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Abbreviations: ISI, inter symbol interference; CTLE, 
continuous time linear equalization; DFE, decision feedback 
equalization; FFE, feed-forward equalization

The need for speed
We are at a historical cross road in technology roadmap where 

the numbers of objects connected through internet have vastly 
outnumbered the human network. This network of smart objects, also 
known as IoT, will shape our life in the next decade and beyond. By 
2020, the number of smart objects is expected to reach 100 million 
sending massive information over internet. To accommodate such 
user demand, data centers are also evolving both electrical and 
optical links are adopting complex modulation schemes. Eventually 
the need for higher speed from the users, service provider and 
equipment manufacturer motivates the researchers to push the limit of 
semiconductor device physics and communication theory. Ultimately, 
the end product is a fully integrated monolithic solution capable of 
transmitting and receiving terabits of information. Few example of 
such market driven R & D development efforts are given in Figure 
1. While the particular development trend in each company may vary 
based on their business strategy, one consistent trend is the rapid 
increase in data rate over time. Figure also includes example work 
from these efforts and that also capture underline motivating factors:

a)	 All of them are designed for massive parallel interface, with 
clear indication that we need to achieve higher individual link 
speed as well as high density to aggregate higher information 
exchange rate.

b)	 Beyond 40 Gb/s almost everyone is converging to higher order 
(PAM-4) modulation.

c)	 All these transceivers are built in leading nodes in CMOS 
technology as continuation of Moore’s law.

Over last two decades wire-line channels have evolved drastically 
to overcome high frequency losses. High frequency loss causes 
the transmitted symbols to disperse which results in inter-symbol-
interference (ISI). The techniques to reduce these ISI components 
are known as equalization. The recent advances in interconnect 
technology and development of low loss dielectric such as Megatron 
have significantly extended their reach. This improvement in channel 
along with advances in equalization techniques have enables 100 
Gb/s Ethernet. Improving the loss characteristics of channel increases 
system cost as shown in Figure 2. However, industry is facing an 

inevitable challenge despite using expensive lowest loss material and 
high quality connectors, only few 10s of cm channels suffering 45 dBs 
of loss @ 25GHz. Such channel loss causes significant inter symbol 
interference (ISI), and existing equalization techniques are proving to 
be insufficient to compensate that. Unfortunately, this also aligns with 
the end of Moore’s law; therefore, we can no longer rely on higher 
performance devices to overcome the challenges. This creates an 
opportunity for disruptive technology and architecture.

Figure 1 Trend in High speed Link development in leading research and 
development groups in the world. Below is the example demonstration 
developed hardware solution with performance summary.

How well can we equalize?
In high-speed wireline transceivers, the frequency dependent 

channel loss is the main source of inter-symbol interference (ISI). In 
simple word, ISI is the residue of the current symbol that affects the 
following symbols (pre-cursor) as well as the previous symbols (post-
cursor). For high loss channel, conventional receiver designs usually 
feature analog linear equalization techniques such as continuous time 
linear equalization (CTLE) and passive equalization at the front end 
as shown in Figure 3. In addition, decision feedback equalization 
(DFE) and feed-forward equalization (FFE) techniques are used 
for further ISI cancellation and bit detection. Fundamentally, this 
limitation is coming from degradation of low signal-to-noise and 
signal-to-crosstalk ratio that is unavoidable in existing equalization 
techniques. Analog mixed-signal solution in general can equalize 
with excellent energy efficiency (around ~3pJ/bit.1 But these solutions 
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Abstract

This short article provides a brief summary of the current status of high speed wireline 
links and its future trend. It also captures the motivating factors for recent changes and 
explains the fundamental reasons behind it. Lower SNR in multilevel modulation has 
motivated recent change in the link architecture developed in leading R & D groups 
and differentiating features. Lastly, it points out the challenges to motivate future 
research work in academia and industry.
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have their limitations: first, SNR degradation CTLE that generally 
inverts the channel also amplifies noise, including crosstalk noise 
and degrades SNR. Second, the linearity requirement scaled supply 
reduces maximum achievable linear swing. Third, process variation 
makes it very difficult to achieve reliable control over zero and pole 

frequencies to achieve the desirable frequency response. All these 
factors limit the performance of existing equalization techniques and 
ultimately our demonstrated capability of equalization is limited to 40 
dB (Figure 4).

Figure 2 Example of a typical back plane channel and its loss and cost as a function of loss tangent.

Figure 3 Conventional Analog mixed signal links and ADC based links.

Figure 4 Trend in Equalization techniques at different data rates and channel 
loss.

To digitize or not to digitize?
The equalization becomes more complicated when we move to 

higher order modulation as PAM-4 for several reasons

a)	 Compared to binary/PAM-2 signaling, the eye height reduces 
by 3x for the same transmit power - this translates to 9 dB SNR 
penalty and corresponding BER degradation.

b)	 Linearity requirement for PAM-4 signaling is much more 
stringent, that makes analog processing much more challenging 
compared to NRZ signaling although the supply is scaling with 
technology.

c)	 Residue ISI has much bigger impact in PAM-4 compared to 
NRZ. This is because residue of the largest transition impacts 
the smallest bit both as ISI and crosstalk that is 3x larger 
compared to NRZ.2–5

All these challenges motivate us to rethink the equalization strategy 
as well as receiver architecture. Recently ADC based architectures 
are gathering interest to enhance performance through digital 
processing. Therefore, in ADC based receivers where equalization is 
done digitally, can take advantage of the technology scaling, enables 
advanced equalization that can compensate higher loss compared to 
traditional mixed signal equalization. However, the challenge in this 
architecture is the front-end ADC that consumes significant power 
to provide the required resolution. When compared to traditional 
mixed signal receiver, ADC based solutions’ power consumption 
is 2x higher.6–13 Fortunately, recent trend is to improve their energy 
efficiency significantly, most of those are enabled through academic 
research and development that allows flexibility for disruptive 
approaches (Figure 5). Given the strict energy efficiency target, 
application of ADC based links depends on successful adoption of 
these techniques.

Figure 5 Energy efficiency trend in ADC based links for wireline 
communication.
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