Floristic composition and vegetation structure of Gatira George’s Forest Habru Woreda North Wollo, Ethiopia

Abstract
The study was conducted on Gatira Georges forest in, North Eastern Ethiopia to determine the floristic composition and vegetation structure. Systematic samplings of 9 (20 m x 20 m) plots were sampled along three line transects. In each main plots, nested plot (5 m x 5 m) and 2m×2m distributed were laid down to sample trees, shrubs and their seedlings and saplings. All plots were laid at a distance of 50 m along the transect lines. Community classification was performed using R-Free Statistical Software. Results showed that a total of 34 woody plant species representing 34 genera and 27 families were identified. The result of hierarchical cluster analysis of the forest revealed two communities identified 85.7% similarity. The highest species diversity and evenness was 2.78 and 0.88 recorded in Juniperus procera - Calymnia aurea community. The forest was dominated by lower diameter at breast height class and in the lower canopy indicating that it is in the stage of secondary development. Important value index ranges between 1.2 (0.42%) to 48.4 (15.78%). Based on the results, nursery and plantation establishment, regeneration status and medicinal values of the forest and appropriate conservation measures for sustainable use of the forest resources are recommended.

Keywords: diversity, plant community, gatira georges forest, important value index, sustainable use of forest

Introduction
Ethiopia is one of the top 25 biodiversity-rich countries in the world as the major center of diversity and endemism for several plant species, due to its great geographical diversity, elevation, vegetation. Woody plants constitute about 1000 species out of which 300 are trees. Biodiversity measurement typically focuses on the species level and species diversity is one of the most important indices for sustainable land use practice to reverse the decline of biodiversity by evaluating ecosystems at different scales.

According to MEFCC, Ethiopia’s forest cover is 15.5% which includes enormous areas of forest, dense wood lands, bamboo and plantation forests of the country. The rate of deforestation and forest degradation activities has accelerated the loss of biological diversity. The annual deforestation rate in Ethiopia ranges from 80,000 to 200,000 ha per year. According to the report of Desta, about 20,000 ha of forests are annually harvested in Amhara region for fuel, logging, and construction purposes. This has contributed to the current low forest area, i.e.; only 60,688 ha state natural forest and 2.4 million ha public forests, which are not properly demarcated and managed.

Remaining forests are only small remnant patches mostly confined to inaccessible areas (steeply and mountainous areas and sacred places (churches, monasteries and mosques. Church forests are serving as in-situ conservation and hotspot sites for biodiversity resources. With the prevailing alarming rate of deforestation, the remaining natural forests could disappear within a few decades, unless appropriate and immediate measures are taken. Remnant trees are spared from cutting when forests cleared for agricultural or grazing. They have a clear effect on the species diversity, composition, and ecology of the surrounding woody vegetation. Moreover, Juniperus procera currently included in the International Union for Conservation of Nature in the red list of threatened species are common to abundant to church forest.

Most of the remaining natural forests in Ethiopia are found in the southern and southwestern parts of the country, and the forests have almost disappeared from the rest of the country except a few scattered and relatively small areas of forest cover that remained in the northern, central and eastern parts of the country.

The flora of North wollo is the least known still now, mainly due to lack of access. Woody species diversity and structure in the study areas are vital to know past management and to set management intervention. The knowledge of the floristic composition of an area is a prerequisite for any ecological, phyto-geographical studies and conservation management activities. Structural analysis and species diversity are essential to provide information on species richness, forest management, forest ecology and ecosystem functions. Thus, assessment of floristic composition and vegetation structure of remnant natural forests ensures the conservation and management of the remaining remnant forests of North Wollo.

The management and conservation of forests in all areas throughout the country has been becoming a big challenge. Since most of the activities did not involve the local community. Currently, forest species management on a sustainable basis is the main aim of conservation biodiversity. In Northern Ethiopia mostly the Christian population is distributed following settlement pattern within the range of 1500 to 3500 m.a.s.l. Nowadays, even the remnant natural forest is continuously threatened by human activities. Gatira George’s forest is one of the remaining forests in northern Ethiopia. In order to ensure the conservation, management and sustainable utilization of this forest, describing the vegetation is urgently needed. Therefore; this
study is designed to look in to the existing woody species diversity, structure and regeneration status in Gatira George’s forest. So far, no studies have been reported on this forest. Therefore, this study was undertaken to describe and provide valuable information on floristic composition and vegetation structure of woody species in the forest. This intern helps to undertake appropriate conservation and management measures.

Materials and methods

Description of the study area

The study area (Figure 1) is located in Habru District, North Wollo, Amahra Region at the distance of 478 km far from Addis Ababa along Dessie to Woldiya road. It is found at 23 km from Habru district at Wurgessa town. The forest is located between UTM 50°00'00"-62°30'00"E longitude and latitude 37N 11°40'.00"to 12°20'.00"N latitude. Gatira George’s church forest is estimated to cover an area of 2.4 hectare. The altitudinal ranges is from 2024 to 2061 meters above sea level (m.a.s.l.) The annual mean temperature of study area is 27˚c with mean annual rain of 923mm and its rainfall distribution is bimodal with the main rainy season July to September and the small rainy season at end of February to end of April.¹

Sampling design

A systematic sampling method was employed for vegetation data in Gatira George’s forest. Sample plots along three line transect in church forest were laid systematically in a concentric way at every 50 m along transect lines, which were 50 m apart from each other. The first transect line was laid starting from the lowest altitude of the study area by entering about 20 m from edge of the forest to avoid the “edge effect”. Thus, for the census of mature plants, nine of the total quadrats of nested plot design were considered while for the purpose of shrub, seedling and sapling inventory, five sub quadrats of 5 m × 5 m and × 2 m were laid at the four corners and at the center of each main quadrat. Sample plot of 20 m × 20 m (400 m²) was used for trees at height >5m and DBH>10cm. Five sub plot of 5mx5m (25 m²) were laid for shrubs with height 0.5-5m.²⁸ Five smaller plot of 2mx2m (4m²) also used for seedling DBH <2.5 and height < 2m and sapling >2m with DBH <10cm²²⁶ at the four corners and one at the center for tree regeneration study.

Data collection and identification

Floristic data collection: Every plant species encountered in each quadrate was recorded using local name (vernacular names). For those species difficult to identify and give scientific name in the field, plant specimen were collected, pressed and brought to the national herbarium of Ethiopian, Addis Ababa University for taxonomic identification using published volume of the flora of Ethiopia and Eritrea²⁷ and NDA (Natural Database for Africa) software. Moreover, for specimens being difficult to identify in the field, voucher samples were collected, pressed, and submitted for proper identification and botanical nomenclature at the National Herbarium, at Addis Ababa University. For basal area calculation, tree species with DBH > 2 cm were selected for comparison of remnant forests.

Structural data collection: The tree density, diameter at breast height (DBH), frequency, basal area and IVI were measured, recorded and used for description of vegetative structure. For the purpose of the study “seedlings”, “saplings” and “mature trees/shrubs” were defined as plants with heights less than 2 m and DBH, 2.5 cm, >2 m with DBH <10 cm and greater than 2 m and DBH >10 cm respectively. DBH measurement was taken at about 1.3m from the ground using measuring tape. Seedling and saplings of trees and shrubs were counted to estimate the regeneration status of the forest.

Data analysis

Vegetation classification

Cluster analysis was used for the purpose of vegetation classification into different community types using the statistical software R-package for windows version 2.15.0.²⁸ The Indicator species Analysis was made to compare the species present in each community. Hierarchical cluster analysis was conducted to identify vegetation samples that are similar in terms of their woody species composition. The cover abundance data of species were used for the analysis. The plant community types were named after two or three dominant species selected using the relative magnitude of their mean cover abundance values. Of the total 34 plant species recorded from the study area, hence, 34 plant species were used for structural data analysis. The diameter at breast height (DBH), basal area, tree density, height, frequency and important value index were used for description of vegetation structure.

Diversity Index

Species diversity and evenness are often calculated using shannon-wiener diversity index.²⁹

\[
H' = -\sum_{i=1}^{m} \frac{n_i}{N} \ln \frac{n_i}{N}
\]

Where H’ is Shannon diversity index, ni is the total number of individuals of species i and N is the total number of individuals of all

species in that stand. Ln is natural logarithm. Possible values of the
H' range between 1.5 and 3.5 and only rarely exceed 4.5, where high
values indicate high diversity.

Species evenness was calculated as the:

\[
J = \frac{H'}{H_{\text{max}}} = \frac{\sum_{i=1}^{N} n_i \ln n_i}{N \ln s}
\]

Where J = species evenness H' = observed Shannon diversity index;
S = the number of species. H max is the maximum level of diversity.
The Sorenson’s coefficient of similarity (SC) was also computed as:

\[
SC = \frac{2C}{a + b + 2C} \times 100
\]

Where C = Number of species common to both forest sites; a and b =
the number of species at forest sites a and b.

Stand characteristics of the forest

To describe the horizontal stand structure of the forest, basal area,
density, frequency, height, Diameter at Breast Height (DBH), floristic
Composition, importance value index and basal area were calculated
following.

Basal area

It is the cross-sectional area of all of the stems in a stand at breast
height (1.3m above ground level). This basal area per unit area is used
to explain the crowdedness of a stand of forests. It is expressed in
square meter/hectare.\(^{36}\)

The basal area was computed as:

\[
BA = \frac{3.14 \times DBH^2}{4}
\]

Where, BA = basal area, DBH = average diameter at breast height.

Therefore, Relative basal area (RBA) was computed as

\[
RBA = \frac{\text{Total basal area of aspecies}}{\text{Total basal area of all species}} \times 100
\]

Density is defined as the number of plants of a certain species per
unit area.

\[
Density = \frac{\text{Total number of individual species}}{n \times \text{plot area}}
\]

For density/ha calculation, the sum of individuals per species were
calculated and analyzed following methods.\(^{31}\)

Relative density (RD) is the study of the numerical strength of a
species in relation to the total number of individuals of all the species.

\[
RD = \frac{\text{Density of individual species}}{\text{Total density of all species}} \times 100
\]

Frequency is defined as the chance of finding a plant species in a
given sample area or quadrat.\(^{29}\) It is calculated with the formula:

\[
Frequency = \frac{\text{Total number of quadrats in } w \times c \text{ the species occur}}{\text{Total number of quadrats studied}} \times 100 - - - - - - (8)
\]

Relative frequency (RF) is the degree of dispersion of individual
species in relation to the number of all the species occurred. It was
computed;

\[
RF = \frac{\text{frequency of individual species}}{\text{Total frequency of all species}} \times 100 - - - - - - (9)
\]

Importance value index (IVI) was computed using:

\[
IVI = \text{RBA} + \text{RD} + \text{RF} - - - - - - - - - - - - - - - (10)
\]

Results and discussion

To describe the vertical stand structure, the canopy layers was
used and set up on the bases of International Union Forestry Research
Organization (IUFRO) classification scheme following methods of
Krebs.\(^{28}\) Thus, three vertical structures of tree/shrubs in Gatira Georg’s
church forest was recognized: upper story (tree height > 2/3 of the top
height), the middle story (tree height between 1/3 and 2/3 of the top
height), and lower story (trees with height < 1/3).

Species population structure

Woody species in the remnant forests with a diameter at breast
height (DBH) greater than 2.5cm and height greater than 2 m were
measured to analyze the DBH class distribution by classifying the
DBH values into nine class intervals (<2.5 cm, 2.5-5 cm, 5.1-10 cm,
10.1-15 cm, 15.1-20 cm, 20.01-25 cm, 25.01-30 cm, 30.1-35cm and
>35 cm). Similarly, their height was measured and categorized in to
seven class intervals such as <2 m, 2-5 m, 5-10 m, 10-15 m, 15-20
m, 20-25 m and >25 m. Individuals with DBH less than 2.5 cm and
height less than 2 m were counted.

Floristic composition

Only 34 woody species belonging to 34 genera and 27 families
were identified during this study showing the low species richness of the
Forest ecosystem (Figure 2).\(^{31}\) The most frequent families
are Boraginaceae, Euphorbiaceae, Fabaceae, Oleaceae, Rosaceae,
Sapindaceae and Tiliaceae (2 species each) accounts 25.9%,and
20 families represented by (1 species each) accounts 74.1% share in
the study area respectively(Figure2). The number of species (34)
recorded in the study area was lower than that Yemrehane Kirstos
church forest reported was 39,\(^{34}\) Sesa Mariam wond Tara Gedam 113
each.\(^{35,36}\)

The number of families recorded is greater than the works of
Kitessa et al.\(^{37}\) This might be due to the more percentage of trees than
shrub species. Woody species belongs to shrub and trees account
48.3% and 51.7 % respectively. The total number of tree species
recorded from remnant forest of north wollo also comparable with
remnant forest of Zengena remnant forests reported by Desalegn et
al.\(^{38}\)

Vegetation classification

From cluster analysis of the forest, each community was named by
the species having higher indicator value. Each community was named
after two dominant species within the group.\(^{39}\) The dominant species
were those with highest mean cover-abundance value for a given
community (Table 2). Vegetation classification within Gatira George’s monastery forest patch was performed using cover abundance values as class labels. Object group averages, product moment correlation and squared distance were used to quantify dissimilarities among different quadrats. Agglomerative hierarchical classification using R-software (version 2.15.0) at 1.5 to 2.0 dissimilarity levels was used to classify the vegetation into communities. The name for each community type was given based on high synoptic values of tree and/or shrub species. Accordingly, two plant communities were identified in Gatira George’s forest as displayed in (Figure 3) described as Juniperus procera – Calpurnia aurea (Community type 1) and Podocarpus falcatus-Olea capensis (community type 2).

Juniperus procera - Calpurnia aurea Community type

This community in Gatira George’s forest is located between the altitudinal ranges of 2024m -2061m a.s.l. It was represented by 7 plots and 22 species. Two species were found to be indicator species (Juniperus procera and Calpurnia aurea). Other associated tree species include Olea europea, Justicia shmepriana, Celtis africana, Grewia ferruginea, Euclcea schimperi, Podocarpus falcatus and Olea capensis (Table 1).

Podocarpus falcatus - Olea capensis Community type

This community in Gatira George’s forest is located between the altitudinal ranges of 2024m-2061 m a.s.l. It was represented by 7 plots and 26 species. Two species were found to be indicator species (Podocarpus falcatus and Olea capensis). Other associated tree species include Ehertia cymosa, Juniperus procera, Calpurnia aurea and Ekebrgia capensis (Table 1).

Species diversity and richness

Among the two communities, Juniperus procera - Calpurnia aurea community is found to be the most diverse with even distribution of individual species (Table 2). This lower value of diversity index in Podocarpus falcatus -Olea capensis community could be due to the order of dominance of only certain trees and shrubs species such as Juniperus procera, Ehertia cymosa, Calpurnia. aurea , Ekebrgia capensis, Codia africana, Ficus ovata Prunus africana, Capparis tomentosa and Dowavials abyssinica. The Shannon weiner diversity and species richness was lower than reported by Getinet, et al.,41 from Alemesaga Forest, North western Ethiopia (Table 2).

Species diversity, evenness and species richness was higher than Ascha and Hiruy reported by Alemayehu42 from the Case of Churches in South Gonder, Northern Ethiopia. However, the species diversity and richness is lower than reported by Getinet, et al.,41 from the peninsula of Zegie, northwestern Ethiopia. This is due to the difference in the size of the church forests and the level of conservation measures taken by the forest societies in the respected forests (Table 3).

Similarity among the plant community types

The two Communities share 85.7% of similarity ratio (Table 4). This was probably due to similarity in altitudinal range and the existence of most quadrats adjacent to each other that show similar adaptation mechanisms and requirements for species occurring in both communities. Hence, similarities in woody species composition are expected between the plant communities are high.

Vegetation Structure

Tree density: The total densities of woody plant species in all the nine sample quadrats of the study area was 1156 individuals per hectare. The species with the highest density was Juniperus procera (15.9%) followed by Olea europea (10.1 %), Calpurnia aurea (7.9), Olea capensis and Justicia schimperi (7.7% each), Grewi ferruginea and Euclcea schimperi (6 % each), Ehertia cymosa(5%), Celtis africana(4%) and Podocarpus falcatus (3.8%), and These species constituted 74.1 % of all stems in all sampling quadrats of the study area. For the 34 selected woody species, the density distribution was as shown in (Table 5).
The ratio of tree density DBH ≥10 cm and ≤20 cm to DBH >20 cm is taken as a measurement of the size class.42 The ratio at these densities in this monastery was 1.58. This shows the presence of relatively large deference in abundance between individuals of DBH ≤20 cm and DBH >20 cm. When this value is compared with two churches natural Afromontane forests found in other parts of Ethiopia, it is medium, which confirms the forest is relatively dominated by relatively large deference in abundance between individuals of DBH ≤20 cm and DBH >20 cm. This shows the presence of good regeneration status (Figure 4). The dominance of small size (DBH<10cm) individuals in the Gatira George’s forest is largely due to the high density of Juniperus procera (183 stem/ha) followed Olea europea (117 stems/ha).

The density of woody species also decrease as the DBH class increases, implies the number of individuals ha⁻¹ is highest in the lower DBH class. A similar result was reported by Birhanu et al.,7 Teshome et al.,41 The density of plant species with DBH class as their contribution of the numbers of species were given in (Table 7). The density of woody plant species increases with increasing number of species. So the general pattern of DBH class size distribution forms an irregular inverted J-shape (Figure 4) for the most selected dominant tree species. This might be associated with presence of tree species with no seed source to continue its generation.

The density of all woody species in Gatira George’s forest sites based on DBH (Diameter at Breast Height) greater than 10 cm (a) was found to be 10 individuals per hectare. While it was 15 individuals per hectare on DBH greater than 20 cm (b). The result disagree from Zegie, north Western Ethiopia also reported.7 The highest basal area is recorded in DBH class (DBH=10 and DBH > 20). This indicates the forest is well protected due to the perception of people’s around church’ to cut a tree from church brings punishment from God. The ratio of DBH greater than 10 cm (a) to DBH greater than 20 cm (b) was found to be 1.58. So, this ratio is used as a good indicator as to the status of a particular forest. In this regard, compared many forests, the Gatira George’s forest sites showed a high ratio implies the predominance of small size trees and shrubs. Hence, it could be considered as a regenerating forest.

The present study implies decline of density ha⁻¹ and number of stems from the lower DBH class to the higher DBH class is similar to reported by Manette et al.,33 from Sesa Mariam Monastery, Northwestern Ethiopia.

As shown in (Figure 5), two different patterns of DBH distribution were recognized in Gatira George’s forest. The first pattern is described as irregular shape displayed in ‘a and b’ where no defined pattern observed across the DBH class. Ekebergia capensis and Cordia africana are representative for an irregular shape in DBH distribution.

The second pattern is described as an inverted J shape displayed in ‘b’ where more number of species found in the lower DBH class and decrease as DBH class increases (Figure 6) Celtis africana is representative for an inverted J shape in DBH distribution. Such pattern is normal population structure and shows the existence of species in healthier condition and recruitment capacity.39
Table 2 Shannon weiner diversity index(s), species richness(R) and evenness (E) of each plant community

<table>
<thead>
<tr>
<th>Plant community</th>
<th>Shannon weiner diversity</th>
<th>Species richness</th>
<th>Evenness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juniperus procera - Calpurnia aurea</td>
<td>2.74</td>
<td>22</td>
<td>0.88</td>
</tr>
<tr>
<td>Podocarpus falcatus - Olea capensis</td>
<td>2.21</td>
<td>26</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Table 3 Comparison of species diversity index and species richness measures for the study area and other forests in Ethiopia

<table>
<thead>
<tr>
<th>Forest site</th>
<th>Forest area (ha)</th>
<th>No of plot(plot area ha-1)</th>
<th>Diversity index</th>
<th>Species evenness</th>
<th>Species richness</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatira George's</td>
<td>2.4</td>
<td>9(0.36)</td>
<td>2.88</td>
<td>0.82</td>
<td>34</td>
<td>Present study</td>
</tr>
<tr>
<td>Ascha</td>
<td>1.6</td>
<td>7(0.28)</td>
<td>2</td>
<td>0.63</td>
<td>22</td>
<td>42</td>
</tr>
<tr>
<td>Hiruy</td>
<td>4</td>
<td>14(0.56)</td>
<td>2.6</td>
<td>0.75</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Zegie</td>
<td>132</td>
<td>132(5.28)</td>
<td>3.72</td>
<td>0.84</td>
<td>113</td>
<td>41</td>
</tr>
</tbody>
</table>

Table 4 Sorenson’s similarity between plant communities

<table>
<thead>
<tr>
<th>Plant community type</th>
<th>Juniperus procera - Calpurnia aurea</th>
<th>Podocarpus falcatus - Olea capensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juniperus procera - Calpurnia aurea</td>
<td>1</td>
<td>85.7</td>
</tr>
<tr>
<td>Podocarpus falcatus - Olea capensis</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5 Density of matures woody species of the study area at different DBH ranges

<table>
<thead>
<tr>
<th>DBH(cm)</th>
<th>Density ha-1</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>2<DBH<10cm</td>
<td>1009</td>
<td>87.3</td>
</tr>
<tr>
<td>10cm<DBH<20cm</td>
<td>90</td>
<td>7.8</td>
</tr>
<tr>
<td>DBH>20cm</td>
<td>57</td>
<td>4.9</td>
</tr>
<tr>
<td>Total</td>
<td>1156</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 6 Comparison of tree densities with DBH between 10 and 20(a), and >20 cm (b) of the study area with other forests in Ethiopia arranged in an increasing order of a/b values

<table>
<thead>
<tr>
<th>Forests</th>
<th>a) 10cm<DBH<20cm</th>
<th>B) DBH>20cm</th>
<th>a/b</th>
<th>Vegetation type</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatira Georgis</td>
<td>90</td>
<td>57</td>
<td>1.58</td>
<td>Dry Afromontane</td>
<td>Present study</td>
</tr>
<tr>
<td>Sesa Mariam</td>
<td>431.86</td>
<td>578.9</td>
<td>0.75</td>
<td>Dry Afromontane</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 7 DBH class, the density of plant species and basal area in Gatira George’s forest

<table>
<thead>
<tr>
<th>DBH Class</th>
<th>No. Species</th>
<th>Density ha-1</th>
<th>Aver.DBH(m)</th>
<th>BA(m2 ha-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td><2.5cm</td>
<td>28</td>
<td>444</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>2.5-5cm</td>
<td>17</td>
<td>350</td>
<td>0.04</td>
<td>0.44</td>
</tr>
<tr>
<td>5.1-10cm</td>
<td>15</td>
<td>215</td>
<td>0.07</td>
<td>0.83</td>
</tr>
<tr>
<td>10.1-15cm</td>
<td>10</td>
<td>62</td>
<td>0.12</td>
<td>0.7</td>
</tr>
<tr>
<td>15.1-20cm</td>
<td>5</td>
<td>28</td>
<td>0.18</td>
<td>0.71</td>
</tr>
<tr>
<td>20.1-.25cm</td>
<td>3</td>
<td>12</td>
<td>0.23</td>
<td>0.5</td>
</tr>
<tr>
<td>25.1-30cm</td>
<td>3</td>
<td>4</td>
<td>0.3</td>
<td>0.28</td>
</tr>
<tr>
<td>30.1-35cm</td>
<td>3</td>
<td>4</td>
<td>0.32</td>
<td>0.32</td>
</tr>
<tr>
<td>>35cm</td>
<td>6</td>
<td>37</td>
<td>0.68</td>
<td>13.43</td>
</tr>
</tbody>
</table>

Figure 4 The DBH class of Gatira George’s forest.

Figure 5 DBH class distribution showing an irregular shape a and b.

Figure 6 DBH class distribution showing an inverted J shape c and d.

Basal area

The normal value of basal area in Africa is expected to be between 23-37 m²/ha reported by Lamprecht. In this regards, the total basal area of Gatira George’s forest sites was recorded (7.84 m²/ha⁻¹) (Table 8). The total basal area of the study area is larger than reported by from churches of North Gonder, North Western Ethiopia. However, the total basal area recorded in the study areas are less than Tara Gedam (115.36 m²/ha⁻¹) and Sesa Mariam monastery (94.81 m²/ha⁻¹).

Importance value index (IVI)

The highest IVI value was contributed by *Ekebrgia capensis* in Gatira George’s forest and its basal area contribution was highest i.e.; 3.48 m²/ha⁻¹. As indicated in IUFRO classification scheme, IVI value is used for comparison of ecological significant of species in which high IVI values indicate that the species structure in the community is high. According to Grubb et al., IVI is a good measure for summarizing vegetation characteristics of a given habitat and also useful to compare the ecological significance of species and for conservation practices. In the present study, IVI of species varied from 1.2 (3.2 % of the total IVI) to 48.4 (16.1 %) and only three species contributed 35.7 % of the IVIs (Table 9).

According to Simon and Girma, Species with less than 10 ranks in the IVI values deserve appropriate conservation measures. In this regards, the least IVI value of 1.3 was recorded for species such as *Capparis tomentosa*, *Prunus africana*, *Rumex nervosus*, *Rosa abyssinica*, *Rhamnus prinodes*, *Dodonea angustifolia*, *Dovyalis abyssinica* and *Ficus ovate* and species identified less than ten in IVI values deserve appropriate conservation measures.

Forest canopy layers

The implication of having 94.4% lower canopy, 5% middle and <0.59% upper canopy of the study area is related to the similarity of tree and shrubs species and their growth nature. Most of the visible gaps were filled up with the under story species canopy mainly covered by trees and shrub species. In addition, density/ha decrease from lower to upper strata. The canopy layers structure is similar to remnant dry afromontane natural forest patch within Deberiabones Monastery reported by Getachew, et al. The highest mean height also recorded in the upper canopy followed by middle canopy layers. However, the highest densities were recorded in the lower canopies followed by middle canopies implies the most number of trees and shrubs are found in the lower canopy (Table 10). The ratio of upper canopy relative to the middle and lower canopy is also less than 12%. It is similar to Nigerian strict nature reserve reported by Vector et al.
Table 8 Comparison of Basal area distribution of Gatira George's forest with other forests in Ethiopia

<table>
<thead>
<tr>
<th>Forest site</th>
<th>Basal area(m² ha⁻¹)</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatira George's</td>
<td>7.84</td>
<td>Present study</td>
</tr>
<tr>
<td>Ascha</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>Hiruy</td>
<td>2</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 9 Frequency, relative frequency, density, relative density, basal area, relative basal area and IVI values of woody species (DBH>2cm) in Gatira George's forest according to decreasing order of the importance value index (IVI)

<table>
<thead>
<tr>
<th>Species</th>
<th>Mean.Basal area</th>
<th>Density ha⁻¹</th>
<th>Relative density</th>
<th>BA ha⁻¹</th>
<th>Relative BA%</th>
<th>Frequency</th>
<th>RF%</th>
<th>IVI%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ekeburgia capensis</td>
<td>0.314</td>
<td>11.1</td>
<td>1</td>
<td>3.48</td>
<td>44.4</td>
<td>33.3</td>
<td>3</td>
<td>48.4</td>
</tr>
<tr>
<td>Juniperus procera</td>
<td>0.0064</td>
<td>183.3</td>
<td>15.9</td>
<td>1.17</td>
<td>14.9</td>
<td>66.7</td>
<td>6.1</td>
<td>36.9</td>
</tr>
<tr>
<td>Olea europaea</td>
<td>0.0052</td>
<td>116.7</td>
<td>10.1</td>
<td>0.6</td>
<td>7.7</td>
<td>44.4</td>
<td>4</td>
<td>21.8</td>
</tr>
<tr>
<td>Celtis africana</td>
<td>0.011</td>
<td>41.7</td>
<td>3.6</td>
<td>0.45</td>
<td>5.7</td>
<td>66.7</td>
<td>6.1</td>
<td>15.4</td>
</tr>
<tr>
<td>Olea capensis</td>
<td>0.00104</td>
<td>88.9</td>
<td>7.7</td>
<td>0.09</td>
<td>1.1</td>
<td>66.7</td>
<td>6.1</td>
<td>14.9</td>
</tr>
<tr>
<td>Codia africana</td>
<td>0.0387</td>
<td>16.7</td>
<td>1.4</td>
<td>0.64</td>
<td>8.2</td>
<td>55.6</td>
<td>5.1</td>
<td>14.7</td>
</tr>
<tr>
<td>Ehuertia cymosa</td>
<td>0.0032</td>
<td>52.8</td>
<td>4.6</td>
<td>0.1697</td>
<td>2.2</td>
<td>55.6</td>
<td>5.1</td>
<td>11.9</td>
</tr>
<tr>
<td>Justica shimperiana</td>
<td>0.00012</td>
<td>88.9</td>
<td>7.7</td>
<td>0.01</td>
<td>0.1</td>
<td>44.4</td>
<td>4</td>
<td>11.8</td>
</tr>
<tr>
<td>Euclea schimperi</td>
<td>0.00197</td>
<td>69.4</td>
<td>6</td>
<td>0.14</td>
<td>1.8</td>
<td>44.4</td>
<td>4</td>
<td>11.8</td>
</tr>
<tr>
<td>Calpurnia aurea</td>
<td>0.00051</td>
<td>91.7</td>
<td>7.9</td>
<td>0.05</td>
<td>0.6</td>
<td>33.3</td>
<td>3</td>
<td>11.5</td>
</tr>
<tr>
<td>Podocarpus falcatus</td>
<td>0.0065</td>
<td>44.4</td>
<td>3.8</td>
<td>0.29</td>
<td>3.7</td>
<td>44.4</td>
<td>4</td>
<td>11.5</td>
</tr>
<tr>
<td>Grewia furginea</td>
<td>0.00053</td>
<td>72.2</td>
<td>6.3</td>
<td>0.04</td>
<td>0.5</td>
<td>44.4</td>
<td>4</td>
<td>10.8</td>
</tr>
<tr>
<td>Rhus nataliensis</td>
<td>0.00095</td>
<td>47.2</td>
<td>4.1</td>
<td>0.04</td>
<td>0.5</td>
<td>44.4</td>
<td>4</td>
<td>8.6</td>
</tr>
<tr>
<td>Euphorbia candelabrum</td>
<td>0.0047</td>
<td>36.1</td>
<td>3.1</td>
<td>0.17</td>
<td>2.2</td>
<td>33.3</td>
<td>3</td>
<td>8.3</td>
</tr>
<tr>
<td>Croton macrostachyus</td>
<td>0.0158</td>
<td>16.7</td>
<td>1.4</td>
<td>0.26</td>
<td>3.3</td>
<td>33.3</td>
<td>3</td>
<td>7.7</td>
</tr>
<tr>
<td>Premna schimperi</td>
<td>0.0002</td>
<td>13.9</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>55.6</td>
<td>5.1</td>
<td>6.3</td>
</tr>
<tr>
<td>carissa spinarium</td>
<td>0.00083</td>
<td>30.6</td>
<td>2.6</td>
<td>0.03</td>
<td>0.4</td>
<td>22.2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Pavetta oliveriana</td>
<td>0.00005</td>
<td>22.2</td>
<td>1.9</td>
<td>0.00116</td>
<td>0.01</td>
<td>33.3</td>
<td>3</td>
<td>4.9</td>
</tr>
<tr>
<td>Pouvria altissma</td>
<td>0.00038</td>
<td>19.4</td>
<td>1.7</td>
<td>0.01</td>
<td>0.1</td>
<td>33.3</td>
<td>3</td>
<td>4.8</td>
</tr>
<tr>
<td>Ocimum lamifolium</td>
<td>5.28E-05</td>
<td>13.9</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>33.3</td>
<td>3</td>
<td>4.2</td>
</tr>
<tr>
<td>Maytenus arbifolia</td>
<td>0.00029</td>
<td>19.4</td>
<td>1.7</td>
<td>0.01</td>
<td>0.1</td>
<td>22.2</td>
<td>2</td>
<td>3.8</td>
</tr>
<tr>
<td>Bersama abyssinica</td>
<td>0.06422</td>
<td>2.8</td>
<td>0.2</td>
<td>0.18</td>
<td>2.3</td>
<td>11.1</td>
<td>1</td>
<td>3.5</td>
</tr>
<tr>
<td>Pterolobiumstellatum</td>
<td>0.00025</td>
<td>13.9</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
<td>22.2</td>
<td>2</td>
<td>3.2</td>
</tr>
<tr>
<td>Solanum incanum</td>
<td>0.000127</td>
<td>8.3</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>22.2</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>phytoacca dodecandral</td>
<td>0.001256</td>
<td>5.6</td>
<td>0.5</td>
<td>0.01</td>
<td>0.1</td>
<td>22.2</td>
<td>2</td>
<td>2.6</td>
</tr>
<tr>
<td>Opuntia ficus indica</td>
<td>0.0005</td>
<td>5.6</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>22.2</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>Dodonea angustifolia</td>
<td>0.00049</td>
<td>2.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>11.1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Prunus africana</td>
<td>0.00025</td>
<td>2.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>11.1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Rhamnus prinodes</td>
<td>0.000201</td>
<td>2.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>11.1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Rosa abyssinica</td>
<td>0.000201</td>
<td>2.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>11.1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Doyayalbyssinica</td>
<td>0.00013</td>
<td>2.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>11.1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Ficus ovata</td>
<td>5.67E-05</td>
<td>2.8</td>
<td>0.2</td>
<td>0.0002</td>
<td>0.003</td>
<td>11.1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Rumex nervosus</td>
<td>0.000064</td>
<td>2.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>11.1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Capparis tomentosa</td>
<td>0.000028</td>
<td>2.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>11.1</td>
<td>1</td>
<td>1.2</td>
</tr>
<tr>
<td>Total</td>
<td>0.47951</td>
<td>1155.6</td>
<td>100</td>
<td>7.84106</td>
<td>100</td>
<td>1100</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

Conclusion and recommendation

The major families identified in Gatira George's forest include Boraginaceae, Euphorbiaceae, Fabaceae, Oleaceae, Rosaceae, Sapindaceae and Tiliaceae (2 species each) accounts 25.9%. The result of hierarchical cluster analysis of the forest revealed two communities identified in Gatira George’s forest; namely Juniperus procera -Calpurnia aurea Community type 1 and Podocarpus falcatus-Olea capensis (community type 2).

The highest species diversity and evenness is attained in Juniperus procera -Calpurnia aurea community type. High species diversity in the forest implies a good source of forest products and needs conservation priority.

IVI analysis showed that considerable proportions of species are not well represented in the forest and are rare. The highest IVI value was contributed by Ekebryia capensis in Gatira George’s forest.

The density of woody species decreases with increasing DBH, however, the highest basal area recorded in the larger DBH class implies the larger trees in Gatira George’s forest are well protected. Analysis of structural status of the forest indicated that several species have abnormal population structure and predominance of small sized individuals in the lower diameter classes imply good reproduction potential and rare occurrence of large individuals. Moreover, the analysis of population structure in the forest implies that some tree species have no or few individuals at a lower size classes. These species need urgent conservation measures that would bring healthy regeneration.

Based on the findings the following recommendation was forwarded:

- Species with low IVI needs to be prioritized for conservation.
- To prevent local extinction of rare species, effort of nursery establishment and plantation of indigenous species should be practiced.
- Detailed ethno botanical studies are required to explore the wealth of indigenous knowledge on the diverse use of plants and their implication to conservation.
- Sustainable protection and management of the forests needed through the collaborative effort of the government, NGO and the local community.
- Regeneration and soil status of the forest should be further investigated from remnant forest on suitable basis.

Acknowledgments

I acknowledge the Amhara Agriculture Research Institute as well as Sirinka Agriculture Research Centre for financing the research activities and Tesfaye Mitkeya, Binayam Tefera and Habetamu Yimer, church guard (Wurgessa), Gezagehgn Getachew, Solomon Wondatitor, Addisie Degu and Tesfaye Wubu(sirinka Agricultural research center), Mistre Yefru, Endale Abay and Gaurema Gerbaba from Addis Ababa University who helps in identifying scientific names of plants also acknowledged. Finally, I would like to acknowledge and appreciate the encouragement and patience of my lovely wife, during the whole study period.

Conflicts of interest

The author declares there are no conflicts of interest.

References

Table 10: The mean height, density, species number and individual to species ratio by canopy story in the study area

<table>
<thead>
<tr>
<th>Forest site</th>
<th>Forest strata</th>
<th>Mean height(m)</th>
<th>Density/ha(a)</th>
<th>Species number(b)</th>
<th>Ratio a/b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gatira george's</td>
<td>Upper</td>
<td>29.3</td>
<td>5</td>
<td>2</td>
<td>2.8:1</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>14.4</td>
<td>39</td>
<td>9</td>
<td>5.2:1</td>
</tr>
<tr>
<td></td>
<td>lower</td>
<td>3.5</td>
<td>744</td>
<td>32</td>
<td>27.8:1</td>
</tr>
</tbody>
</table>

33. Lamprecht H. Sericulture in the tropics. Tropical forest ecosystems and their tree species possibilities and methods are the long-term utilization. 1989.
42. Alemayehu W. Opportunities, Constraints and Prospects of the Ethiopian Orthodox Tewahido Churches in Conserving Forest Resources: The Case of Churches in South Gonder, Northern Ethiopia. 2002.