
Submit Manuscript | http://medcraveonline.com

Introduction
Learning music is one of positive activity1 especially for the kids

development because it can give the experience to make them in fun
condition and training the brain intelligence stimulus as well. Many
kinds of instruments can be utilized to learn the music in which
the most favorite way is by reading the music sheet. However, the
problem is whether the kids know what kind of sound that the number
note produce.

It is important for kids to know so, as they need to play the right
note of the song they play. Hence in this project, we aim to develop
a system that could recognize the number note on a music sheet with
the system producing the respecting sound of the note it recognized.
We used the method of Artificial Neural Network (ANN) in which it is
as a tool to classify an object based on its class. It consists of multiple
layers of simple processing elements called neuron. The mathematical
model of network including the concepts of inputs, weights, summing
function, activation function and outputs. The ANN helps to decide
the type of learning for adjustments of weights with change in
parameters. Finally the completed ANN implementation and training.
The overall evaluation of the implementation is in an FPGA Altera
Cyclone IV DE0 Nano EP4CE22F17C6.

Architecture description

In this work, we follow the guideline of the LSI Design 2017
Competition that available.2 The SoC design guides2 are very complete
from the calculations (include the Neuron, Cost Function, Gradient
Descent, and Delta Value) till system block of ANN. We edited the
source code in line with our system specification. As stated in the
research background, we used the ANN to recognize number notes.
We decided to limit our system into 3 outputs, which are 1, 2, and 3 in
which the detailed of these outputs classification can be seen.2

Pre-processing

ANN is a machine learning tools that needs complex calculation.

Hence, these tools need long time to perform or large areas for
component. In this system we have handwritten digit images as an
input that has 28x28 pixels. With this input, we need large memory
for the input, weight, bias, etc. Because this image has big resolutions,
therefore we need pre-processing to make the input much smaller
other than before.

For images that captures by camera for testing the result then, the
image will resized to 28x28 pixel before processed using Principal
Component Analysis (PCA). This process is needed to make the PCA
output closed to the train images. Therefore, this processed will reduce
the dimension for the ANN and will increase the speed of calculation
and decrease the area that needed to perform the ANN.

Forward propagation

After the images was pre-processed then now is the time to make
them an input of the ANN. The first thing to do before training is the
feed forward phase. We will see whether the input and the supervised
is true or false. The output of this feed forward phase is a binary
number. The amount of this phase input is 15, the hidden layer is 5,
and the output is 3 as mentioned in the specification.

Back propagation

This process is used to do a gradient descent so the weight and bias
can be updated to make true classification on forward propagation and
make the error (cost function) convergent to 0.

Top level

Top level is a program that combine forward propagation block
and backward propagation block and we used controller to select
the process. So, there are no overlapping with that two process and
the system can run synchronously (Figure 1). Integration between
backward block with forward block, the detailed of architecture of
each block can be seen in.2

Electric Electron Tech Open Acc J. 2018;2(3):266‒267. 266
© 2018 Widyarachmanto et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and build upon your work non-commercially.

Implementation of ANN architecture in FPGA for
recognizing the numbered music notation

Volume 2 Issue 3 - 2018

Baskoro Widyarachmanto,1 Putut
Dewantoro,1 Luthfi Naufan Yamin,1 Syifaul
Fuada,2 Trio Adiono2

1School of Electrical Engineering and Informatics, Institut
Teknologi Bandung, Indonesia
2University Center of Excellence on Microelectronics, Institut
Teknologi Bandung, Indonesia

Correspondence: Trio Adiono, University Center of
Excellence on Microelectronics, Institut Teknologi Bandung,
Indonesia, Tel +62-22-2506280, Email

Received: July 27, 2018 | Published: November 16, 2018

Abstract

In this paper, we have managed to develop a Number Note recognition system using
Artificial Neural Network (ANN). This system is implemented on FPGA Altera
Cyclone IV DE0 Nano EP4CE22F17C6. Our developed system has a maximum
frequency of 57.16MHz with the clock cycle required for 1 epoch (one training
process per sample input) is 216 clock cycles.

Keywords: artificial neural network, FPGA, recognition system, numberened music
notation

Electrical & Electronic Technology Open Access Journal

Short Communication Open Access

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/doi=10.15406/eetoaj.2018.02.00025&domain=pdf

Implementation of ANN architecture in FPGA for recognizing the numbered music notation 267
Copyright:

©2018 Widyarachmanto et al.

Citation: Widyarachmanto B, Dewantoro P, YaminnLN, et al. Implementation of ANN architecture in FPGA for recognizing the numbered music notation.
Electric Electron Tech Open Acc J. 2018;2(3):266‒267. DOI: 10.15406/eetoaj.2018.02.00025

Figure 1 There are no overlapping with that two process and the system
can run synchronously.

Appeal points and originality

Number note application: As character recognition is one of the
basic recognition in image processing, we thought about what kind of
application we could use this on. Hence, as we already mentioned in
the introduction, we decided to use it on number note recognition so
it would produce the sound of the note and help children learn music.

PCA: Using an image as an input to the ANN would bring a numerous
problem if not pre-processed. If the image value is used as the input
per pixel, it would demand a huge area to the design, while also
complicating the design even more. Thus, as we also have mentioned
before, we use the PCA method to reduce the area requirement of our
system and make it implementable in an FPGA.

Results and implementation
Synthesis result

In this work, we only show the performance test of developed
system including synthesis, simulation in RTL, and analysis of
critical path. The result of synthesis is summarized in the Table
1 which is based on the FPGA Altera Cyclone IV DE0 Nano
EP4CE22F17C6.

Table 1 Synthesis result

Resources Used Available %

Number of Logic Elements 13,213 22,320 59

Number of Registers 4,905 22,320 22

Number of Pins 18 154 12

Number of Memory bits 352 608,256 <1

Embedded Multiplier 9-bit elements 104 132 79

Maximum Frequency on “Slow 1200
mV 85C Model” 57.16MHz

In this work, we focus on smaller areas, with the trade-off of a
slower calculation process. Even though the area is relatively small,
the processing itself is not too slow. To process all the input samples
from forward to the end of the backward propagation (1 epoch), our
design manage to process it with 216 clock cycles.

Simulation result

The values of the weights and biases have also been updated to
the most accurate values, though the modelsim version that we used

to simulate couldn’t show the fractional number we set into decimal
so it was shown as an integer instead (Figure 2).

Figure 2 Shows the simulation result of the circuit for the whole process
of the ANN training. It is shown that the cost function has reached
0000000000000100, or 0.00390625 if converted into decimal.

Simulation result

Critical path and analysis

Our implementation requires 216 clock cycles to complete one
epoch. At the maximum clock settings of 57.16MHz, we have the
critical path value at 17.49ns. Hence, we have managed to build a
system where one epoch finishes at 3.777μs. The training of Neural
Network would require a large number of epochs, which could lead
to a slow training process. However, with one epoch only requiring
3.777μs, we could manage a high number of epoch in training with
not as much time consumed. Even with 100,000 epochs, it would
take about 377.77ms, which is still considerably fast, considering we
chose to focus on making the area smaller.

Source-code

The Verilog code of this work can be downloaded in the link as
follow:

https://drive.google.com/file/d/171xtJnacYY3j00qE813Rhlk171bWj
Bvu/view?usp=sharing

Conclusion and future work
The developed system has been simulated and has given a

converging value of cost function, signing the system has ran
successfully. In the future work, we would like to implement the
whole system completely with Zybo FPGA board which has a similar
area constraints to the board we use. Later, we will design the systolic
array processor to obtain more high-throughput.

Acknowledgements
This paper was compiled from the final report of VLSI course in

School of Electrical Engineering and Informatics, Institut Teknologi
Bandung under supervision of Dr. Trio Adiono.

Conflict of interest
The author declares there is no conflict of interest.

References
1. M Tervaniemi. Music in learning and relearning: The life-span approach.

Psychomusicolog Music, Mind, and Brain. 2017;27(3):223–226.

2. Guide of LSI Design and Contest. 2017.

https://doi.org/10.15406/eetoaj.2018.02.00025
https://drive.google.com/file/d/171xtJnacYY3j00qE813Rhlk171bWjBvu/view?usp=sharing
https://drive.google.com/file/d/171xtJnacYY3j00qE813Rhlk171bWjBvu/view?usp=sharing
http://psycnet.apa.org/record/2017-39235-008
http://psycnet.apa.org/record/2017-39235-008
http://www.lsi-contest.com/shiyou_3e.html

	Title
	Abstract
	Keyword
	Introduction
	Architecture description
	Pre-processing
	Forward propagation
	Back propagation
	Top level
	Appeal points and originality

	Results and implementation
	Synthesis result
	Simulation result
	Critical path and analysis
	Source-code

	Conclusion and future work
	Acknowledgements
	Conflict of interest
	References

