Introduction

African locust bean (Parkia biglobosa) seed was fermented to a protein based soup and stew additive. Fermentation was carried out for three days after which the fermented seeds were oven dried at a very low temperature for four days. Dried fermented seed were powdered and compressed using the fabricated mold into cubes.

Keywords: locust beans, fermentation, mold, Parkia biglobosa

Materials and methods

Raw materials

African locust bean seeds were bought from open market at the 6°40'48.47''N, 3° 9'19.6''E. The starter cultures used were freshly prepared in the Microbiology laboratory, Covenant University, Ota, Nigeria using method.

Preparation of seed

The raw seed were processed according to Figure 1 & Figure 2.

Fabrication of mold

Aluminium material was used for the fabrication of the mold. The mold is 15.5cm long with 3cm wide cubes. The lock hole is 0.3cm to allow the upper part of the mold to key in tightly into the lower part. A passage for excesses was built into the mold to allow over flow of excess materials. Fermented oven dried samples were molded into cubes which can be used as soup additives (Figure 3 & Figure 4).

Figure 1 Boiled African locust seeds.

Figure 2 Processed African locust bean seeds.
Protein based condiment cube mold

Figure 3 Dimension of the fabricated mold.

Figure 4 The mold.

Conclusion
Aluminium material is food friendly, hence it was chosen for the mold fabrication. It gave a good shape for the moulded samples [cubes]. Literature revealed that apart from various health benefit embedded in fermented African locust bean seed, is very rich in plant based protein, hence the cubes produced can be used as a substitute to meat or any other protein used in cooking soup.12,13,16–19

Funding
None.

Acknowledgments
I wish to use this medium to acknowledge Dr. Ojewumi M.E. for the supervision of my final year research project.

Conflicts of interest
Authors declares there is no conflicts of interest.

References

Citation: Ojewumi ME, Adenuga BA. Protein based condiment cube mold. Biodiversity Int J. 2019;3(4):179–180. DOI: 10.15406/bij.2019.03.00143