Table 2 Details of the morphometric investigation of the Narmada River's sub-watersheds

SN	Morphometric parameters of the Basin area ($\mathbf{k m}^{2}$)	Ruddi Nala 127.2	Gunshi Nala 145.88	Chakrar Nadi 125.38	Machhrar Nala 165.09	Kotrer Nala 123.64
1	Stream order	$1^{\text {st }}$ to $7^{\text {th }}$				
2	Stream no.	$1^{\text {st }}$ order, 3576 ; $2^{\text {nd }}$ order, 830; $3^{\text {rd }}$ order, 180 ; 4 th order $34 ; 5^{\text {th }}$ order 10; $6^{\text {th }}$ order 2 and $7^{\text {th }}$ order 1	$1^{\text {st }}$ order, 4145; $2^{\text {nd }}$ order, $872 ; 3^{\text {rd }}$ order, 205; $4^{\text {th }}$ order 48; $5^{\text {th }}$ order $11 ; 6^{\text {th }}$ order 3 and $7^{\text {th }}$ order 1	$1^{\text {st }}$ order, 3403 ; $2^{\text {nd }}$ order, 753; $3^{\text {rd }}$ order, 159; $4^{\text {th }}$ order 40; $5^{\text {th }}$ order 12; $6^{\text {th }}$ order 2 and $7^{\text {th }}$ order 1	$1^{\text {st }}$ order, 4530 ; $2^{\text {nd }}$ order, 999 ; $3^{\text {rd }}$ order, 223; $4^{\text {th }}$ order 50 ; $5^{\text {th }}$ order $7 ; 6^{\text {th }}$ order 2 and $7^{\text {th }}$ order 1	$1^{\text {st }}$ order, 1332; $2^{\text {nd }}$ order, 743; $3^{\text {rd }}$ order, 170; $4^{\text {th }}$ order $34 ; 5^{\text {th }}$ order $9 ; 6^{\text {th }}$ order 2 and $7^{\text {th }}$ order 1
3	Stream length (Lu)	$1^{\text {st }}$ order, 560.82; $2^{\text {nd }}$ order, 240.05; $3^{\text {rd }}$ order, $111.95 ; 4^{\text {th }}$ order 36.9; $5^{\text {th }}$ order 34.61; $6^{\text {th }}$ order 15.38 and $7^{\text {th }}$ order 11.31	$1^{\text {st }}$ order, 655.89; $2^{\text {nd }}$ order, 234; $3^{\text {rd }}$ order, 118.53; $4^{\text {th }}$ order 50.58; $5^{\text {th }}$ order 29.35; $6^{\text {th }}$ order 15.96 and $7^{\text {th }}$ order 27.27	1st order, 10.91; $2^{\text {nd }}$ order, 12.12; $3^{\text {rd }}$ order, 112.56; 4th order 46.99; 5 th order 27.96; 6th order 13.58 and 7 th order 9.92	$1^{\text {st }}$ order, 692.06; $2^{\text {nd }}$ order, 278.59; $3^{\text {rd }}$ order, $147.71 ; 4^{\text {th }}$ order 72.65; $5^{\text {th }}$ order 24.66; $6^{\text {th }}$ order 8.09 and $7^{\text {th }}$ order 19.37	$1^{\text {st }}$ order, $510.45 ; 2^{\text {nd }}$ order, 222.86; $3^{\text {rd }}$ order, 97.61; $4^{\text {th }}$ order 48.06; $5^{\text {th }}$ order 25.83; $6^{\text {th }}$ order 15.2 and $7^{\text {th }}$ order 11.47
4	Mean stream length	$1^{\text {st }}$ order, 0.15 ; $2^{\text {nd }}$ order, 0.29 ; 3 rd order, 0.66 ; 4th order 1.08; 5th order 3.46; 6th order 7.69 and 7th order 11.13	$1^{\text {st }}$ order, 0.15 ; $2^{\text {nd }}$ order, 0.26 ; $3^{\text {rd }}$ order, 0.57; $4^{\text {th }}$ order 1.05 ; $5^{\text {th }}$ order 2.66; $6^{\text {th }}$ order 5.32 and $7^{\text {th }}$ order 27.27	$1^{\text {st }}$ order, 0.15 ; $2^{\text {nd }}$ order, 0.28 ; $3^{\text {rd }}$ order, $0.7 ; 4^{\text {th }}$ order 1.17; $5^{\text {th }}$ order 2.33; $6^{\text {th }}$ order 6.79 and $7^{\text {th }}$ order 9.92	$1^{\text {st }}$ order, $0.152 ; 2^{\text {nd }}$ order, $0.27 ; 3^{\text {rd }}$ order, 0.66; 4th order 1.45; 5th order 3.25; 6th order 4.04 and 7th order 19.37	$1^{\text {st }}$ order, 0.153 ; $2^{\text {nd }}$ order, 0.29 ; $3^{\text {rd order, } 0.57 ; ~ 4 \text { th }}$ order 1.47; 5th order 2.87; 6th order 7.6 and 7 th order 11.48
5	Stream length ratio (RL)	$\begin{aligned} & \text { II/I=0.225; } \\ & \text { III/II }=0.224 ; \\ & \text { IV/III=0.189; } \\ & \text { and V/IV }=0.294 ; \\ & \text { VI/V=0.200; } \\ & \text { VII/VI }=0.50 \end{aligned}$	$\begin{aligned} & \mathrm{II} / \mathrm{I}=0.21 ; \\ & \mathrm{III} / \mathrm{II}=0.24 ; \\ & \text { IV/III }=0.23 ; \\ & \text { and } \\ & \text { V/IV=0.23; } \\ & \text { VI/V=0.27; } \\ & \text { VII/VI=0.33 } \end{aligned}$	$\begin{aligned} & \text { II/I=0.21; } \\ & \text { III/II=0.21; } \\ & \text { IV/III=0.25; and } \\ & \text { V/IV=0.3; } \\ & \text { VI/V=0.167; } \\ & \text { VII/VI }=0.5 \end{aligned}$	$\begin{aligned} & \mathrm{II} / \mathrm{I}=0.22 ; \\ & \mathrm{III} / \mathrm{II}=0.21 ; \\ & \mathrm{IV} / \mathrm{II}=0.22 ; \\ & \text { and } \\ & \text { V/IV=0.22; } \\ & \text { VI/V=0.14; } \\ & \text { VII/VI=0.29; } \\ & \text { VIII/VII=0.50 } \end{aligned}$	$\begin{aligned} & \mathrm{II} / \mathrm{I}=0.22 ; \\ & \mathrm{III} / \mathrm{II}=0.21 ; \\ & \mathrm{IV} / \mathrm{III}=0.23 ; \\ & \text { and V/IV=0.20; } \\ & \text { VI/V=0.26; } \\ & \text { VII/VI=0.22; } \\ & \text { VIII/VII=0.50 } \end{aligned}$
6	Bifurcation ratio (Rb)	$\begin{aligned} & 1^{\text {st }} \text { and } 2^{\text {nd }}=4.45 ; \\ & 2 \mathrm{nd} \text { and } 3 \mathrm{rd} \\ & =4.46 ; 3 \mathrm{rd} \text { and } \\ & 4 \mathrm{th}=5.29 ; 4 \mathrm{th} \\ & \text { and } 5 \mathrm{th}=3.40 \text {, } \\ & 5 \text { th and 6th } \\ & =5.00 \& 6 \text { th and } \\ & 7 \mathrm{th}=2.00 \end{aligned}$	$\begin{aligned} & 1^{\text {st }} \text { and } 2^{\text {nd }} \\ & =4.75 ; 2 \mathrm{nd} \text { and } \\ & 3 \mathrm{rd}=4.25 ; 3 \mathrm{rd} \\ & \text { and 4th }=4.27 ; \\ & \text { 4th and } 5 \text { th } \\ & =4.36,5 \text { th and } \\ & \text { 6th }=3.67 \& \\ & \text { 6th and } \\ & \text { 7th }=3.00 \end{aligned}$	$1^{\text {st }}$ and $2^{\text {nd }}=4.63$; $2^{\text {nd }}$ and $3 \mathrm{rd}=4.62$; $3^{\text {rd }}$ and $4^{\text {th }}=3.97$; $4^{\text {th }}$ and $5^{\text {th }}=6,5^{\text {th }}$ and $6^{\text {th }}=2$	$\begin{aligned} & 1^{\text {st }} \text { and } 2^{\text {nd }} \\ & =4.53 ; 2 \text { nd and } \\ & \text { 3rd }=4.48 ; \\ & \text { 3rdand 4th } \\ & =4.46 ; 4 \text { th and } \\ & 5 \text { th }=7.14,5 \text { th } \\ & \text { and } 6 \text { th }=3.50 \\ & \& \text { 6th and } 7 \text { th } \\ & =2 \end{aligned}$	$\begin{aligned} & 1^{\text {st }} \text { and } 2^{\text {nd }} \\ & =4.47 ; 2 \mathrm{nd} \text { and } \\ & 3 \mathrm{rd}=4.37 ; 3 \mathrm{rd} \\ & \text { and } 4 \mathrm{th}=5 ; 4 \text { th } \\ & \text { and } 5 \mathrm{th}=3.78, \\ & \text { 5th and 6th } \\ & =4.50 \& 6 \text { th } \\ & \text { and } 7 \mathrm{th}=2 \end{aligned}$
7	Drainage density (D)	7.95	7.76	7.45	7.53	7.53
8	Drainage frequency (Fs)	36.21	36.23	34.71	35.21	34.62
9	Drainage texture ratio (Rt)	47.16	50.38	59.95	59.94	60.39
10	Circulatory ratio (Rc)	0.28	0.27	0.49	0.36	0.51
11	Form factor (Rf)	0.14	0.09	0.22	0.14	0.07
12	Elongation ratio (Re)	2.33	2.13	2.58	2.49	1.9
13	Relative relief	393	260	327	337	309
14	Relief ratio (Rh)	63.46	26.5	71.65	49.4	37.4
15	Ruggedness no. (Rn)	15.06	8.4	12.8	12.6	12.2

| | Morphometric
 parameters of
 the Basin
 (km2) | Sukhmer Nala
 $\mathbf{2 0 0 . 2 7}$ | Kanai Nala 167.07 | Siligi Nadi 161.91 | Banari Nala 51.33 |
| :--- | :--- | :--- | :--- | :--- | :--- | | Dandana Nala |
| :--- |
| $\mathbf{2 2 6 . 1 5}$ |

2	Stream no.	$1^{\text {st }}$ order, 5610; $2^{\text {nd }}$ order, 1193; $3^{\text {rd }}$ order, 278; $4^{\text {th }}$ order 61; $5^{\text {th }}$ order $14 ; 6^{\text {th }}$ order 4 and $7^{\text {th }}$ order 1	$1^{\text {st }}$ order, 4670; $2^{\text {nd }}$ order, 1002; $3^{\text {rd }}$ order, 222; $4^{\text {th }}$ order 48; $5^{\text {th }}$ order 6; $6^{\text {th }}$ order 2 and $7^{\text {th }}$ order $1 ; 8^{\text {th }}$ order 1	$1^{\text {st }}$ order, 4629; $2^{\text {nd }}$ order, $961 ; 3^{\text {rd }}$ order, 212; $4^{\text {th }}$ order $45 ; 5^{\text {th }}$ order $11 ; 6^{\text {th }}$ order 3 and $7^{\text {th }}$ order 1	$1^{\text {st }}$ order, 1482; $2^{\text {nd }}$ order, 299; $3^{\text {rd }}$ order, $74 ; 4^{\text {th }}$ order $16 ; 5^{\text {th }}$ order 5 ; $6^{\text {th }}$ order 2 and $7^{\text {th }}$ order $1 ; 8^{\text {th }}$ order 1	$1^{\text {st }}$ order, 6579; $2^{\text {nd }}$ order, 1402; $3^{\text {rd }}$ order, $310 ; 4^{\text {th }}$ order $71 ; 5^{\text {th }}$ order $15 ; 6^{\text {th }}$ order $3 ; 7^{\text {th }}$ order 1 ; $8^{\text {th }}$ order 1
3	Stream length	$\begin{aligned} & 1^{\text {st }} \text { order, } 819.4 ; 2^{\text {nd }} \\ & \text { order, } 323.11 ; 3^{\text {rd }} \\ & \text { order, } 182.39 ; 4^{\text {th }} \\ & \text { order } 78.82 ; 5^{\text {th }} \\ & \text { order } 32.26 ; 6^{\text {th }} \\ & \text { order } 12.3 \text { and } 7^{\text {th }} \\ & \text { order } 27.03 \end{aligned}$	$1^{\text {st }}$ order, $685.55 ; 2^{\text {nd }}$ order, 280.52; $3^{\text {rd }}$ order, $148.43 ; 4^{\text {th }}$ order 54.32; $5^{\text {th }}$ order 41.12; $6^{\text {th }}$ order 19.63; $7^{\text {th }}$ order 5.6 and $8^{\text {th }}$ order 0.03	$\begin{aligned} & 1^{\text {st }} \text { order, } 657.24 ; 2^{\text {nd }} \\ & \text { order, } 240.93 ; 3^{\text {rd }} \\ & \text { order, } 17.05 ; 4^{\text {th }} \\ & \text { order } 66.61 ; 5^{\text {th }} \text { order } \\ & 24.53 ; 6^{\text {th }} \text { order } \\ & 10.23 ; 7^{\text {th }} \text { order } \\ & 30.94 \end{aligned}$	$1^{\text {st }}$ order, $199.33 ; 2^{\text {nd }}$ order, $79.1 ; 3^{\text {rd }}$ order, 41.08; $4^{\text {th }}$ order 18.11; $5^{\text {th }}$ order 10.38; $6^{\text {th }}$ order $5.15 ; 7^{\text {th }}$ order 7.42; $8^{\text {th }}$ order 0.02	$\begin{aligned} & 1^{\text {st }} \text { order, } 910.55 ; 2^{\text {nd }} \\ & \text { order, } 348.42 ; 3^{\text {rd }} \\ & \text { order, } 169.91 ; 4^{\text {th }} \\ & \text { order } 97.78 ; 5^{\text {th }} \text { order } \\ & 44.97 ; 6^{\text {th }} \text { order } \\ & 34.38 ; 7^{\text {th }} \text { order } \\ & 17.97 ; 8^{\text {th }} \text { order } 0.08 \end{aligned}$
4	Mean stream length	$1^{\text {st }}$ order, $0.14 ; 2^{\text {nd }}$ order, 0.27 ; 3rd order, 0.65 ; 4th order 1.29; 5th order 2.3; 6th order 3 and 7th order 23.03	$1^{\text {st }}$ order, $0.14 ; 2^{\text {nd }}$ order, $0.28 ; 3^{\text {rd }}$ order, $0.67 ; 4^{\text {th }}$ order 1.13; $5^{\text {th }}$ order 6.85; $6^{\text {th }}$ order 9.81; $7^{\text {th }}$ order 5.6 and $8^{\text {th }}$ order 0.03	$1^{\text {st }}$ order, $0.14 ; 2^{\text {nd }}$ order, $0.25 ; 3^{\text {rd }}$ order, $0.55 ; 4^{\text {th }}$ order 1.48; $5^{\text {th }}$ order $2.23 ; 6^{\text {th }}$ order 3.41 and $7^{\text {th }}$ order 30.9	$1^{\text {st }}$ order, $0.13 ; 2^{\text {nd }}$ order, $0.26 ; 3^{\text {rd }}$ order, $0.55 ; 4^{\text {th }}$ order 1.13; $5^{\text {th }}$ order 2.07; $6^{\text {th }}$ order $2.57 ; 7^{\text {th }}$ order 7.42 and $8^{\text {th }}$ order 0.02	$1^{\text {st }}$ order, $0.13 ; 2^{\text {nd }}$ order, $0.24 ; 3^{\text {rd }}$ order, 0.54 ; 4th order 1.37; 5th order 2.99; 6th order 11.46; 7th order 17.97; 8th order 0.08
5	Stream length ratio	$\begin{aligned} & \text { II/I=0.21; } \\ & \text { III/II=0.23; } \\ & \text { IV/III=0.22; and } \\ & \text { V/IV=0.23; } \\ & \text { VI/V=0.29; } \\ & \text { VII/VI }=0.25 \end{aligned}$	$\begin{aligned} & \mathrm{II} / \mathrm{I}=0.21 ; \mathrm{III} / \mathrm{II}= \\ & 0.22 ; \mathrm{IV} / \mathrm{III}=0.22 ; \\ & \text { and V/IV=0.13; } \\ & \text { VI/V=0.33; } \\ & \text { VII/VI=0.5, } \\ & \text { VIII/VII }=1 \text {, } \end{aligned}$	$\begin{aligned} & \mathrm{II} / \mathrm{I}=0.21 ; \mathrm{III} / \mathrm{II}= \\ & 0.22 ; \mathrm{IV} / \mathrm{III}=0.21 ; \\ & \text { and V/IV=0.24; } \\ & \text { VI/V=0.27; } \\ & \text { VII/VI=0.33 } \end{aligned}$	$\begin{aligned} & \text { II/I=0.20; } \\ & \text { III/II=0.24; } \\ & \text { IV/III=0.21; and } \\ & \text { V/IV=0.31; } \\ & \text { VI/V=0.4; } \\ & \text { VII/VI=0.5; } \\ & \text { VIII/VII=0.1 } \end{aligned}$	$\begin{aligned} & \text { II/I=0.21; } \\ & \text { III/II=0.22; } \\ & \text { IV/III=0.22; and } \\ & \text { V/IV=0.21; } \\ & \text { VI/V=0.2; } \\ & \text { VII/VI=0.33; } \\ & \text { VIII/VII=1 } \end{aligned}$
6	Bifurcation ratio	$1^{\text {st }}$ and $2^{\text {nd }}=4.70$; 2 nd and $3 \mathrm{rd}=4.29$; 3 rd and 4 th $=4.56$; 4 th and 5 th $=4.36$, 5 th and 6th $=3.50$ $\& 6$ th and 7 th $=4$	$1^{\text {st }}$ and $2^{\text {nd }}=4.66$; 2nd and 3rd $=4.51$; 3 rd and 4 th $=4.63$; 4 th and 5 th $=8,5$ th and 6 th $=3 \& 6$ th and 7 th $=2,7$ th and 8 th $=1$	$\begin{aligned} & 1^{\text {st }} \text { and } 2^{\text {nd }}=4.82 ; 2^{\text {nd }} \\ & \text { and } 3 \mathrm{rd}=4.53 ; 3^{\text {rd }} \text { and } \\ & 4^{\text {th }}=4.71 ; 4^{\text {th }} \text { and } \\ & 5^{\text {th }}=4.09,5^{\text {th }} \text { and } \\ & 6^{\text {th }}=3.676^{\text {th }} \text { and } 7^{\text {th }}= \\ & 3 \end{aligned}$	$1^{\text {st }}$ and $2^{\text {nd }}=4.95$; 2 nd and 3 rd $=4.04$; 3 rd and 4 th $=4.62$; 4th and 5th $=3.2$, 5 th and 6th $=2.5$; 6th and 7th $=2 ; 7$ th and 8th $=1$	$1^{\text {st }}$ and $2^{\text {nd }}=4.69 ; 2 \mathrm{nd}$ and $3 \mathrm{rd}=4.52$; 3 rd and 4th $=4.37$; 4th and 5 th $=4.73$, 5 th and 6th $=5$; 6th and 7th $=3$; 7th and 8th $=1$
7	Drainage density	7.37	7.39	7.09	7.03	7.18
8	Drainage frequency	35.76	35.63	36.21	36.63	37.06
9	Drainage texture ratio	73.13	63.79	63.36	41.95	68.9
10	Circulatory ratio	0.43	0.39	0.38	0.52	0.31
11	Form factor	0.16	0.09	0.09	0.15	0.08
12	Elongation ratio	2.7	2.21	2.21	1.87	2.34
13	Relative relief	343	411	379	276	416
14	Relief ratio	45.33	37	32.57	67.98	25.973
15	Ruggedness no.	11.72	11.9	9.76	8.96	9.824
SN	Morphometric parameters of the Basin (km2)	Baghora Nala 521.125	Banjar Nadi 356.41	Mahodar Nala 67.04	Balai Nadi 219.36	Dhuma Nala 85.69
1	Stream order	$1^{\text {st }}$ to $9^{\text {th }}$	$1^{\text {st }}$ to $9^{\text {th }}$	$1^{\text {st }}$ to $7^{\text {th }}$	$1^{\text {st }}$ to $9^{\text {th }}$	$1^{\text {st }}$ to $7^{\text {th }}$
2	Stream no.	$1^{\text {st }}$ order, 14742 ; $2^{\text {nd }}$ order, 3160; $3^{\text {rd }}$ order, 731; $4^{\text {th }}$ order $181 ; 5^{\text {th }}$ order $41 ; 6^{\text {th }}$ order $8 ; 7^{\text {th }}$ order $2 ; 8^{\text {th }}$ order 1 ; $9^{\text {th }}$ order 1	$1^{\text {st }}$ order, 9975; $2^{\text {nd }}$ order, 2174; $3^{\text {rd }}$ order, 512; $4^{\text {th }}$ order $127 ; 5^{\text {th }}$ order $29 ; 6^{\text {th }}$ order $9 ; 7^{\text {th }}$ order 3 ; $8^{\text {th }}$ order $1 ; 9^{\text {th }}$ order 1	$1^{\text {st }}$ order, 1940; $2^{\text {nd }}$ order, 418; $3^{\text {rd }}$ order, $96 ; 4^{\text {th }}$ order $26 ; 5^{\text {th }}$ order $4 ; 6^{\text {th }}$ order 2 and $7^{\text {th }}$ order 1	$1^{\text {st }}$ order, 6315; $2^{\text {nd }}$ order, 1311; $3^{\text {rd }}$ order, 298; $4^{\text {th }}$ order 69; $5^{\text {th }}$ order $14 ; 6^{\text {th }}$ order 4 and $7^{\text {th }}$ order $1 ; 9^{\text {th }}$ order 1	$1^{\text {st }}$ order, 2468; $2^{\text {nd }}$ order, 502; $3^{\text {rd }}$ order, $105 ; 4^{\text {th }}$ order $26 ; 5^{\text {th }}$ order $9 ; 6^{\text {th }}$ order 2 ; $7^{\text {th }}$ order 1 ;
3	Stream length	$1{ }^{\text {st }}$ order, 2148.8; $2^{\text {nd }}$ order, 873.96; $3^{\text {rd }}$ order, 439.8; $4^{\text {th }}$ order 189.45; $5^{\text {th }}$ order 107.68; $6^{\text {th }}$ order $61.57 ; 7^{\text {th }}$ order 31.54; $8^{\text {th }}$ order 16.03; $9^{\text {th }}$ order 0.06	$1^{\text {st }}$ order, 1555.26 ; $2^{\text {nd }}$ order, 608.33; $3^{\text {rd }}$ order, $300.28 ; 4^{\text {th }}$ order 134.76; $5^{\text {th }}$ order 47.08; $6^{\text {th }}$ order 20.59; $7^{\text {th }}$ order $16.49 ; 8^{\text {th }}$ order 0.68	$1^{\text {st }}$ order, 273.35; $2^{\text {nd }}$ order, 102.36; $3^{\text {rd }}$ order, 52.96; $4^{\text {th }}$ order $32.96 ; 5^{\text {th }}$ order 8.78; $6^{\text {th }}$ order $11.93 ; 7^{\text {th }}$ order 2.88 ; $8^{\text {th }}$ order 0.02	$\begin{aligned} & 1^{\text {st }} \text { order, } 911.02 ; 2^{\text {nd }} \\ & \text { order, } 337.96 ; 3^{\text {rd }} \\ & \text { order, } 186.98 ; 4^{\text {th }} \\ & \text { order } 84.43 ; 5^{\text {th }} \\ & \text { order } 39.39 ; 6^{\text {th }} \\ & \text { order } 37.37 ; 7^{\text {th }} \\ & \text { order } 10.49 ; 9^{\text {th }} \\ & \text { order } 0.02 \end{aligned}$	$1^{\text {st }}$ order, $479.6 ; 2^{\text {nd }}$ order, 148.7; $3^{\text {th }}$ order 78; $4^{\text {th }}$ order $35 ; 5^{\text {th }}$ order $13.7 ; 6^{\text {th }}$ order 9.1; $7^{\text {th }}$ order 0.08 ;

4	Mean stream length	$\begin{aligned} & 1^{\text {st }} \text { order, } 0.145 ; 2^{\text {nd }} \\ & \text { order, } 0.27 ; 3^{\text {rd }} \\ & \text { order, } 0.60 ; 4 \text { th } \\ & \text { order } 1.04 ; 5 \text { th } \\ & \text { order } 2.62 ; 6 \text { th } \\ & \text { order } 7.69 ; 7 \text { th } \\ & \text { order } 15.77 ; 8 \text { th } \\ & \text { order } 16.03 ; 9 \text { th } \\ & \text { order } 0.06 \end{aligned}$	$1^{\text {st }}$ order, $0.16 ; 2^{\text {nd }}$ order, 0.28; $3^{\text {rd }}$ order, $0.59 ; 4^{\text {th }}$ order 1.06 ; $5^{\text {th }}$ order 2.82; $6^{\text {th }}$ order 5.23; $7^{\text {th }}$ order 6.86; $8^{\text {th }}$ order 16.49 ; $9^{\text {th }}$ order 0.68	$1^{\text {st }}$ order, $0.14 ; 2^{\text {nd }}$ order, $0.24 ; 3^{\text {rd }}$ order, $0.55 ; 4^{\text {th }}$ order 1.26; $5^{\text {th }}$ order 2.16; $6^{\text {th }}$ order 5.96 and $7^{\text {th }}$ order 2.88	$1^{\text {st }}$ order, $0.14 ; 2^{\text {nd }}$ order, 0.26; $3^{\text {rd }}$ order, $0.63 ; 4^{\text {th }}$ order 1.22; $5^{\text {th }}$ order 2.81; $6^{\text {th }}$ order $9.34 ; 7^{\text {th }}$ order 1.09 and $8^{\text {th }}$ order 0.02	$1^{\text {st }}$ order, $0.19 ; 2^{\text {nd }}$ order, $0.29 ; 3^{\text {rd }}$ order, 0.74 ; 4th order 1.34; 5th order 1.57; 6th order 4.57; 7th order 9.13; 8th order 0.08
5	Stream length ratio	$\begin{aligned} & \text { II/I=0.21; III/II= } \\ & 0.23 ; \text { IV/III }=0.25 ; \\ & \text { and V/IV=0.23; } \\ & \text { VI/V=0.20; } \\ & \text { VII/VI=0.25; } \\ & \text { VIII/VII }=0.50 ; \\ & \text { IX/VIII }=1 \end{aligned}$	$\begin{aligned} & \text { II/I=0.22; III/II= } \\ & 0.24 ; \mathrm{IV} / \mathrm{III}=0.25 ; \\ & \text { and V/IV=0.23; } \\ & \text { VI/V=0.31; } \\ & \text { VII/VI }=0.33, \\ & \text { VIII/VII }=0.33, \\ & \text { IX/VIII=1 } \end{aligned}$	II/I=0.22; III/II $=0.23$; IV/III=0.27; and $\mathrm{V} / \mathrm{IV}=0.15$; VI/V=0.50; VII/VI=0.50	$\begin{aligned} & \text { II/I=0.21; } \\ & \text { III/II }=0.23 ; \\ & \text { IV/III=0.23; and } \\ & \text { V/IV=0.20; } \\ & \text { VI/V=0.29; } \\ & \text { VII/VI=0.25; } \end{aligned}$	$\begin{aligned} & \text { II/I=0.20; III/II= } \\ & 0.21 ; \mathrm{IV} / \mathrm{III}=0.25 ; \\ & \text { and V/IV=0.35; } \\ & \text { VI/V=0.22; } \\ & \text { VII/VI=0.50; } \end{aligned}$
6	Bifurcation ratio	$1^{\text {st }}$ and $2^{\text {nd }}=4.67$; 2 nd and $3 \mathrm{rd}=4.32$; 3 rd and 4 th $=4.04$; 4th and 5 th $=4.41$, 5 th and 6 th $=5.13$; 6th and 7th $=4 ; 7$ th and 8 th $=2 ; 8$ th and 9th $=1$	$1^{\text {st }}$ and $2^{\text {nd }}=4.59$; 2 nd and $3 \mathrm{rd}=4.25$; 3rd and 4th $=4.03$; 4th and 5 th $=4.38$, 6th and 7th $=3$, 7th and 8th $=3$; 8th and 9th $=1$	$1^{\text {st }}$ and $2^{\text {nd }}=4.64 ; 2^{\text {nd }}$ and $3 \mathrm{rd}=4.35 ; 3^{\text {rd }}$ and $4^{\text {th }}=3.69 ; 4^{\text {th }}$ and $5^{\mathrm{th}}=6.50,5^{\mathrm{th}}$ and $6^{\text {th }}=2 ; 6^{\text {th }}$ and $7^{\text {th }}=2$	$\begin{aligned} & { }^{\text {st }} \text { and } 2^{\text {nd }}=4.82 ; \\ & \text { 2nd } \\ & \text { 3rd and } 3 \mathrm{rd}=4.40 ; \\ & \text { 4th and } 5 \text { th }=4.93 ; \\ & \text { 5th and } 6 \text { th }=3.5 ; \\ & \text { 6th } 7 \text { and } 7 \mathrm{th}=4 \end{aligned}$	$1^{\text {st }}$ and $2^{\text {nd }}=4.92 ; 2$ nd and $3 \mathrm{rd}=4.78$; 3 rd and 4th $=4.04 ; 4$ th and 5th $=2.89$, 5th and 6 th $=4.5$; 6th and 7 th $=2$;
7	Drainage density	7.42	7.76	7.2	7.33	9.02
8	Drainage frequency	36.2	36	37.1	36.53	36.33
9	Drainage texture ratio	97.32	89.49	48.6	67.42	44.17
10	Circulatory ratio	0.29	0.36	0.5	0.31	0.34
11	Form factor	0.23	0.19	0.2	0.18	0.25
12	Elongation ratio	3.74	3.24	2.2	2.84	2.43
13	Relative relief	457	385	276	285	219
14	Relief ratio	27.85	28.95	62.02	31.81	56.256
15	Ruggedness no.	9.81	9.69	7.99	8.08	9.376

SN	Morphometric parameters of the Basin (km2)	Bijana Nala 92.41	Temur Nala 361.64	Narrai Nala 107.89	Imarti Nala 85.51	Newari Nadi 198.58
1	Stream order	$1^{\text {st }}$ to $9^{\text {th }}$	$1^{\text {st }}$ to $9^{\text {th }}$	$1^{\text {st }}$ to $7^{\text {th }}$	$1^{\text {st }}$ to $7^{\text {th }}$	$1^{\text {st }}$ to $9^{\text {th }}$
2	Stream no.	$1^{\text {st }}$ order, 2598; $2^{\text {nd }}$ order, 560; $3^{\text {rd }}$ order, 134; $4^{\text {th }}$ order 35 ; $5^{\text {th }}$ order 6; $6^{\text {th }}$ order $2 ; 7^{\text {th }}$ order $1 ; 9^{\text {th }}$ order 1	$1^{\text {st }}$ order, 10118; $2^{\text {nd }}$ order, 2194; $3^{\text {rd }}$ order, 476; $4^{\text {th }}$ order 112; $5^{\text {th }}$ order $27 ; 6^{\text {th }}$ order 6; $7^{\text {th }}$ order 1 ; $8^{\text {th }}$ order $1 ; 9^{\text {th }}$ order 1	$1^{\text {st }}$ order, 3086; $2^{\text {nd }}$ order, 685; $3^{\text {rd }}$ order, $164 ; 4^{\text {th }}$ order $38 ; 5^{\text {th }}$ order 8; $6^{\text {th }}$ order 2 and $7^{\text {th }}$ order 1	$1^{\text {st }}$ order, 3012; $2^{\text {nd }}$ order, 638; $3^{\text {rd }}$ order, $111 ; 4^{\text {th }}$ order $23 ; 5^{\text {th }}$ order 6; $6^{\text {th }}$ order 2 ; $7^{\text {th }}$ order 1 ;	$1^{\text {st }}$ order, 5557; $2^{\text {nd }}$ order, 1208; $3^{\text {rd }}$ order, 271; $4^{\text {th }}$ order 58; $5^{\text {th }}$ order $16 ; 6^{\text {th }}$ order $4 ; 7^{\text {th }}$ order 2 ; $8^{\text {th }}$ order $1 ; 9^{\text {th }}$ order
3	Stream length	$\begin{aligned} & 1^{\text {st }} \text { order, } 362.91 ; \\ & 2^{\text {nd }} \text { order, } 147.58 ; \\ & 3^{\text {rd }} \text { order, } 79.56 ; 4^{4 \mathrm{~h}} \\ & \text { order } 36.17 ; 5^{\text {th }} \\ & \text { order } 23.66 ; 6^{\text {th }} \\ & \text { order } 8.19 ; 7^{\text {th }} \\ & \text { order } 7.10 ; 9^{\text {th }} \\ & \text { order } 0.36 \end{aligned}$	$1^{\text {st }}$ order, 1453.58; $2^{\text {nd }}$ order, $565.57 ; 3^{\text {rd }}$ order, 305.39; $4^{\text {th }}$ order 146.72; $5^{\text {th }}$ order 85.01; $6^{\text {th }}$ order 35.38; $7^{\text {th }}$ order $32.15 ; 9^{\text {th }}$ order 0.08	$1^{\text {st }}$ order, 433.26; $2^{\text {nd }}$ order, 172.31; $3^{\text {rd }}$ order, $93.27 ; 4^{\text {th }}$ order 49.92; $5^{\text {th }}$ order 19.4; $6^{\text {th }}$ order $18.42 ; 7^{\text {th }}$ order 7.99	$1^{\text {st }}$ order, 337.58; $2^{\text {nd }}$ order, $136.14 ; 3^{\text {rd }}$ order, $61.10 ; 4^{\text {th }}$ order 35.37; $5^{\text {th }}$ order 12.64; $6^{\text {th }}$ order 18.75; $7^{\text {th }}$ order 6.08;	$1^{\text {st }}$ order, 332.66; $2^{\text {nd }}$ order, 152.08; $3^{\text {th }}$ order 68.46; $4^{\text {th }}$ order $44.79^{\text {th }}$ order 18.03; $6^{\text {th }}$ order $15.64 ; 7^{\text {th }}$ order $15.31 ; 8^{\text {th }}$ order 0.03
4	Mean stream length	$1^{\text {st }}$ order, $0.14 ; 2^{\text {nd }}$ order, $0.26 ; 3^{\text {rd }}$ order, $0.59 ; 4$ th order 1.03; 5th order 3.94; 6th order 4.10; 7th order 7.10; 9th order 0.36	$1^{\text {st }}$ order, $0.14 ; 2^{\text {nd }}$ order, $0.25 ; 3^{\text {rd }}$ order, 0.66 ; $4^{\text {th }}$ order 1.31 ; $5^{\text {th }}$ order $3.14 ; 6^{\text {th }}$ order 5.89; $7^{\text {th }}$ order 32.15; $9^{\text {th }}$ order 0.008	$1^{\text {st }}$ order, $0.14 ; 2^{\text {nd }}$ order, $0.25 ; 3^{\text {rd }}$ order, 0.56 ; $4^{\text {th }}$ order 1.33 ; $5^{\text {th }}$ order 2.42; $6^{\text {th }}$ order 9.21 and $7^{\text {th }}$ order 7.99	$1^{\text {st }}$ order, $0.15 ; 2^{\text {nd }}$ order, 0.27; $3^{\text {rd }}$ order, $0.55 ; 4^{\text {th }}$ order 1.53; $5^{\text {th }}$ order 2.11; $6^{\text {th }}$ order 9.37; $7^{\text {th }}$ order 9.08	$\begin{aligned} & 1^{\text {st }} \text { order, } 0.15 ; \text { nd }^{\text {nd }} \\ & \text { order, } 0.28 ; \text { rd order, } \\ & 0.56 ; 4 \text { th order } 1.18 ; \\ & 5 \text { th order } 2.79 ; 6 \text { th } \\ & \text { order } 4.50 ; 7 \text { th } \\ & \text { order } 7.82 ; 8 \text { th order } \\ & 15.31 ; 9 \text { th order } 0.06 \end{aligned}$

5	Stream length ratio	$\begin{aligned} & \mathrm{II} / \mathrm{I}=0.22 ; \mathrm{III} / \mathrm{II}= \\ & 0.24 ; \mathrm{IV} / \mathrm{III}=0.26 ; \\ & \text { and V/IV=0.17; } \\ & \text { VI/V=0.33; } \\ & \text { VII/VI=0.50; } \end{aligned}$	$\begin{aligned} & \mathrm{II} / \mathrm{I}=0.22 ; \\ & \mathrm{III} / \mathrm{II}=0.22 ; \\ & \mathrm{IV} / \mathrm{II}=0.24 ; \text { and } \\ & \text { V/IV=0.24; } \\ & \text { VI/V=0.22; } \\ & \text { VII/VI=0.17, } \end{aligned}$	$\begin{aligned} & \mathrm{II} / \mathrm{I}=0.22 ; \mathrm{III} / \mathrm{II}= \\ & 0.24 ; \mathrm{IV} / \mathrm{III}=0.23 ; \\ & \text { and V/IV=0.21; } \\ & \text { VI/V=0.25; } \\ & \text { VII/VI=0.50 } \end{aligned}$	$\begin{aligned} & \text { II/I=0.21; } \\ & \text { III/II=0.17; } \\ & \text { IV/III=0.21; and } \\ & \text { V/IV=0.26; } \\ & \text { VI/V=0.33; } \\ & \text { VII/VI=0.50; } \end{aligned}$	$\begin{aligned} & \text { II/I=0.22; III/II=0.22; } \\ & \text { IV/III }=0.21 ; \text { and } \\ & \text { V/IV=0.28; } \\ & \text { VI/V=0.25; } \\ & \text { VII/VI=0.50; } \\ & \text { VIII/VII }=0.50 \text {, } \\ & \text { IX/VII }=1 \end{aligned}$
6	Bifurcation ratio	$\begin{aligned} & 1^{\text {st }} \text { and } 2^{\text {nd }}=4.64 ; \\ & 2 \text { nd and } 3 \mathrm{rd}=4.18 ; \\ & \text { 3rd and } 4 \text { th }=3.83 ; \\ & \text { 4th and } 5 \text { th }=5.83 \\ & 5 \text { th and } 6 \text { th }=3.0 \\ & \text { 6th and } 7 \text { th }=2.0 \\ & 7 \text { th and } 8 \text { th }=2 \end{aligned}$	$1^{\text {st }}$ and $2^{\text {nd }}=4.61$; 2 nd and $3 \mathrm{rd}=4.61$; 3 rd and 4 th $=4.25$; 4th and 5th $=4.15$, 5th and 6th $=4.50 ; \&$ 6th and 7th $=6.0$	$\begin{aligned} & 1^{\text {st }} \text { and } 2^{\text {nd }}=4.51 ; 2^{\text {nd }} \\ & \text { and } 3 \mathrm{rd}=4.18 ; 3^{\text {rd }} \text { and } \\ & 4^{\text {th }}=4.32 ; 4^{\text {th }} \text { and } \\ & 5^{\text {th }}=4.75,5^{\text {th }} \text { and } \\ & 6^{\text {th }}=4 ; 6^{\text {th }} \text { and } 7^{\text {th }}=2 \end{aligned}$	$1^{\text {st }}$ and $2^{\text {nd }}=4.72$; 2nd and $3 \mathrm{rd}=4.75$; 3 rd and 4th $=4.83$; 4th and 5th $=3.83$, 5th and 6th $=3$; 6th and 7th $=2$	$1^{\text {st }}$ and $2^{\text {nd }}=4.60 ; 2$ nd and $3 \mathrm{rd}=4.46 ; 3 \mathrm{rd}$ and 4 th $=4.67 ; 4$ th and 5th $=3.63$, 5th and 6th $=4 ; 6$ th and 7th $=2 ; 7$ th and 8 th $=2 ; 8$ th and 9 th $=1$;
7	Drainage density	7.2	7.26	7.36	7.45	7.36
8	Drainage frequency	36.11	35.77	36.93	46.53	35.84
9	Drainage texture ratio	43.99	84.95	50.09	57.32	56.66
10	Circulatory ratio	0.33	0.32	0.36	0.37	0.26
11	Form factor	0.16	0.12	0.13	0.14	0.08
12	Elongation ratio	2.2	2.87	2.17	2.07	2.26
13	Relative relief	181	248	205	193	457
14	Relief ratio	41.41	17.67	32.4	38.2	26.75
15	Ruggedness no.	7.25	7.15	6.96	6.89	9.72

SN	Morphometric parameters of the Basin (km ${ }^{2}$)	Gaur Nadi 212.03
1	Stream order	$1^{\text {st }}$ to $7^{\text {th }}$
2	Stream no.	$1^{\text {st }}$ order, 5832; $2^{\text {nd }}$ order, $1251 ; 3^{\text {rd }}$ order, $288 ; 4^{\text {th }}$ order $67 ; 5^{\text {th }}$ order $12 ; 6^{\text {th }}$ order 3 ; $7^{\text {th }}$ order 1 ;
3	Stream length	$1^{\text {st }}$ order, $866.48 ; 2^{\text {nd }}$ order, $361.75 ; 3^{\text {rd }}$ order, $197.68 ; 4^{\text {th }}$ order $83.35 ; 5^{\text {th }}$ order $38.95 ; 6^{\text {th }}$ order $49.5 ; 7^{\text {th }}$ order $1.72 ; 8^{\text {th }}$ order 0.09
4	Mean stream length	$1^{\text {st }}$ order, $0.15 ; 2^{\text {nd }}$ order, $0.29 ; 3^{\text {rd }}$ order, $0.69 ; 4^{\text {th }}$ order $1.24 ; 5^{\text {th }}$ order $3.24 ; 6^{\text {th }}$ order 16.50; $7^{\text {th }}$ order $1.72 ; 8^{\text {th }}$ order 0.09
5	Stream length ratio	$\mathrm{II} / \mathrm{I}=0.21$; III/II= 0.23 ; $\mathrm{IV} / \mathrm{III}=0.23$; V/IV=0.18; VI/V=0.25; VII/VI=0.33;
6	Bifurcation ratio	$1^{\text {st }}$ and $2^{\text {nd }}=4.66 ; 2^{\text {nd }}$ and $3^{\text {rd }}=4.34 ; 3^{\text {rd }}$ and $4^{\text {th }}=3.30 ; 4^{\text {th }}$ and $5^{\text {th }}=5.58,5^{\text {th }}$ and $6^{\text {th }}=4 ; 6^{\text {th }}$ and $7^{\text {th }}=3$.
7	Drainage density	7.54
8	Drainage frequency	35.16
9	Drainage texture ratio	71.53
10	Circulatory ratio	0.4
11	Form factor	0.11
12	Elongation ratio	2.46
13	Relative relief	225
14	Relief ratio	21.48
15	Ruggedness no.	7.23

