

Is low adiponectin concentration linked to the development of type 2 diabetes in Sudan

Abstract

Objectives: It was previously thought that adiponectin influenced insulin activity in tissues. Insulin resistance caused by obesity is associated to reduced plasma adiponectin levels. Researchers may be able to better understand the role of adiponectin in insulin resistance and type 2 diabetes by comparing adiponectin levels in T2DM patients to non-diabetic patients, as well as its connection with BMI and WC.

Method: A case-control study was conducted at the Abu A'glia Health Care Center for diabetes care in Wad Madani, Gezira State, Sudan, between April 2012 and March 2013. The study involved a total of 181 participants. To measure adiponectin, FPG, and HbA_{1c} levels, patients were divided into diabetes and non-diabetic groups. The body mass index (BMI) was calculated, and the waist circumference (WC) was measured. Personal information (age and gender) were obtained. Samples were analyzed for many biochemical parameters using the A15, a random-access auto-analyzer bio system. To quantify adiponectin, ELISA employed the techniques of a human adiponectin ELISA kit. A statistical software for social sciences was used to conduct the statistical analysis (SPSS version 16, Chicago, IL, USA).

Result: The mean BMI (29.007) increased significantly between diabetic and non-diabetic groups ($p=0.001$) indicating that the study participants were overweight. There was significant increased ($p<0.0001$) in FPG (160.10) and HbA_{1c} (6.9813) and non-significant decreased in adiponectin mean (1.567) concentration. SBP and DBP mean (116.52) and (75.51) were significantly low ($p=0.006$) and (0.054), respectively.

Conclusion: Adiponectin levels were lower in diabetic and non-diabetic patients. Only two diabetics had excessive quantities. Adiponectin and BMI were thought to have an inverse relationship, with no association between adiponectin and WC.

Keywords: adiponectin, type 2 diabetes mellitus, BMI, WC, Sudan.

Abbreviations

T2DM, type2 diabetes mellitus; FPG, fasting plasma glucose; HbA_{1c}, glycosylated hemoglobin; HT, hypertension; WC, waist circumference; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; p, probability; F, degree of freedom.

Introduction

White adipose tissue releases a variety of regulating chemicals known as adipocytokines, such as leptin and adiponectin.¹ since adipocytokines have multi-potent impacts on health and illness; over 700 distinct adipocytokines have been found up to 2012. This fact offers adipose tissue an extra role as a significant and biggest endocrine organ.² Beside their basic role on store fat, provide energy, and provide insulation.³ Protein molecules produced by adipose tissue have a role in autocrine and paracrine control inside adipose tissue, as well as affecting the activities of distant organs such muscle, the pancreas, the liver, and the central nervous system.⁴ The adipocytokines modulate hemostasis, blood pressure, lipid and glucose metabolism, inflammation, and atherosclerosis.⁵ Adiponectin is a protein identified in 1995 and exclusively produced from adipocytes, known as (the gene product of the adipose most abundant gene transcript-1 (apM1).⁶ Its structure consists of 224 amino acid-long polypeptide of 30 kDa.⁷ The N-terminal region consists of a 20-residue signal sequence without homology to any known proteins, beside a collagen-like region, and a C-terminal globular domain. The three-dimensional structure of its C-terminal globular domain is similar to that of tumor necrosis factor-alpha (TNF- α).⁸ It account for 0.01% of total plasma protein.⁹ Moreover, adiponectin has two

distinct isoform, a high molecular weight form, and a more bioactive low molecular weight form¹⁰ and two specific receptors AdipoR1 and R2. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver.¹¹

Adiponectin possesses an effective insulin-sensitizing with anti-diabetic effect, anti-inflammatory, and anti-atherogenic properties¹² by inhibition of monocytic cell adhesion to endothelial cells,¹³ suppression of vascular smooth muscle cell proliferation,¹⁴ and inhibition of foam cell formation from macrophages.¹⁵ It exerts its function through phosphorylation of tyrosine kinase which signaling insulin receptors¹⁶ in liver and skeletal muscle,¹⁷ this action is mediated by AMP kinase that phosphorylate several target protein thus effect metabolic pathways. adiponectin has obvious effect on both carbohydrate and lipid metabolism because it promote the uptake and oxidation of fatty acids by myocytes, but blocks synthesis of fatty acids and gluconeogenesis by hepatocyte. At the same time uptake and metabolism of glucose by muscle and liver are favored.¹⁸ Low circulating adiponectin is associated with increasing adipose tissue mass and obesity¹⁹ resulting in insulin resistance, type 2 diabetes mellitus (T2DM) and dyslipidemia.²⁰

Induction of insulin sensitivity by administration of recombinant adiponectin predominantly in the blood stream result in increased insulin secretion,²¹ hypoglycemia and hyper-insulinemia without inducing weight gain or even inducing weight loss.²² However, in response to weight loss circulating total or high molecular weight adiponectin levels lead to improvements in insulin sensitivity.²³ Weight loss is achieved by adiponectin in the brain which increase energy expenditure and may thereby promote weight loss.²⁴

Volume 10 Issue 1 - 2022

Nahla Ahmed Mohammed Abderahman,¹
Abderrhman Ahmed Mohamed Ismaeil,²
Mohammed Ahmed Ibrahim Ahmed,³ Bakri
Yousif Mohammed Nour⁴

¹Department of Biochemistry, Nile Valley University, Sudan

²Department of Medicine, Sinnar University, Sudan

³Department of Microbiology, Nile Valley University, Sudan

⁴Department of parasitology, University of Gazira, Sudan

Correspondence: Dr. Nahla Ahmed Mohammed Abdurrahman, Assistant professor of Biochemistry, Nile Valley University, Faculty of Medicine- Atbara, Sudan, Tel +249123590647, Email nahlaharazawy@gmail.com

Received: June 11, 2022 | **Published:** July 20, 2022

Adiponectin is now recognized as component of a novel signaling network among adipocytes,²⁵ insulin-sensitive tissues, and vascular function that has important consequences for cardiovascular risk.²⁶ An adipocyte-endothelium interaction might be an important mechanism of inflammation and vascular dysfunction.²⁷ Insulin action is affected in various tissues by the release of different adipocytokines.²⁸ The interacting of insulin with adiponectin cause obesity-induced insulin resistance, DM, and diabetic complications.²⁹ Investigating adipocytokine levels in T2DM and their association with anthropometric measurements BMI and WC may help understanding the role of adipocytokines in type 2 diabetes patients in Sudan.

Material and methods

Study Subject, design and area: A total of 181 people were involved in a cross-sectional study with a case-control design between April 2012 and March 2013, with 100 participants having diabetes and 81 serving as the control group. All patients who came to the Abu A'gla Health Care Center from the Wad Madani city district and nearby rural and urban areas were taken care of. The participants represented many Sudanese tribes.

Inclusion and exclusion criteria: The participants in this study were between the ages of 18 and 60, had no current infection, and had no diabetes complications. The non-diabetic group was made up of healthy people who volunteered to take part in the study. A subject was removed from the study if they did not meet any of the inclusion criteria.

Table 1 Distribution of participants with in study variables according to group and adiponectin concentration

Variables	Characteristic	Group		Adiponectin concentration		Total
		Diabetic n=100	Non-diabetic n=81	n=181	High=>8.4	
Gender	Male	26	27	53	0	53
	Female	74	54	125	3	128
	20-29	1	2	3	0	3
Age group\yrs.	30-39	3	4	7	0	7
	40-49	40	47	87	0	87
	50-59	49	22	68	3	71
	60-69	7	6	13	0	13
	Male<=102	14	23	37	0	37
WC(Cm)*	Male>102	12	4	16	0	16
	Female<=88	9	7	16	0	16
	Female>88	65	47	109	3	112
	under weight (BMI < 18.50)	0	1	1	0	1
BMI (kg/m2) *	Normal (BMI 18.50 - 24.99)	15	30	44	1	45
	Overweight (BMI 25 - 29.99)	40	30	68	2	70
	Obese class I (BMI 30 - 34.99)	27	9	36	0	36
	Obese class II (BMI 35-39.99)	14	8	22	0	22
	Obese class III (BMI >=40.00)	4	3	7	0	7
	Normal (SBP\DBP less than 120\80)	28	43	69	2	71
	Pre-hypertension (SBP\DBP 120\80)	64	33	96	1	97
HT Group**	Stage 1 HT (SBP 140 -159 or DBP 90 -99)	8	4	12	0	12
	Stage 2 HT (SBP\ DBP 160\100 and above)	0	0	1	0	0
Physical activity	Low	7	22	29	0	29
	Moderate	57	52	107	2	109
	High	36	7	42	1	43
Medications	Hypoglycemic drug	93	-	90	3	93
	Dietary control	7	-	7	0	7
	Metformin	21	-	-	-	21
Hypoglycemic drug	glyburide	37	-	-	-	37

Table Continued...

Variables	Characteristic	Group		Adiponectin concentration n=181		Total
		Diabetic n=100	Non-diabetic n=81	Low < 6.4	High >= 8.4	
Additional drugs	Metformin+ glyburide	34	-	-	-	34
	Others	8	-	-	-	8
	Yes	4	-	4	0	4
Dietary restriction	No	96	-	93	3	96
	Yes	44	7	51	0	51
	No	56	73	126	3	129
FPG (mg/dl)	Low < 75	2	12	14	0	14
	Normal 75 - 115	19	60	79	0	79
	High > 115	79	9	85	3	88
HbA1C (%)	Excellent <6.5	30	75	105	0	105
	Good 6.5-7.5	6	6	11	1	12
	Moderate 7.5-8.9	20	0	19	1	20
Adiponectin (ug/L)***	Poor >=9	44	0	43	1	44
	Low < 6.4	98	81	-	-	179
	Normal 6.5-8.4	0	0	-	-	0
	High >8.4	2	1	-	3	3

Source NHLBI Obesity Education Initiative (2000)*; American heart association**; (Wang, Y et al.)^{47***};

FPG, fasting plasma glucose; HbA_{1C}, glycosylated hemoglobin; HT, hypertension; WC, waist circumference; BMI, body mass index; Cm, centimeter; Kg, kilogram; m, meter

Table 2 Comparison of mean of adiponectin concentration with mean of anthropometric and biochemical measurements of study variables

Variables	Minimum	Maximum	Mean in Diabetic	Mean in Non-diabetic	Total Mean	SEM	F	Sig.
Age (years)	22	65	49.67±0.71	46.42±0.88	48.22	0.567	8.42	0.004
Weight (kg)	40	171	79.95±1.69	71.80±1.60	76.3	1.211	11.9	0.001
Height (m)	1.4	1.9	1.62±0.01	1.62±0.01	1.6236	0.007	0.03	0.861
WC (Cm)	52	127	98.69±1.15	97.27±1.27	98.06	0.851	0.69	0.409
BMI (kg/m²)	17.31	55.2	30.36±0.58	27.33±0.64	29.007	0.446	12.2	0.001
SBP (mmHg)	80	170	118.60±0.80	113.95±1.59	116.52	0.853	7.62	0.006
DBP (mmHg)	30	100	76.70±0.71	74.07±1.25	75.51	0.687	3.77	0.054
FPG (mg/dL)	46	442	215.33±9.93	93.42±2.12	160.1	7.199	121	<0.0001
HbA1C (%)	3.1	15	8.32±0.29	5.33±0.09	6.9813	0.196	83	<0.0001
Adiponectin (ug/L)	0	8.55	1.73±0.12	1.37±0.15	1.567	0.096	3.46	0.064

SBP, systolic blood pressure; DBP, diastolic blood pressure; p, probability; F, degree of freedom; µg, microgram; mg, milligram; dL, deciliter; mmHg, millimeter of mercury; SEM, standard error of the mean

The difference in mean BMI (29.007) between the diabetic (30.36) and non-diabetic (27.33) groups was significant ($p=0.001$) therefore the study population was overweight or obese.

The difference between diabetes and non-diabetic groups in mean FPG (160.10) and HbA_{1C} (6.9813) was significant ($p<0.0001$). The diabetes and non-diabetic groups had significantly reduced mean SBP and DBP by ($p=0.006$) and (0.054), respectively, while only 8 diabetic and 4 non-diabetic participants had Stage 1 HT.

Discussion

Diabetic patients had significant increase in FPG and they can't achieve the goal for HbA_{1C}. So, study patients had uncontrolled plasma glucose. With increased in BMI, the diabetic participants were at high risk for developing diabetes complications.³⁰ Dietary control and regular exercise are the first steps in treating diabetes; these two strategies appear to lower HbA_{1C} but not FPG.³¹ Additionally, prevention of diabetes can be achieved by engaging in 30 minutes of

moderate-intensity physical activity; however, this eventually leads to a chronic increase in the concentration of inflammatory molecules like IL-6 and TNF.³² Participants in the current study showed moderate physical activity with no regular exercise; this may have contributed to the significant rise in BMI, which may lead to obesity and metabolic abnormalities such as insulin resistance and decreased fatty acid oxidation.^(33,34) The dietary plan was ignored by both the diabetic patients and Abu A'gla diabetic health care center.³⁵ showed that dietary restriction is effective in reducing adipose mass and central or visceral adiposity by diminished the biomarkers of inflammation, and increase the adiponectin which is associated with insulin resistance.

In terms of adipocytokines, adiponectin levels were lower in all individuals in the current investigation, with high concentrations in only three diabetic female. There was no correlation with WC, which exhibited a non-significant rise when compared to adiponectin concentration. The previous studies showed that low adiponectin concentration is associated with high risk of developing T2DM³⁶

and that adiponectin is a marker of metabolic control associated with a high risk of cardiovascular complications and atherosclerosis. These findings were in agreement with the study of³⁷ which also found individuals with T2DM had lower adiponectin values and that subjects with well controlled diabetes mellitus had higher values than those with uncontrolled diabetes. These findings matched those of recent research we conducted. Furthermore, lower adiponectin levels have been reported in African-American children compared to their European-American counterparts³⁸ and have been linked to a variety of phenotypic traits. As a result, adiponectin has been proposed as a metabolic syndrome marker.³⁹

Three diabetic female (whom had similar characteristics to most diabetic participants included in this study) reveal unexpected higher

Table 3 The characteristic of study participants with high adiponectin concentration

Variable	Characteristics	High Adiponectin concentration =>8.4
Group	Diabetic	3
Gender	Female	3
Age group\yrs.	50-59(57, 56, 50)	3
WC(Cm)*	Female>88(89, 95, 99)	3
BMI (kg/m²) *	Normal (BMI 18.50 - 24.99) (24.97) Overweight (BMI 25 - 29.99) (29.86, 28.89)	1 2
HT Group**	Normal (SBP\DBP less than 120\ 80) Pre-hypertension (SBP\DBP 120\80)	2 1
Physical activity	Moderate High	2 1
Medications	Hypoglycemic drug	3
Dietary restriction	No	3
FPG (mg/dl)	High > 115(224, 181, 409) Good 6.5-7.5(7.10)	3 1
HbA_{1C} (%)	Moderate 7.5-8.9(8.80) Poor >=9(10.90)	1 1
Adiponectin (ug/L) ***	High >8.4(8.55, 8.72, 8.43)	3

Source NHLBI Obesity Education Initiative (2000)⁴⁰; American heart association⁴¹; (Wang, Y et al. 2018)⁴²; FPG, fasting plasma glucose; HbA_{1C}, glycosylated hemoglobin; HT, hypertension; WC, waist circumference; BMI, body mass index; Cm, centimeter; Kg, kilogram; m, meter

The current study discovered an inverse relationship between adiponectin and BMI, demonstrating that a reduction in BMI or weight loss will result in an increase in plasma adiponectin. This finding was consistent with that of⁴¹ who suggested that adiponectin could be a marker of cardiovascular disease associated with T2DM, and that the lower the level of adiponectin concentration, the higher the risk of cardiovascular disease.⁴² found that a higher BMI is linked to a worse insulin response, as evidenced by higher HbA_{1C} levels and worse accomplishment of the goal value. The distribution of body fats and visceral adiposity in diabetics is correlated with the development of insulin resistance and T2DM, according to observations obtained using BMI and WC.⁴³ Metformin, glyburide, or both were used as hypoglycemic medications on diabetic individuals in the current investigation. The main one, metformin, works by decreasing the liver's ability to produce glucose and by enhancing insulin receptor binding by 20% in circulating cells (erythrocytes and monocytes), resulting in lowering blood glucose levels.⁴⁴ The K_{ATP} channel blocker glyburide, a second-generation sulfonylurea, increases intracellular potassium and calcium ion concentrations in beta cells.⁴⁵ Our findings

adiponectin level. The characteristics of those participants as follow: the age between 50-59 years with WC above 88, two were overweight and one had a normal BMI, two with moderate physical activity, and one involved in vigorous physical activity, all three female take hypoglycemic medications and did not follow any dietary restrictions. Those female have high blood glucose with good, moderate and poor glycemic control (table 3). In a cross-sectional study that has been conducted in Jordanian subjects diagnosed with type 2 diabetes, female diabetic patients had a statistically significant higher adiponectin level than male diabetic patients which may indicate a gender effect, which is in line with current study. Adiponectin levels, in contrast to our findings, were inversely associated to abdominal obesity.⁴⁰

were consistent with those of the⁴⁶ study which showed that the co-administration of metformin or glyburide had no impact on the increase in adiponectin concentration.

Conclusion

Adiponectin levels were lower in diabetic and non-diabetic patients. Only two diabetics had excessive quantities. Adiponectin and BMI were thought to have an inverse relationship, with no association between adiponectin and WC.

Acknowledgements

We would want to thank all of the participants, especially the diabetes patients from Algazira State who attend the Abo A'gla Center for Diabetes Care, for volunteering their time and skills to help us complete this study.

Disclosure of conflict of interest

None.

References

1. Champe PC, Harvey RA, Ferrier DR. Obesity. Lippincott's Illustrated Reviews: Biochemistry (3rded). *Lippincott Williams and Wilkins, Philadelphia, USA*. 2005;350.
2. Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. *Proteomics Clin Appl*. 2012;6(1-2):91-101.
3. Hahn P, Novak M. Development of brown and white adipose tissue. *J Lipid Res*. 1975;16 (2):79-91.
4. Kronenberg HM, Melmed S, Polonsky KS, et al. Williams textbook of endocrinology (11thed). *Saunders*. 2008;1329-1563.
5. Fantuzzi G. Adipose tissue, adipokines, and inflammation. *J Allergy Clin Immunol*. 2005;115(5): 911-919.
6. Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). *Biochemical and Biophysical Research Communications*. 1996;221(2):286-289.
7. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. *Journal of Biological Chemistry*. 1995;270 (45):26746-26749.
8. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. *Arterioscler Thromb Vasc Biol*. 2000;20(6):1595-1599.
9. Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). *Biochemical and Biophysical Research Communications*. 1996;221(2):286-289.
10. Shen YY, Charlesworth JA, Kelly JJ, et al. Up-regulation of adiponectin, its isoforms and receptors in end-stage kidney disease. *Nephrol Dial Transplant*. 2007;22(1):171-178.
11. Yamauchi T, Nio Y, Maki T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. *Nat Med*. 2007;13(3):332-339.
12. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. *J Clin Endocrinol Metab*. 2004;89(6):2548-2556.
13. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. *Biochem Biophys Res Commun*. 1999;257(1):79-83.
14. Matsuzawa Y, Funahashi T, Kihara S, et al. Adiponectin and metabolic syndrome. *Arterioscler Thromb Vasc Biol*. 2004;24(1):29-33.
15. Ouchi N, Kihara S, Arita Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. *Circulation*. 1999;100(25):2473-2476.
16. Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. *Endocr Revs*. 2005;26(3):439-451.
17. Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. *Nat Med*. 2002;8(11):1288-1295.
18. Rabe K, Lehrke M, Parhofer KG, et al. Adipokines and insulin resistance. *Mol Med*. 2008;14(11-12):741-751.
19. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. *Biochem Biophys Res Commun*. 1999;257(1):79-83.
20. Mohan V, Deepa R, Pradeepa R, et al. Association of low adiponectin levels with the metabolic syndrome: the Chennai Urban Rural Epidemiology Study (CURES-4). *Metabolism*. 2005;54(4):476-481.
21. Okamoto M, Ohara-Imai M, Kubota N, et al. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. *Diabetologia*. 2008;51(5):827-835.
22. Ukkola O, Santaniemi M. Adiponectin: a link between excess adiposity and associated comorbidities? *J Mol Med (Berl)*. 2002;80(11):696-702.
23. Abbasi F, Chang SA, Chu JW, et al. Improvements in insulin resistance with weight loss, in contrast to rosiglitazone, are not associated with changes in plasma adiponectin or adiponectin multimeric complexes. *Am J Physiol Regul Integr Comp Physiol*. 2006;290(1):R139-144.
24. Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. *Diabetologia*. 2012;55(9):2319-2326.
25. Hug C, Lodish HF. The role of the adipocyte hormone adiponectin in cardiovascular disease. *Curr Opin Pharmacol*. 2005;5(2):129-134.
26. Goldstein BJ, Scalia R. Adiponectin: A novel adipokine linking adipocytes and vascular function. *J Clin Endocrinol Metab*. 2004;89(6):2563-2568.
27. Bahia L, Aguiar LG, Villela N, et al. Relationship between adipokines, inflammation, and vascular reactivity in lean controls and obese subjects with metabolic syndrome. *Clinics (Sao Paulo)*. 2006;61(5):433-440.
28. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipodystrophy and obesity. *Nat Med*. 2001;7(8):941-946.
29. Hansen D, Dendale P, Beelen M, et al. Plasma adipokine and inflammatory marker concentrations are altered in obese, as opposed to non-obese, type 2 diabetes patients. *Eur J Appl Physiol*. 2010;109: 397-404.
30. Mason C, Craig CL, Katzmarzyk PT. Influence of central and extremity circumferences on all-cause mortality in men and women. *Obesity (Silver Spring)*. 2008;16(12):2690-2695.
31. Normand G, Boulé MA, Haddad E, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus a meta-analysis of controlled clinical trials. *JAMA*. 2001;286(10):1218-1227.
32. Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. *J Appl Physiol*. 2005;98(4):1154-1162.
33. Blair SN, McCloy CH. Research Lecture: physical activity, physical fitness, and health. *Res Q Exerc Sport*. 1993;64(4):365-376.
34. Ailhaud G. Adipose cell differentiation in culture. *Mol Cell Biochem*. 1982;49:17-31.
35. Barbato DL, Giovannetti E, Aquilano K. Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. *AGING*. 2016;8(12):3341-3355.
36. Tschritter O, Fritsche A, Thamer C, Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. *Diabetes*. 2003;52(2):239-243.
37. Stejskal D, Růžička V, Adamovská S, et al. Adiponectin concentrations as a criterion of metabolic control in persons with type 2 diabetes mellitus? *Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub*. 2003;147(2):167-172.
38. Bush NC, Darnell BE, Oster RA, et al. Adiponectin is lower among African Americans and is independently related to insulin sensitivity in children and adolescents. *Diabetes*. 2005;54:2772-2778.
39. Lara-Castro C, Fu Y, Chung BH, et al. Adiponectin and the metabolic syndrome: mechanisms mediating risk for metabolic and cardiovascular disease. *Curr Opin Lipidol*. 2007;18(3): 263-270.
40. Shereen Aleidi, Ala Issa, Haidar Bustanji, et al. Adiponectin serum levels correlate with insulin resistance in type 2 diabetic patients. *Saudi Pharm J*. 2015;23(3):250-256.
41. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. *Arterioscler Thromb Vasc Biol*. 2000;20(6):1595-1599.
42. Watson L, Wilson BP, Alsop J Kumar, et al. Weight and glycaemic control in type 2 diabetes: what is the outcome of insulin initiation? *Diabetes, Obesity and Metabolism*. 2011;13:823-831.

43. Montague CT, O'Rahilly S. The perils of portliness: causes and consequences of visceral adiposity. *Diabetes*. 2000;49(6):883–888.
44. Trischitta V, Gullo D, Pezzino V, et al. Metformin normalizes insulin binding to monocytes from obese nondiabetic subjects and obese type II patients. *J Clin Endocrinol Metab*. 1983;57(4):713–718.
45. Gribble FM, Reimann F. Sulphonylurea action revisited: the post-cloning era. *Diabetologia*. 2003;46(7):875–891.
46. Yang WS, Jeng CY, Wu TJ, et al. Synthetic peroxisome proliferator-activated receptor gamma agonist, rosiglitazone increases plasma levels of adiponectin in type 2 diabetic patients. *Diabetes Care*. 2002;25(2):376–380.
47. Wang Y, Meng RW, Kunutsor SK, et al. Plasma adiponectin levels and type 2 diabetes risk: a nested case-control study in a Chinese population and an updated meta-analysis. *Sci Rep*. 2018;10;8(1):406.