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Unambiguous determination of the wave impedance

of slow-wave structures

Abstract

A new method of calculating the wave impedance of slow-wave structures (SWSs)
based on the choice of an equivalent transmission line with decreased series inductance
and increased shunt capacitance is demonstrated. It is shown that the calculation of
the real conduction current in the longitudinal direction and the power flow makes it
possible to find the equivalent voltage, which can be used for correcting parameters of
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the equivalent line. The proposed method is demonstrated using the example of a helix

in the sheath approximation. Expressions for the equivalent inductance, capacitance,
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and voltage, which enable one to obtain the identical values of the wave impedance
from all formulas of the circuit theory, are derived. Calculation of the power flow in

SWS by differentiation of the “hot” dispersion equation is also considered.
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Introduction

Microwave transmission lines, including waveguides and slow-
wave structures (SWSs), are often replaced in their analysis and
calculation by a two-wire equivalent circuit with series-parallel
connection of inductors and capacitors and also resistors if the losses
must be taken into account. In the cases of circuits homogeneous
in the direction of the wave propagation, the equivalent circuit can
be replaced by an equivalent line characterized by specific (per
unit length) parameters. Practically all authors of monographs
and textbooks on microwave engineering replace electrodynamics
structures by equivalent circuits or equivalent lines in order to either
simplify the analysis or simplify the physical interpretation of the
obtained results. ' Such replacement substantially simplifies the
calculation and matching of circuits with different geometries and
different properties of filling materials. Unfortunately, in the case
of electrodynamics structures, such as waveguides and slow-wave
structures, traditionally defined equivalent parameters cannot be
used for determination of the wave impedance Z,. It was well known,
previously, that replacement of such transmission lines as cavity
waveguides and SWSs, is not adequate and the wave impedance Z,
cannot be determined equally by all formulas of the circuit theory. For
a long time, such the ambiguity was considered as an inevitable fact. In
the fundamental textbook on microwave technique ? are demonstrated
four expressions for the wave impedance of a rectangular waveguide,
excited at H, ) wave. The difference between these expressions is
as large as twofold. Three significantly different formulas for the
wave impedance of the mostly often used SWS, the helix, had been
derived in monograph®. All attempts of unambiguous determination
Z, for dispersive transmission lines were finishing by introducing a
so-called “distribution coefficient” * or transverse and longitudinal
impedances.!’

Unfortunately, the wave impedance is often confused with
the introduced by Pierce interaction impedance', characterizing
effectiveness of the slow wave interaction with the electron beam
in vacuum devices. Being connected by the Maxwell’s equations,
both parameters differ not only by their physical meanings but

also by their values®. The parameter, determined as /LO /c, where

L, and C, are specific (per unit length) equivalent inductance
and equivalent capacitance, was called by Pierce “the transverse
impedance” and was used just for an approximate estimation of the
interaction effect. Despite of it, some authors use this parameter as
the interaction impedance’® or as a parameter, which can be converted
in the interaction impedance.'® Slow-wave structures are used mostly
in delay lines and microwave vacuum devices."'!" Other, so called
“unconventional application of SWSs”,'? is just a developing brunch
of the microwave engineering, being hindered by a narrow circle of
specialists related to this specific area. The most developed among the
unconventional applications are SWS-based electrodes for medical
application,”® and sensors.'*!> Although the slowed electromagnetic
wave can propagate without radiation along one, so called impedance
electrode, as a rule, slow-wave structures are formed two electrodes,
the second, a screen electrode, has a simple configuration, shielding
the electromagnetic field. In the most traditional and unconventional
applications, the gap between SWS electrodes is large enough to
provide an effective coupling with the objects, such as an electron
beam, treated material or human tissue, etc. In these cases, the
longitudinal capacitive currents exceed, as a rule, the conduction
current in the screen electrode and the wave impedance Z, cannot be

determined by the ratio U// or | L,/C,» where U and 7 are amplitudes

of the potential on the impedance electrode and the conduction current
in this electrode. The unambiguous determination of Z, for slow-wave
structures is represented below.

Initial Definitions

Although slowing down of an electromagnetic wave can be
provided by a homogeneous dielectric plate or a dielectric layer on
a metal surface, the best results can be achieved by an impedance
electrode, formed by a periodic row of conductors, connected in the
longitudinal direction.”” The impedance electrode can be a meander
line, a helix, or the other structure that increases the distance travelled
by an electromagnetic wave. Let us consider an axially symmetric wave
in a SWS formed by a cylindrical impedance electrode with average
radius a, in a metal cylinder (screen electrode) with internal radius b
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(Figure 1). The origin of the cylindrical coordinate system 7, ¢, z is
positioned on the axis of the helix. We will neglect by electromagnetic
losses in the electrodes and in the surrounding medium.

Impedance
electrode

Figure | Helix (impedance electrode) in a metal cylinder (screen electrode).

All components of a slow wave will be taken to be proportional
to the wave factor exp.(jwt-jfz), where ¢ is time, @ is the angular
frequency, and S is the phase constant along coordinate z (f = «/
Ve where v, 18 the phase velocity of the wave). Any SWS can be

characterized by the slowdown N, defined as the ratio of the velocity
of light ¢ to the phase velocity of the wave in the SWS, or, that is the
same, as

N=p/k, ey
Where £ is the wave number,

k = wo\Je41, » 2)

o is the angular frequency, and ¢, u, are the permittivity and
permeability of free space.

The impedance electrode is assumed to be a periodic structure in z
direction, with period 7. When 7T'is small compared with the wavelength
(T<<1), the impedance electrode can be replaced by an anisotropic
surface with conductivity in the direction of the winds. This so called
impedance approximation significantly simplifies analysis and allows
using the equivalent line method. Unlike in waveguides, the phase
constant /8 in slow wave structures always exceeds the wave number;
in other words, N >1. In the simplest cases, when the wave front is
perpendicular to the wave propagation direction, the electromagnetic
field in the transverse cross section is symmetric and depends only on
the transverse coordinate, e.g. radius 7 in axially symmetric structures.
The transverse constant y characterizing this dependence is related to
the phase constant and the wave number as

yi=p -k 3)
Unlike the E- and H-waves in waveguides, which exist
independently and may be characterized by different equivalent
lines,'® slow waves in most SWSs are hybrid waves with components
of both E- and H-waves. Having the same phase and group velocities,

these waves satisfy different boundary conditions and their transverse
distribution can be quite different.
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Potential Delay

In the impedance approximation, any SWS may be replaced by a
two-wire transmission line (Figure 2) with series inductance per unit
length L, and shunt capacitance per unit length C,, in terms of which
the phase constant is given by

2

B =a’L,C,. )

|

Figure 2 Two-wire equivalent line.

[
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It follows from the rigorous electro-dynamic analysis,!” in the case
of slow waves, the dominant part of L, which we’ll designate as L, is
defined by the specific inductance of the impedance electrode, while a
relatively small part, L ,is defined by the potential delay

Ly=L+L,. )

We emphasize that L depends on the magnetic flow excited by
transverse currents, while L, depends on magnetic flow excited by
longitudinal currents. In the case of a hybrid wave, L is defined by the
H-wave, whereas L, is defined by the E-wave.

Substituting (5) in (4) and comparing with (3), we can identify

®’L,C, =k (6)
and
7' =@’LC,. %)

The replacement of L, by L and traditional long line equation (4)
by (7) makes it possible to use circuit theory for all SWSs.

Three-Wire Equivalent Line

Unlike waveguides, which have only one area with a propagating
wave, most SWSs have at least two areas adjacent to opposite surfaces
of the impedance electrode. In some cases, for example when one
area is filled by a dielectric material or electron beam, it is more
convenient to use two shunt capacitances C, and C,, which relate to
the areas adjacent to the impedance electrode from opposite sides.
Such a SWS may be represented by a three-wire equivalent line with
series inductance in the middle wire and shunt capacitances C, and C,
connecting the middle wire with lower and upper wires, respectively
(Figure 3). The use of electro-dynamic admittances of electric, 1,
and magnetic, Y™, types'® significantly simplifies calculation of the
specific parameters of the three-wire equivalent line. As shown in,"
the equivalent capacitance C, for the area below the impedance
electrode, can be defined by the electric type admittance at the bottom
surface of the impedance electrode,

27m72 e

¢ =————%(a), (3)

jo
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Whereas capacitance C,, related to the external (second) area, is

27ra72
C,=——Y(a)> ©)

jo

[i—]

G

C,T Jj—— TCi

Figure 3 Three-wire equivalent line with specific inductance including the
potential delay

Where in the considered case, a is the impedance electrode’s
radius. Here and further after, subscripts / and 2 are used to denote
the internal and external areas, respectively. In the case of a planar
electrode, the quantity 2z in (8) and (9) should be replaced by the
electrode’s width, whereas admittances in both cases should be taken
on the impedance electrode surfaces. Although L can be split in two
parallel inductances related to the different areas, in most cases it is
more convenient to use one inductance defined by the jump of the
magnetic-type admittances at the impedance electrode

L = 2 ”127z-a m ’ (10)
Joh'[Y, (a) =Y (a)]
According to definition,'®
H, ,(a)
e ¢1,2
Yy (a) = -2 (1)
Ezl,Z (a)
m Hzl,Z (a)
Yh(a)=—"—. (12)
E¢1,2 (a)

For a planar impedance electrode, transverse coordinates » and
¢ should be replaced by x and y, respectively. Substituting (8)-(10)
into (7), one can obtain the lossless version of the general dispersion
equation derived in'® for the helix with losses

2
(2za)” AY®
2 m +
h™AY
Transition from a three-wire to a two-wire equivalent line is

possible by adding together shunt capacitances, taking into account the
difference in potential delays in the areas with different permittivity,"

1=0. (13)

Cy=C +7.C 173, (14)
Where

2 2 2
Vip = B -k €2 (15)

and subscripts refer to different areas with relative permittivities
g, 0vd ¢,

Effective Voltage

The peculiarity of all dispersive transmission lines is in the
longitudinal capacitive (displacement) currents, which unlike the
conduction currents in the electrodes, are subjected to smaller voltages
than the voltage U between electrodes. This leads to a decrease in the
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power flow P as compared to the quantity Ul/2. The conduction current
passing through the screen electrode is only a part of the current in the
impedance electrode, the rest being the longitudinal capacitive current.
Equality of current amplitudes in the two-wire equivalent line is due to
summing these currents. As a result, replacing transmission structures
with longitudinal capacitive currents by equivalent lines leads to an
incorrect definition of the power flow and, consequently, the wave
impedance. Although the product L ,C), determined by formulas (8)-
(10) gives correct dispersion equations, the ratio L /C, determining the
wave impedance, is incorrect. As it was shown in, ' this problem may
be solved by (1) introducing an effective voltage U, , (2) reducing the
equivalent inductance, and (3) increasing the equivalent capacitances.
Voltage U at the impedance electrode and current / as well as the real
power flow P may be found with help of expressions for components
of the slow wave, obtained from solutions of the wave equations in the
areas adjacent to the impedance electrode. For the same current and
power flow in the equivalent line,

u, =2p/||. (16)

Where |1 | is the amplitude of the conduction current in the
impedance electrode. We define the voltage correction coefficient
Uy, /U as

(7

The correction coefficient y is always less than 1. The decrease
in U, should be followed by a proportional decrease in L, and L and
the proportional increase in the shunt capacitance or capacitances. In
the case of a two-wire truncated equivalent line, the equivalent series
inductance and shunt capacitance are therefore:

‘//EUef/U-

L,=yL, C,=C,/y, (18)

It is seen that substitution of (17) and (18) in (7) does not change
the dispersion equation, while the wave impedance can be defined
unambiguously

(19)

In the following section we demonstrate the application of these
relations to the sheath helix in free space.

Free Helix

The helix is the most frequently used and analyzed SWS. Even
so, the published expressions for specific inductance and capacitance
satisfying the transmission line dispersion equation do not satisfy
the formulas for the wave impedance. Although in practice, the helix
is used with a screen electrode; its diameter is chosen large enough
to minimize its influence on the field in the helix. For the sake of
simplicity we restrict our analysis to a helix in the absence of the
screen electrode (free helix). The following formulas for specific
inductance and capacitance and for power flow for the free helix had
been derived previously 6718

tan2 (o}
L=pu, - I, (ya)K, (ya) (20)

c &2

= ———————— (21)
I,(ya)K,(ya)
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2
po wgymPad” 1 (ya) r

3 (ya)
2y K, (ya)

(22)

where 1, and K, are the modified Bessel functions of the first
and second kinds, zero and first orders, @ is the angle between the
direction of the helix conductivity and longitudinal axis, F(x) is an
auxiliary function

4 I (x) B 1,(x) . K, (x) B K, (x) ,

F(x)=—+
x Iy(x) L(x) K(x) K (x)

(23)

Whereas 4 is the constant in the formulas for the longitudinal
components of the electric field intensity

E (r)=Al,(yr), (24)
Ezz(r) _4 1() (ya) KO (7r) - 25)
K,(ya

The dispersion equation for the free helix can be found by
substituting (20) and (21) in (7):

2
v _LhOokKGa oo (26)

K 1,(ya)K, (ya)

Equating the conduction current density to the jump of the azimuth
components of the magnetic field intensity at the helix and multiplying
by 2za, one obtains the current

jwE
% 27)

7 Ky(ra)

The potential U at the helix can be obtained by integrating £_,(r)
from a to infinity,
Jp ip
E (a)=— Al (ya) -

1=-2r4

v=-12 (28)

v /4

Substituting (22) and (27) into (16) gives the effective voltage

pPaAd

U,|=—1,(ya)F(ya).
4y

o

29

ef ra
v = =—F(ya).
U 4

(30)

It follows from (18), (20), (21), and (30) that for the free helix

D
L, = 4, yal,(ya)K, (ya)F(ya) GD
8
c, = £ . (32)
yaly(ya)K,(ya)F(ya)

Using (31) and (32) in (19) gives the formula for the wave
impedance:

Z, =\/ZﬂyaF(ya)f(7a)tan<I)a (33)
& 7 87

Where

fa) =1, Ga)K, (ra)I,(ya)K, (ya) . (34)
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We also find that substitution of (27), (29) and (22) in the first three
formulas of (19) gives
Hy yaN

ZO = 7710(7“)K0(7a)F(}/a)
& 87

(35)

Equating the right hand sides of (33) and (35) leads to the dispersion
equation (26), which confirms the equivalence of both expressions for
the wave impedance. Figure 4 illustrates the dependence of the wave
impedance on the dimensionless parameter ya calculated for the free
helix for different values of @. It is seen that Z increases with the
increase in ®. It is obvious that in the presence of a solid cylindrical
screen electrode the equivalent capacitance will increase and the
equivalent inductance will decrease, producing a corresponding
decrease in the wave impedance. This effect depends strongly on
the value of ya, increasing with decreasing ya, i.e. with decreasing
frequency, which in turn leads to a flattening the dependence of Z, on
frequency.

200

|
Aand =16

12

Z

N8

\
—

~

T

\.__\\

Wave impedance Z,, ohm
=5

30
--'-"'--.__________H_‘_H_‘_‘_‘-._‘_‘_F
0
0.3 1 15 2 25 3
Parameter ya

Figure 4 Wave impedance Z0 versus parameter ya for different values of
angle ®.
the Flow

Calculation of Power

Differentiation

by

In practice, when SWS has two or more cross-sectional areas, the
calculation of the power flow is the most difficult part of the analysis.
The same calculation is required for evaluation of the interaction
impedance K ' and the coupling coefficient K, ' both values being
used in the TWT theory for evaluation of the electron beam interaction
with a slow wave. Being dimensionless, K is more convenient for
practical application. In the case of a cylindrical beam tunnel with
radius « filled by an electron beam '8

2

K, =" L ) - 1 ()

2p,P

Where the power flow P is calculated by integrating the Pointing
flux across the cross-section of the SWS, while the phase constant 5,
and transverse constant y, are defined in the absence of the electron
beam. It follows from (36) that

(36)

2 2 2 2
I wgyra A" 1 (y,a) =1 (y,a)

25, K

€0

c
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That at known already K makes it possible calculating P. There
are relatively simple methods for calculating K by differentiation the
dispersion equation in the presence of the electron beam '8

2
Ny (38)
© B larly,

Here T is the transverse constant in the electron beam and vy is the
“disturbed” by the beam transverse constant in free from the electrons
areas. This gives for the free helix interacting with the electron beam
with radius a:

2 2 2
_ To 10 (70“) _1] (}/oa)

B L) F(rya)
Ky (74a) (39)
For the free helix, the coupling coefficient was defined with the
help of formula (36) in the monograph.' The substitution (39) in

(37) gives an expression for P identical to that obtained in' and'® by
integration the power flow density.

Vo4

Discussion

A method of replacing the slow-wave structure by an equivalent
transmission line with parameters providing unambiguous
determination of the wave impedance was found and described. The
method is based on the introduction of an equivalent voltage that
yields the correct value of power flowing for the real value of the
conduction current. It is shown that the decrease in the equivalent
inductance and simultaneous increase in the equivalent capacitance,
proportional to the decrease in the equivalent voltage, provides an
unambiguous definition of the wave impedance. The decrease in the
equivalent voltage is defined by the decrease in the real power flow,
caused by the longitudinal capacitive currents.

It is demonstrated also that the unambiguous determination of
the wave impedance of slow-wave structures can be simplified
by differentiation of the dispersion equation in the presence of a
homogeneous electron beam.
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