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Introduction
The advent of neoadjuvant immunotherapy has significantly 

improved the prognosis for patients with various types of 
cancer. This therapeutic approach involves administering 
immunotherapeutic agents before the primary treatment, such as 
surgery, to enhance the body’s immune response against tumor 
cells.

1–3

However, while neoadjuvant immunotherapy has shown 
remarkable efficacy in reducing tumor burden and improving 
survival rates, it is also associated with a spectrum of immune-
related adverse events (irAEs), including the induction of 
autoimmune diseases like Hashimoto’s thyroiditis.

4–7

Hashimoto’s thyroiditis is a chronic autoimmune disease 
characterized by the destruction of thyroid gland tissue, leading 
to hypothyroidism. The pathogenesis of Hashimoto’s disease 
involves a complex interplay of genetic predisposition and 
environmental factors that trigger an immune response against 
thyroid antigens.

8–10

With the increasing use of immunotherapies, there is growing 
evidence that these treatments can exacerbate or trigger autoimmune 
responses, including those affecting the thyroid.

11

Checkpoint inhibitors, such as anti-PD-1, anti-PD-L1, and anti-
CTLA-4 antibodies, are among the most used immunotherapies 
in the neoadjuvant setting. These agents block inhibitory pathways 
in T cells, thereby enhancing the immune system’s ability to attack 
cancer cells.

12–14

Nonetheless, amplifying immune responses can also disrupt 
immune tolerance, leading to autoimmunity. This mechanism 
is believed to underlie the development of thyroiditis and other 
autoimmune conditions in patients undergoing checkpoint 
inhibitor therapy.

15–17

The incidence of thyroid dysfunction, particularly 
hypothyroidism due to thyroiditis, is notably higher in patients 

treated with checkpoint inhibitors compared to those receiving 
other cancer therapies.

18 

Clinical studies have reported that up to 20% of patients on anti-
PD-1 or anti-PD-L1 therapies develop

thyroiditis, with a subset progressing to permanent 
hypothyroidism requiring lifelong thyroid hormone replacement.

19

The clinical presentation of ICI-induced Hashimoto’s thyroiditis 
can vary but typically includes symptoms of hypothyroidism such 
as fatigue, weight gain, cold intolerance, and dry skin.

20

These symptoms can significantly impact patients’ quality of life 
and may complicate cancer treatment protocols. Therefore, early 
identification and management of thyroid dysfunction in neoadjuvant 
immunotherapy patients are critical.

21

Diagnosis of ICI-induced Hashimoto’s thyroiditis involves a 
combination of clinical evaluation, laboratory testing, and imaging. 
Vital diagnostic tests include serum TSH, free T4, and free T3 
levels and the detection of thyroid autoantibodies such as anti-
TPO and anti-Tg. A thyroid ultrasound may also assess glandular 
inflammation and structural changes.

22-24

Managing thyroiditis in the context of neoadjuvant 
immunotherapy requires a multidisciplinary approach. 
Endocrinologists, oncologists, and primary care physicians must 
collaborate to monitor thyroid function closely and adjust treatment 
plans as needed.

25-27

For patients who develop hypothyroidism, levothyroxine 
replacement therapy is the standard of care. The thyroid hormone 
replacement dosage should be tailored to maintain TSH levels 
within the normal range, minimizing symptoms and optimizing 
overall health.

28-30

The pathophysiological mechanisms underlying ICI-induced 
thyroiditis are still under investigation. It is hypothesized that the 
blockade of PD-1, PD-L1, and CTLA-4 pathways disrupts immune 
homeostasis, leading to an autoreactive immune response against 
thyroid antigens.

30-33
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Abstract

This review investigates the association between neoadjuvant immunotherapy and the 
onset of Hashimoto’s disease in patients with neoplastic conditions. With the increasing 
use of immunotherapy in oncology, understanding potential immune-related adverse 
events, particularly autoimmune thyroiditis, is crucial for optimizing patient outcomes 
and managing therapy-related risks. Our findings suggest a notable incidence of 
Hashimoto’s disease among cancer patients receiving neoadjuvant immunotherapy. 
The underlying mechanisms may involve immune checkpoint inhibitors disrupting 
immune tolerance, leading to autoimmune thyroiditis. This review highlights the need 
for vigilant monitoring of thyroid function in patients undergoing immunotherapy and 
suggests potential strategies for early detection and management of Hashimoto’s disease 
in this population. Further research is required to elucidate the precise mechanisms and 
risk factors involved, which could inform clinical guidelines and improve patient care.
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Genetic factors may also play a role, as specific HLA haplotypes 
are associated with a higher risk of autoimmune thyroid disease. 
Environmental factors such as viral infections and iodine intake 
could modulate immune responses in susceptible individuals.

34-36

Research into predictive biomarkers for ICI-induced 
thyroiditis is ongoing. Identifying patients at risk before initiating 
immunotherapy could allow for proactive monitoring and early 
intervention.

37

Potential biomarkers include baseline thyroid autoantibody 
levels, genetic markers, and specific cytokine profiles. Further 
studies are needed to validate these biomarkers and integrate them 
into clinical practice.

38

Preventive strategies to mitigate the risk of thyroiditis in 
patients undergoing neoadjuvant immunotherapy are also being 
explored. These strategies include immunomodulatory agents 
that selectively target pathways involved in autoimmunity while 
preserving antitumor immunity. Personalized treatment plans 
based on genetic and immunological profiling may help reduce the 
incidence of irAEs.

39-41

Neoadjuvant immunotherapy represents a double-edged sword 
in cancer treatment, offering substantial therapeutic benefits 
while posing risks for autoimmune diseases such as Hashimoto’s 
thyroiditis.

42

Integrating vigilant monitoring, early diagnosis, and 
comprehensive management strategies is essential to optimize 
patient outcomes and minimize adverse effects. Continued research 
is crucial to unravel the complex mechanisms of ICI-induced 
autoimmunity and develop targeted interventions to safeguard 
patient health.

43-45

This review aims to investigate the association between 
neoadjuvant immunotherapy and the development of Hashimoto’s 
disease in neoplastic patients. This review aims to comprehensively 
understand the underlying pathophysiological mechanisms, 
incidence, and clinical presentation of immune checkpoint inhibitor 
(ICI)-induced thyroiditis. It seeks to outline the diagnostic and 
management strategies for this condition.

39,40

The review intends to identify predictive biomarkers and discuss 
potential preventive and therapeutic approaches to mitigate 
immune-related adverse events associated with immunotherapy 

in cancer patients. Through this analysis, the goal is to optimize 
oncological treatment and improve the quality of life for patients 
while maintaining the therapeutic efficacy of ICIs.

Methods
The research methodology for this review was designed to 

thoroughly investigate the potential link between neoadjuvant 
immunotherapy and the onset of Hashimoto’s disease in patients 
with neoplastic conditions. The study utilized multiple reputable 
databases, including PubMed, Scopus, SciELO, Embase, and 
Web of Science, ensuring a comprehensive coverage of relevant 
scientific and medical literature. These databases are recognized 
for their extensive collections of peer-reviewed publications. 
Google Scholar was employed to access gray literature, which 
often includes significant studies not available in standard 
academic journals. The primary objective was to understand the 
incidence and underlying mechanisms of Hashimoto’s disease as a 
possible adverse effect of neoadjuvant immunotherapy in cancer 
patients. To achieve this, search parameters were carefully crafted 
using relevant keywords such as “Immunotherapy,” “Hashimoto 
Disease,” “Autoimmune Thyroiditis,” “ Neoadjuvant Therapy,” 
and “Adverse Drug Reactions.” This strategic combination of search 
terms ensured the retrieval of studies directly pertinent to the research 
objectives. Inclusion criteria encompassed a broad spectrum of study 
designs, including randomized controlled trials, cohort studies, 
case-control studies, systematic reviews, and meta-analyses. This 
approach aimed to capture diverse evidence and perspectives 
regarding the association between neoadjuvant immunotherapy 
and Hashimoto’s disease. Exclusion criteria were also established 
to filter out studies on unrelated pathologies, non- immunotherapy 
treatments, or other autoimmune diseases. Two independent 
reviewers initially screened each study’s title and abstract for 
relevance and compliance with predefined criteria to ensure 
methodological rigor. Any discrepancies between the reviewers 
were resolved through consultation with a third reviewer, thereby 
minimizing bias and ensuring consistent selection. This dual-review 
process ensured that the final dataset comprised studies meeting the 
highest standards of relevance and quality. This systematic approach 
to the literature review provided a solid foundation for evaluating and 
synthesizing the findings. It ensured that the conclusions of this 
study were based on a comprehensive and critically assessed body 
of scientific evidence regarding neoadjuvant immunotherapy as a 
risk factor for Hashimoto’s disease in neoplastic patients. Table-1

Table 1 Immunotherapy agents and risk of hashimoto’s thyroiditis

Immunotherapy 
Agent

Types of Tumors
Risk Factor for Hashimoto’s Thyroiditis and Molecular 

Mechanism

Nivolumab (anti- PD-1) Melanoma, non-small cell lung cancer, Renal cell 
carcinoma, Hodgkin lymphoma, Esophageal 
cancer

Inhibition of PD-1 increases immune activity, potentially 
resulting in lymphocytic infiltration of the thyroid.

Ipilimumab (anti- CTLA-
4)

Melanoma, non-small cell lung cancer, Renal cell 
carcinoma

Inhibition of CTLA-4 removes the brakes on T- cells, 
promoting autoimmunity and thyroid inflammation.

Atezolizumab (anti- PD-L1) Non-small cell lung cancer, Bladder cancer, 
Renal cell carcinoma

Inhibition of PD-L1 can trigger autoimmune responses, 
including thyroid cell destruction by activated lymphocytes.
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Immunotherapy 
Agent

Types of Tumors
Risk Factor for Hashimoto’s Thyroiditis and Molecular 

Mechanism

Durvalumab (anti- PD-L1) Non-small cell lung cancer, Bladder cancer
Similar to Atezolizumab, it may promote autoimmunity 
by releasing inhibition on T- cells, leading to thyroid 
inflammation.

Avelumab (anti-PD- L1) Merkel cell carcinoma, Urothelial carcinoma Blocking PD-L1 can cause immune dysfunction and 
autoimmunity, including effects on the thyroid.

Cemiplimab (anti- PD-1)        Cutaneous squamous cell carcinoma
Inhibition of PD-1 can result in uncontrolled immune 
activation, leading to autoimmune responses against the 
thyroid.

Tremelimumab (anti-
CTLA-4)

Hepatocellular carcinoma, 
Mesothelioma

Inhibition of CTLA-4 can provoke autoimmune responses by 
prolonged T-cell activation, affecting the thyroid.

Table 1 Continued..

Results and Discussion
The association between neoadjuvant immunotherapy and 

the development of Hashimoto’s disease in neoplastic patients 
represents a critical area of investigation, given the increasing use 
of immune checkpoint inhibitors (ICIs) in cancer treatment.

41
 

The pathophysiology of ICI-induced thyroiditis, including 
Hashimoto’s thyroiditis, involves complex immune mechanisms 
that need further elucidation.

12 
Immune checkpoint inhibitors, such 

as anti-PD-1, anti-PD-L1, and anti- CTLA-4 antibodies, enhance 
the immune response against tumors by blocking inhibitory signals 
that restrain T-cell activity.

16
 

While effective against cancer cells, this immune activation can 
also target self-antigens, leading to autoimmunity.

42 
Thyroiditis is 

one of the most common endocrine adverse events associated with 
ICIs, with mechanisms thought to involve both direct immune 
activation and indirect effects through cytokine release and 
inflammation.

43

Specific risk factors for developing ICI-induced thyroiditis 
include preexisting thyroid autoimmunity, a history of autoimmune 
diseases, and the type and dosage of ICIs used.

44 
Patients with 

baseline thyroid antibodies, such as anti-thyroglobulin and anti-
thyroid peroxidase, are at increased risk. Genetic predispositions, 
such as specific HLA haplotypes, may also play a role in 
susceptibility.

45

Biomarkers that can predict the development of immune-related 
adverse events (irAEs), including thyroiditis, are of significant 
interest. Elevated levels of thyroid antibodies before initiating ICI 
therapy can indicate a higher risk of thyroid dysfunction.

46,47

Serum cytokine profiles and specific genetic markers, such as 
single nucleotide polymorphisms (SNPs) in immune-related genes, 
may serve as predictive biomarkers.

28 
Further research is needed to 

unravel the complex mechanisms of ICI- induced autoimmunity 
and develop targeted interventions to safeguard patient health. 
Understanding the interplay between different immune cells, 
cytokines, and genetic factors is crucial.

48–50

Advanced omics technologies, including genomics, proteomics, 
and metabolomics, can provide insights into the molecular 
pathways involved in ICI- induced thyroiditis.

51 
Preventive 

measures before initiating immunotherapy are essential to reduce 
the risk of thyroiditis. Regular screening for thyroid function and 
autoantibodies can help identify high-risk patients.

52

Prophylactic use of immunosuppressive agents or anti-
inflammatory medications in selected patients may also be 
considered, although this approach requires careful balancing 
of risks and benefits.

53 
The long-term prognosis for patients 

who develop ICI-induced Hashimoto’s thyroiditis varies. 
While some patients may achieve stable thyroid function with 
hormone replacement therapy, others may experience persistent 
hypothyroidism or fluctuating thyroid function. Follow-up and 
management are crucial to monitor thyroid function and adjust 
treatment as needed.

54–56

There are still significant gaps in the understanding of ICI-
induced thyroiditis. More studies are needed to determine 
the precise mechanisms of immune activation and tolerance 
breakdown.

39 

Researchers should focus on identifying patient-specific 
factors contributing to susceptibility and developing personalized 
therapeutic strategies.

57

Current diagnostic approaches for ICI-induced thyroiditis 
include thyroid function tests, imaging studies, and 
histopathological evaluation when necessary. Early detection and 
prompt intervention are essential to manage symptoms and prevent 
complications.

58 
Management of ICI-induced thyroiditis involves 

hormone replacement therapy for hypothyroidism and close 
monitoring of thyroid function during and after immunotherapy.

44

In cases of hyperthyroidism, antithyroid medications or beta-
blockers may be used to control symptoms. Collaboration between 
oncologists and endocrinologists is vital for optimal patient care.

59 

The impact of ICI-induced thyroiditis on cancer treatment 
outcomes is an important consideration. While ICIs can significantly 
improve survival rates in cancer patients, the occurrence of irAEs, 
including thyroiditis, may necessitate therapy adjustments. 
Understanding the balance between effective cancer control and 
the management of adverse effects is crucial.

60–62

Future research should also explore the potential benefits of 
combining ICIs with other therapeutic modalities, such as targeted 
therapies or conventional chemotherapy, to enhance efficacy 
while minimizing adverse effects.

63 
Investigating the role of 

combination therapies in modulating immune responses and reducing 
autoimmunity is a promising area of study.

64

Neoadjuvant immunotherapy presents opportunities and 
challenges in treating neoplastic patients. While ICIs have 
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revolutionized cancer therapy, their association with autoimmune 
conditions like Hashimoto’s thyroiditis necessitates a deeper 
understanding of the underlying mechanisms, risk factors, and 
effective management strategies.

65,66

Conclusion
In conclusion, the relationship between neoadjuvant 

immunotherapy and the development of Hashimoto’s disease in 
cancer patients underscores the need for comprehensive monitoring 
and management strategies. Identifying at-risk patients through 
biomarkers and genetic screening can help tailor preventive 
measures and therapeutic interventions. Continued research into 
the pathophysiological mechanisms and long-term outcomes of 
ICI-induced thyroiditis is essential to optimize cancer treatment 
while safeguarding patient health.

This review highlights the importance of multidisciplinary 
collaboration in managing the complexities of cancer 
immunotherapy and its associated autoimmune effects, ultimately 
aiming to improve patient outcomes and quality of life.
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