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Abbreviations: SWSs: Slow-wave structure

Introduction
Microwave transmission lines, including waveguides and slow-

wave structures (SWSs), are often replaced in their analysis and 
calculation by a two-wire equivalent circuit with series-parallel 
connection of inductors and capacitors and also resistors if the losses 
must be taken into account. In the cases of circuits homogeneous 
in the direction of the wave propagation, the equivalent circuit can 
be replaced by an equivalent line characterized by specific (per 
unit length) parameters. Practically all authors of monographs 
and textbooks on microwave engineering replace electrodynamics 
structures by equivalent circuits or equivalent lines in order to either 
simplify the analysis or simplify the physical interpretation of the 
obtained results. 1-5 Such replacement substantially simplifies the 
calculation and matching of circuits with different geometries and 
different properties of filling materials. Unfortunately, in the case 
of electrodynamics structures, such as waveguides and slow-wave 
structures, traditionally defined equivalent parameters cannot be 
used for determination of the wave impedance Z0. It was well known, 
previously, that replacement of such transmission lines as cavity 
waveguides and SWSs, is not adequate and the wave impedance Z0 
cannot be determined equally by all formulas of the circuit theory. For 
a long time, such the ambiguity was considered as an inevitable fact. In 
the fundamental textbook on microwave technique 2 are demonstrated 
four expressions for the wave impedance of a rectangular waveguide, 
excited at H10 wave. The difference between these expressions is 
as large as twofold. Three significantly different formulas for the 
wave impedance of the mostly often used SWS, the helix, had been 
derived in monograph6. All attempts of unambiguous determination 
Z0 for dispersive transmission lines were finishing by introducing a 
so-called “distribution coefficient” 4 or transverse and longitudinal 
impedances.1,7

Unfortunately, the wave impedance is often confused with 
the introduced by Pierce interaction impedance1, characterizing 
effectiveness of the slow wave interaction with the electron beam 
in vacuum devices. Being connected by the Maxwell’s equations, 
both parameters differ not only by their physical meanings but 

also by their values8. The parameter, determined as
0 0/L C , where 

L0 and C0 are specific (per unit length) equivalent inductance 
and equivalent capacitance, was called by Pierce “the transverse 
impedance” and was used just for an approximate estimation of the 
interaction effect. Despite of it, some authors use this parameter as 
the interaction impedance9 or as a parameter, which can be converted 
in the interaction impedance.10 Slow-wave structures are used mostly 
in delay lines and microwave vacuum devices.1,11 Other, so called 
“unconventional application of SWSs”,12 is just a developing brunch 
of the microwave engineering, being hindered by a narrow circle of 
specialists related to this specific area. The most developed among the 
unconventional applications are SWS-based electrodes for medical 
application,13 and sensors.14,15 Although the slowed electromagnetic 
wave can propagate without radiation along one, so called impedance 
electrode, as a rule, slow-wave structures are formed two electrodes, 
the second, a screen electrode, has a simple configuration, shielding 
the electromagnetic field. In the most traditional and unconventional 
applications, the gap between SWS electrodes is large enough to 
provide an effective coupling with the objects, such as an electron 
beam, treated material or human tissue, etc. In these cases, the 
longitudinal capacitive currents exceed, as a rule, the conduction 
current in the screen electrode and the wave impedance Z0 cannot be 
determined by the ratio U/I or

0 0/L C , where U and I are amplitudes 
of the potential on the impedance electrode and the conduction current 
in this electrode. The unambiguous determination of Z0 for slow-wave 
structures is represented below.

Initial Definitions
Although slowing down of an electromagnetic wave can be 

provided by a homogeneous dielectric plate or a dielectric layer on 
a metal surface, the best results can be achieved by an impedance 
electrode, formed by a periodic row of conductors, connected in the 
longitudinal direction.12 The impedance electrode can be a meander 
line, a helix, or the other structure that increases the distance travelled 
by an electromagnetic wave. Let us consider an axially symmetric wave 
in a SWS formed by a cylindrical impedance electrode with average 
radius a, in a metal cylinder (screen electrode) with internal radius b 
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(Figure 1). The origin of the cylindrical coordinate system r, ϕ, z is 
positioned on the axis of the helix. We will neglect by electromagnetic 
losses in the electrodes and in the surrounding medium.

Figure 1 Helix (impedance electrode) in a metal cylinder (screen electrode).

All components of a slow wave will be taken to be proportional 
to the wave factor exp.(jωt-jβz), where t is time, ω is the angular 
frequency, and β is the phase constant along coordinate z (β = ω/
vph, where vph is the phase velocity of the wave). Any SWS can be 
characterized by the slowdown N, defined as the ratio of the velocity 
of light c to the phase velocity of the wave in the SWS, or, that is the 
same, as

/N kβ= ,					                  (1)

Where k is the wave number, 

0 0k ω ε µ= ,					                (2)

ω is the angular frequency, and ε0, µ0 are the permittivity and 
permeability of free space.

The impedance electrode is assumed to be a periodic structure in z 
direction, with period T. When T is small compared with the wavelength 
(T<<1), the impedance electrode can be replaced by an anisotropic 
surface with conductivity in the direction of the winds. This so called 
impedance approximation significantly simplifies analysis and allows 
using the equivalent line method. Unlike in waveguides, the phase 
constant β in slow wave structures always exceeds the wave number; 
in other words, N >1. In the simplest cases, when the wave front is 
perpendicular to the wave propagation direction, the electromagnetic 
field in the transverse cross section is symmetric and depends only on 
the transverse coordinate, e.g. radius r in axially symmetric structures. 
The transverse constant γ characterizing this dependence is related to 
the phase constant and the wave number as

2 2 2kγ β= − .					                  (3)

Unlike the E- and H-waves in waveguides, which exist 
independently and may be characterized by different equivalent 
lines,16 slow waves in most SWSs are hybrid waves with components 
of both E- and H-waves. Having the same phase and group velocities, 
these waves satisfy different boundary conditions and their transverse 
distribution can be quite different.

Potential Delay
In the impedance approximation, any SWS may be replaced by a 

two-wire transmission line (Figure 2) with series inductance per unit 
length L0 and shunt capacitance per unit length C0, in terms of which 
the phase constant is given by

2 2
0 0L Cβ ω= .				                     (4)

Figure 2 Two-wire equivalent line.

It follows from the rigorous electro-dynamic analysis,17 in the case 
of slow waves, the dominant part of L0, which we’ll designate as L, is 
defined by the specific inductance of the impedance electrode, while a 
relatively small part, LD, is defined by the potential delay

0 DL L L= + . 				                   (5)

We emphasize that L depends on the magnetic flow excited by 
transverse currents, while LD depends on magnetic flow excited by 
longitudinal currents. In the case of a hybrid wave, L is defined by the 
H-wave, whereas LD is defined by the E-wave.

Substituting (5) in (4) and comparing with (3), we can identify
2 2

0DL C kω ≡ 					              (6)

and
2 2

0LCγ ω= .					                   (7)

The replacement of L0 by L and traditional long line equation (4) 
by (7) makes it possible to use circuit theory for all SWSs.

Three-Wire Equivalent Line
Unlike waveguides, which have only one area with a propagating 

wave, most SWSs have at least two areas adjacent to opposite surfaces 
of the impedance electrode. In some cases, for example when one 
area is filled by a dielectric material or electron beam, it is more 
convenient to use two shunt capacitances C1 and C2, which relate to 
the areas adjacent to the impedance electrode from opposite sides. 
Such a SWS may be represented by a three-wire equivalent line with 
series inductance in the middle wire and shunt capacitances C1 and C2 
connecting the middle wire with lower and upper wires, respectively 
(Figure 3). The use of electro-dynamic admittances of electric, Ye, 
and magnetic, Ym, types18 significantly simplifies calculation of the 
specific parameters of the three-wire equivalent line. As shown in,19 
the equivalent capacitance C1 for the area below the impedance 
electrode, can be defined by the electric type admittance at the bottom 
surface of the impedance electrode,

2

1 1

2
( )ea

C Y a
j

π γ

ω
= − ,				    (8)
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Whereas capacitance C2, related to the external (second) area, is
2

2 2

2
( )ea

C Y a
j

π γ

ω
= ,				                 (9)

Figure 3 Three-wire equivalent line with specific inductance including the 
potential delay

Where in the considered case, a is the impedance electrode’s 
radius. Here and further after, subscripts 1 and 2 are used to denote 
the internal and external areas, respectively. In the case of a planar 
electrode, the quantity 2πα in (8) and (9) should be replaced by the 
electrode’s width, whereas admittances in both cases should be taken 
on the impedance electrode surfaces. Although L can be split in two 
parallel inductances related to the different areas, in most cases it is 
more convenient to use one inductance defined by the jump of the 
magnetic-type admittances at the impedance electrode

2
2 1

2

[ ( ) ( )]m m

a
L

j h Y a Y a

π

ω
=

−
.			             (10)

According to definition,18

1,2
1,2

1,2

( )
( )

( )
e

z

H a
Y a

E a
φ

= − ,				             (11)

1,2
1,2

1,2

( )
( )

( )
m zH a

Y a
E aφ

= .				            (12)

For a planar impedance electrode, transverse coordinates r and 
ϕ should be replaced by x and y, respectively. Substituting (8)-(10) 
into (7), one can obtain the lossless version of the general dispersion 
equation derived in18 for the helix with losses

2

2

(2 )
1 0

e

m

a Y

h Y

π ∆
+ =

∆
.				          (13)

Transition from a three-wire to a two-wire equivalent line is 
possible by adding together shunt capacitances, taking into account the 
difference in potential delays in the areas with different permittivity,19

2 2
0 1 1 2 2/C C Cγ γ= + ,				           (14)

Where
2 2 2
1,2 1,2kγ β ε= − ,				          (15)

and subscripts refer to different areas with relative permittivities 
ε1 ανδ ε2.

Effective Voltage
The peculiarity of all dispersive transmission lines is in the 

longitudinal capacitive (displacement) currents, which unlike the 
conduction currents in the electrodes, are subjected to smaller voltages 
than the voltage U between electrodes. This leads to a decrease in the 

power flow P as compared to the quantity UI/2. The conduction current 
passing through the screen electrode is only a part of the current in the 
impedance electrode, the rest being the longitudinal capacitive current. 
Equality of current amplitudes in the two-wire equivalent line is due to 
summing these currents. As a result, replacing transmission structures 
with longitudinal capacitive currents by equivalent lines leads to an 
incorrect definition of the power flow and, consequently, the wave 
impedance. Although the product L0C0, determined by formulas (8)-
(10) gives correct dispersion equations, the ratio L0/C0 determining the 
wave impedance, is incorrect. As it was shown in, 16 this problem may 
be solved by (1) introducing an effective voltage Uef, (2) reducing the 
equivalent inductance, and (3) increasing the equivalent capacitances. 
Voltage U at the impedance electrode and current I as well as the real 
power flow P may be found with help of expressions for components 
of the slow wave, obtained from solutions of the wave equations in the 
areas adjacent to the impedance electrode. For the same current and 
power flow in the equivalent line,

2 /efU P I= ,				            (16)

Where I is the amplitude of the conduction current in the 
impedance electrode. We define the voltage correction coefficient 

/efU U  as

/efU Uψ ≡ .					            (17)

The correction coefficient ψ is always less than 1. The decrease 
in Uef should be followed by a proportional decrease in L0 and L and 
the proportional increase in the shunt capacitance or capacitances. In 
the case of a two-wire truncated equivalent line, the equivalent series 
inductance and shunt capacitance are therefore:

0, /ef efL L C Cψ ψ= = ,			          (18)

It is seen that substitution of (17) and (18) in (7) does not change 
the dispersion equation, while the wave impedance can be defined 
unambiguously 

2

0 2

2

2

ef ef ef

ef

U U LP
Z

I I P C

β

γ
= ≡ ≡ ≡ .		         (19)

In the following section we demonstrate the application of these 
relations to the sheath helix in free space.

Free Helix
The helix is the most frequently used and analyzed SWS. Even 

so, the published expressions for specific inductance and capacitance 
satisfying the transmission line dispersion equation do not satisfy 
the formulas for the wave impedance. Although in practice, the helix 
is used with a screen electrode; its diameter is chosen large enough 
to minimize its influence on the field in the helix. For the sake of 
simplicity we restrict our analysis to a helix in the absence of the 
screen electrode (free helix). The following formulas for specific 
inductance and capacitance and for power flow for the free helix had 
been derived previously 1,6,7,18:

2

0 1 1

tan
( ) ( )

2
L I a K aµ γ γ

π

Φ
= ,			          (20)

0
0

0 0

2

( ) ( )
C

I a K a

ε π

γ γ
= ,				            (21)
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2
0 0

3
0

( )
( )

2 ( )

aA I a
P F a

K a

ωε πβ γ
γ

γ γ
=

                                                    (22) 	
	                             

where I0,1 and K0,1 are the modified Bessel functions of the first 
and second kinds, zero and first orders, Φ is the angle between the 
direction of the helix conductivity and longitudinal axis, F(x) is an 
auxiliary function 

0 01 1

0 1 1 0

( ) ( )( ) ( )4
( )

( ) ( ) ( ) ( )

I x K xI x K x
F x

x I x I x K x K x
= + − + − , 		  (23)

Whereas A is the constant in the formulas for the longitudinal 
components of the electric field intensity

1 0( ) ( )zE r AI rγ= ,				    (24)

0
2 0

0

( )
( ) ( )

( )
z

I a
E r A K r

K a

γ
γ

γ
= .			   (25)

The dispersion equation for the free helix can be found by 
substituting (20) and (21) in (7):

2
21 1

2
0 0

( ) ( )
tan

( ) ( )

I a K a

k I a K a

γ γγ

γ γ
= Φ .			   (26)

Equating the conduction current density to the jump of the azimuth 
components of the magnetic field intensity at the helix and multiplying 
by 2πα, one obtains the current

0
2

0

2
( )

j
I A

K a

ωε
π

γ γ
= − .				    (27)

The potential U at the helix can be obtained by integrating Ez2(r) 
from a to infinity,

02 2( ) ( )z

j j
U E a AI a

β β
γ

γ γ
= − = .			   (28)

Substituting (22) and (27) into (16) gives the effective voltage

0 ( ) ( )
4

ef

aA
U I a F a

β
γ γ

γ
= .			   (29)

and
( )

4

efU a
F a

U

γ
ψ γ= = .				   (30)

It follows from (18), (20), (21), and (30) that for the free helix 
2

0 1 1

tan
( ) ( ) ( )

8
efL aI a K a F aµ γ γ γ γ

π

Φ
= ,		  (31)

0

0 0

8

( ) ( ) ( )
efC

aI a K a F a

ε π

γ γ γ γ
= .			   (32)

Using (31) and (32) in (19) gives the formula for the wave 
impedance:

0
0

0

( )
( ) tan

8

aF a
Z f a

µ β γ γ
γ

ε γ π
= Φ , 		  (33)

Where

0 0 1 1( ) ( ) ( ) ( ) ( )f a I a K a I a K aγ γ γ γ γ= .		  (34)

We also find that substitution of (27), (29) and (22) in the first three 
formulas of (19) gives

0
0 0 0

0

( ) ( ) ( )
8

aN
Z I a K a F a

µ γ
γ γ γ

ε π
= .		  (35)

Equating the right hand sides of (33) and (35) leads to the dispersion 
equation (26), which confirms the equivalence of both expressions for 
the wave impedance. Figure 4 illustrates the dependence of the wave 
impedance on the dimensionless parameter γα calculated for the free 
helix for different values of Φ. It is seen that Z0 increases with the 
increase in Φ. It is obvious that in the presence of a solid cylindrical 
screen electrode the equivalent capacitance will increase and the 
equivalent inductance will decrease, producing a corresponding 
decrease in the wave impedance. This effect depends strongly on 
the value of γα, increasing with decreasing γα, i.e. with decreasing 
frequency, which in turn leads to a flattening the dependence of Z0 on 
frequency.

Figure 4 Wave impedance Z0 versus parameter γa for different values of 
angle Φ.

Calculation of the Power Flow by 
Differentiation

In practice, when SWS has two or more cross-sectional areas, the 
calculation of the power flow is the most difficult part of the analysis. 
The same calculation is required for evaluation of the interaction 
impedance K 1 and the coupling coefficient Kc, 

18 both values being 
used in the TWT theory for evaluation of the electron beam interaction 
with a slow wave. Being dimensionless, Kc is more convenient for 
practical application. In the case of a cylindrical beam tunnel with 
radius a filled by an electron beam 18

2
2 2 20

0 0 1 0
0

[ ( ) ( )]
2

c

a
K A I a I a

P

ωε π
γ γ

β
= − ,		  (36)

Where the power flow P is calculated by integrating the Pointing 
flux across the cross-section of the SWS, while the phase constant β0 
and transverse constant γ0  are defined in the absence of the electron 
beam. It follows from (36) that

2 2 2 2
0 0 0 1 0

0

( ) ( )

2 c

a A I a I a
P

K

ωε π γ γ

β

−
= ,			  (37)
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That at known already Kc makes it possible calculating P. There 
are relatively simple methods for calculating Kc by differentiation the 
dispersion equation in the presence of the electron beam 18,20: 

2
10

2
0 0

( 1)c

dT
K

d

γ

β γ γ

−= − .				    (38)

Here T is the transverse constant in the electron beam and γ is the 
“disturbed” by the beam transverse constant in free from the electrons 
areas. This gives for the free helix interacting with the electron beam 
with radius α:

2 2 2
0 0 0 1 0
2

0 0 00

0 0 0

( ) ( )
]

( ) ( )

( )

c

I a I a
K

I a F a

K a a

τ γ γ

γ γβ

γ γ

−
=

		      	             (39)
For the free helix, the coupling coefficient was defined with the 

help of formula (36) in the monograph.18 The substitution (39) in 
(37) gives an expression for P identical to that obtained in1 and18 by 
integration the power flow density.

Discussion
A method of replacing the slow-wave structure by an equivalent 

transmission line with parameters providing unambiguous 
determination of the wave impedance was found and described. The 
method is based on the introduction of an equivalent voltage that 
yields the correct value of power flowing for the real value of the 
conduction current. It is shown that the decrease in the equivalent 
inductance and simultaneous increase in the equivalent capacitance, 
proportional to the decrease in the equivalent voltage, provides an 
unambiguous definition of the wave impedance. The decrease in the 
equivalent voltage is defined by the decrease in the real power flow, 
caused by the longitudinal capacitive currents.

It is demonstrated also that the unambiguous determination of 
the wave impedance of slow-wave structures can be simplified 
by differentiation of the dispersion equation in the presence of a 
homogeneous electron beam.
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