already affected by the disease within
the same tissue. Therefore, by identifying these structures, it would be
possible to diagnose this condition before a tumor develops.'?
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Discussion

Fractal geometry, albeit on a reduced scale, is already being used
in endocrine systems to interpret the complexity and effectiveness
of structures and hormone distribution, revealing patterns of self-
similarity. This provides a way to describe the organization and
texture of endocrine tissues and cells, offering a means of assessing
complexity that goes beyond Euclidean measurements such as length,
area, and volume. Therefore, this geometry offers a representation
of the structures and dynamics of the human body that Euclidean
geometry cannot capture, such as branching characteristics and self-
similarity.

In the endocrine system,' evidence shows that it is mainly used for
modeling and evaluating structures and signals:

1) Glandular structures: the fractal approach is applied to define
the irregular and complex morphology of glands and tissues,
facilitating the identification of abnormal growths, such as
tumors;

2) Hormonalsignals: the fluctuation of hormones, which is dynamic
and does not follow a linear course, can be examined using
principles of chaos and fractals, allowing a better understanding
of rhythms and dysfunctions within the system;

3) Vascular networks: endocrine glands have extensive irrigation
through blood vessels, and this network follows efficient fractal
patterns that optimize the exchange area, which can be modeled.

In its application to the pituitary gland (hypophysis), Grizzi et
al.,'"* argue that its study is crucial for understanding how fractals can
measure the complexity of the blood vessels that nourish the pituitary
gland, something essential for its endocrine function. The findings
indicate that fractal dimension is a valid and objective measure of
microvascular complexity in the pituitary gland, encompassing both
physiological and pathological conditions, including the presence of
tumors.

In the application of fractal dimension to the thyroid gland (image
analysis), Carg et al.,’” focused on quantifying thyroid tumors using
fractal dimension as an imaging biomarker. This study analyzed
fractal dimension, calculated using the box-counting technique, to
distinguish between normal and cancerous thyroid tissue. On the other
hand, the research by Komatsu et al.,'® focused less on shape and more
on the mathematical modeling of pulsatile hormonal signals (chaotic
or fractal rhythms) of the HPA axis. They applied fractal analysis to
objectively determine the presence of chronic inflammation in thyroid
tissue from ultrasound images.

Bosse.,'”” and Kim.,'"® contribute to hormonal dynamics,'”'®
addressing the Hypothalamus-Pituitary Axis, explaining how the
concepts of fractal geometry and nonlinear chaos are valuable tools
for measuring structure and metabolism, including the dynamics of
pulsatile secretion of hormones such as TSH.

Promising research indicates that this emerging field of mathematics
may play a vital role in the early and effective identification of
irregularities and the detection of potentially cancerous problems in
the cervix. These approaches facilitate the description of irregular
variations that occur in the contours of cells, tissues, and vascular
networks when an abnormal mass forms.
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