

Potential of Panamanian aromatic flora as a source of novel essential oils

Abstract

Background: Flora of Panama is one of the richest in the world and occupies fourth place in vascular plant diversity in the American content. Many plants of the families interalia Apiaceae, Asteraceae, Lauraceae, Lamiaceae, Myrtaceae, Piperaceae, Rutaceae, Rosaceae and Sapindaceae have yielded essential oils (EOs). A summary of results on chemical composition and biological activities of 20 EOs from selected Panamanian plants is provided here, which shows the potential of aromatic flora of Panama. Six species of *Piper* had sesquiterpene hydrocarbons as major components, three were characterized by monoterpenoid hydrocarbons, and one by a phenylpropanoid, dillapiole. EOs of *P. hispidum* and *P. longisicum* at a concentration of 250 μ g/ml showed larvicidal activity against *Aedes aegypti*, while *P. multiplinervium* against *Helicobacter pylori* (IC_{50} = 0.1 μ g/mL). The main components of EOs from 9 species belonging to 4 genera: *Eugenia*, *Calyptanthes*, *Eugenia*, *Plinia*, and *Myrcia* were sesquiterpene hydrocarbons (*E*-caryophyllene) or oxygenated sesquiterpenes (α -bisabolol). EO of *E. acapulensis* showed strong antimicrobial activity against *Staphylococcus aureus* (MIC = 125 μ g/mL) and *Mycobacteria smegmatis* (MIC = 250 μ g/mL).

Keywords: aromatic flora, Panama, essential oils, biological activities, *Myrtaceae*, *Piperaceae*

Volume 2 Issue 5 - 2018

 Ana I Santana,^{1,2} Mahabir P Gupta²
¹School of Chemistry, Faculty of Natural Sciences, University of Panama, Panama

²Center for Pharmacognostic Research on Panamanian Flora, School of Pharmacy, University of Panama, Panama

Correspondence: Mahabir P Gupta, Center for Pharmacognostic Research on Panamanian Flora, School of Pharmacy, University of Panama, Box 0824-00172, Panama, Tel +507 5236305, Email mahabirpgupta@gmail.com

Received: August 29, 2018 | Published: September 14, 2018

Introduction

Essential oils are widely distributed in nature and are found in conifers, Myrtaceae, Rutaceae, Lamiaceae, Umbelliferae, Asteraceae, Rosaceae, Lauraceae, among others. Approximately 100 species are known to be the source of essential oils in the world, but there are more than 2000 species of plants distributed in more than 60 families, which are potential sources of novel essential oils. Approximately 300 essential oils out of an estimated number of 3000 are commercially important in the world. Currently, the world production and use of essential oils is increasing rapidly. It is estimated that world production of essential oils varies from 40,000 to 60,000 tons per year, with a market value of US\$700 million. The countries which dominate the market are Brazil, China, U.S.A., Indonesia, India and Mexico, however the main consumers are the U.S.A. European Union and Japan.¹ Essential oils find diverse uses in food industry, perfumery and cosmetics, aromatherapy, and pharmaceutical industry.² Many essential oils are used as antiseptic, flavoring agents, expectorants, carminatives, euphatics, antispasmodics and analgesics, among others. Ethnobotanical and chemical components from most prevalent species of *Piper* from Panama have been recently reviewed by our group.³ This minireview aims to provide summarized information on the chemistry and biological activities of EOs from most prevalent aromatic species in the Panamanian Flora studied in our Center.

Methodology

For this minireview, the data were collected from our published and unpublished work on the Panamanian Aromatic Flora. In addition, literature search on Panamanian species was carried out using different databases.

Aromatic flora of panama

The Table 1 shows important plants families, with number of

genera, species, including endemic which are of potential importance as a source of novel essential oils.²

Table 1 Families, Genera, Species represented in Panama^a

Family	No of genera	No of species	No. of endemic species	Principal genera
Apiaceae	12	22	1	<i>Hydrocotyle</i> (6) <i>Myrrhidendron</i> (3) <i>Mikania</i> (18)
Asteraceae	137	303	39	<i>Neomirandea</i> (14)
Chloranthaceae	1	9	2	<i>Hedyosmum</i> (9)
Lamiaceae	10	50	3	<i>Hyptis</i> (20) <i>Salvia</i> (11)
Lauraceae	13	107	10	<i>Ocotea</i> (45) <i>Nectandra</i> (17)
Myricaceae	1	1	-	<i>Morella</i> (1)
Myrtaceae	17	72	6	<i>Eugenia</i> (26) <i>Myrcia</i> (6) <i>Piper</i> (139)
Piperaceae	5	242	50	<i>Peperomia</i> (100)
Rosaceae	10	19	3	<i>Rubus</i> (5)
Rutaceae	15	38	4	<i>Zanthoxylum</i> (13) <i>Citrus</i> (6)
Sapindaceae	16	94	17	<i>Paulina</i> (39) <i>Serjania</i> (16)
Zygophyllaceae	2	5	-	<i>Kalstroemia</i> (3)

^avalue in parenthesis indicates number of species

Chemical composition of essential oils of selected species

Over the last 20 years, we have studied chemical composition of 37 essential oils and evaluated biological activity of 18. The chemical composition of essential oils was analyzed by a combination of GC-FID and GC-MS procedures using capillary columns with HP-5MS, methylsilicone SE-30, Carbowax. Identification of components was achieved by means of their GC retention indices, determined in relation to Kovat indices, and by comparison of fragmentation patterns in the mass spectra with those stored in our own library, in the GC-MS database and with literature data (Adams, NIST,

Wiley).⁴ Quantification of each compound was performed on the basis of their GC peak areas. Plants were collected from different places in Panama, their taxonomic identification was established by Alex Espinosa and Carlos Guerra. The essential oil was obtained by hydrodistillation using Cleavenger type apparatus described in the European Pharmacopoeia (Table 2).⁵

Biological activity of essential oils studied

Antimicrobial, antifungal, larvicidal, anti- *Helicobacter pylori* activities were evaluated according to the published protocols (Table 3).^{14,2}

Table 2 Chemical composition of different essential oils studied

Family	Species	Plant part	Main components	Reference
Lamiaceae	<i>Ocimum basilicum</i> L. (FLORPAN 8366)	Leaves	methyl eugenol (78,7%) germacrene D (3,1%) spathulenol (19,3%)	Santana et al. ⁶
Lauraceae	<i>Protium confusum</i> (Rose) Pittier (FLORPAN 2932)	Leaves	β -caryophyllene oxide (14,1%) β -caryophyllene (8,0%)	Santana et al. ⁷
		Fruits	limonene (60,2%)	Santana et al. ⁷
		Bark	<i>p</i> -cymen-8-ol (14,4%) spathulenol (9,5%) hexadecanoic acid (8,4%)	Santana et al. ⁷
		Stem	<i>p</i> -cymen-8-ol (6,1%) spathulenol (9,0%) hexadecanoic acid (7,8%)	Santana et al. ⁷
Monimiaceae	<i>Siparuna thecaphora</i> (Poepp). Et Endl.) A.DC.	Leaves	spathulenol (9,4%) α -copaene (4,5%) α -cadinol (3,6%)	Vila et al. ⁸
Myrtaceae	<i>Calycolpus warszewiczianus</i> O. Berg (FLORPAN 8353)	Leaves	<i>E</i> -caryophyllene (24,3%) β -selinene (16,8%) α -selinene (14,7%) δ -amorphene (5,2%)	Santana et al. ⁹
	<i>Calyptrothecia hylobates</i> Standl. Ex. Amshoff (FLORPAN 8852)	Leaves	carotol (29,8 %) elemicine (23,7 %) myristicin (18,0 %) α -selinene (5,4 %) β -(<i>E</i>)-farnesene (4,7 %)	Santana et al. ¹⁰
	<i>Calyptrothecia microphylla</i> B. Holts & M.L. (FLORPAN 8843)	Leaves	α -pinene (48,4%) β -bisabolene (12,0%) β -pinene (4,5%) <i>trans</i> -caryophyllene (3,4%) <i>cis</i> -pinocarveol (3,7%)	Santana et al. ¹¹
	<i>Eugenia acapulcensis</i> Steud (FLORPAN 2630)	Leaves	cadinol (4,2%) spathulenol (4,2%) <i>trans</i> -pinocarveol (4,2%)	Vila et al. ¹²

Table Continued

Family	Species	Plant part	Main components	Reference
			δ -cadinene (3,8%) (Z)-nerolidol (3,5%)	
	Eugenia octopleura Krug & Urb (FLORPAN 8548)	Leaves	α -pinene (43,1%) limonene (23,6%) β -ocimene (5,5%) viridiflorol (3,6%) linalool (3,0%)	Santana et al. ¹¹
	Eugenia principium Mac Vaugh (FLORPAN 8362)	Leaves	<i>E</i> -caryophyllene (12,7%) valerenol (6,9%) 10- <i>epi</i> - γ -eudesmol (5,6%)	Santana et al. ⁹
	Eugenia venezuelensis O. Berg (FLORPAN 8359)	Leaves	α -pinene (24,5%) β -pinene (27,4%) germacrene B (8,7%)	Santana et al. ⁹
	Myrcia aff fosteri Croat (FLORPAN 8544)	Leaves	α -bisabolol (19,2%) β -bisabolene oxide (19,3%) β -bisabolol B oxide (7,0%) caryophyllene oxide (3,5%)	Santana et al. ¹¹
	Myrcia platyclada DC (FLORPAN 6631)	Leaves	stragol (95,0%)	Santana et al. ¹³
	Plinia cerrocampaenensis Barrie (FLORPAN 6623)	Leaves	α -bisabolol (42,3%)	Vila et al. ¹⁴
Piperaceae	Piper aduncum L. (FLORPAN 3264)	Leaves	β -caryophyllene (17.4%) aromadendrene (13.4%) α -pinene (8,8%) linalool (8,6%) limonene (4,3%)	Durant et al. ¹⁵ Vila et al. ¹⁶
	Piper amalago L. (FLORPAN 3014)	Spikes	2-octanoyl-3-hydroxycyclohex-2-en-1-one (38,9%) β -pinene (26,8%) 2-hexanoyl-3-hydroxycyclohex-2-en-1-one (14,6%) α -pinene (11,5%)	Freixa et al. ¹⁷
		Stems	2-octanoyl-3-hydroxycyclohex-2-en-1-one (74,7%) β -pinene (3,8%) 2-hexanoyl-3-hydroxycyclohex-2-en-1-one (11,1%) '2-Decanoyl-3-hydroxycyclohex-2-en-1-one (3,2%)	Freixa et al. ¹⁷
		Branches	α -thujone (4,1%) 2-octanoyl-3-hydroxycyclohex-2-en-1-one (64,8%) 2-hexanoyl-3-hydroxycyclohex-2-en-1-one (9,0%)	Freixa et al. ¹⁷
		Leaves	2-octanoyl-3-hydroxycyclohex-2-en-1-one (41,8%) α -selinene (9,5%) β -bisabolene (7,3%)	Freixa et al. ¹⁷

Table Continued

Family	Species	Plant part	Main components	Reference
			2-hexanoyl-3-hidroxycyclohex-2-en-1-one (7,7%) β -caryophyllene (4,9%) β -sesquiphellandrene (4,5%)	
	<i>Piper arboreum</i> Aublet (FLORPAN 2484)	Leaves	δ -cadinene (25,8%) α -copaene (7,4%) β -pinene (6,6%) germacrene D (5,3%) 6E-nerolidol (5,2%) β -caryophyllene (4,4%) α -pinene (4,3%) α -muurolene (4,2%) sabinene (4,0%)	Mundina et al. ¹⁸
	<i>Piper augustum</i> Rudge (FLORPAN 4654)	Leaves	cembrene 11,7%) cembratrienol 1*(25,4%) cembratrienol 2* (8,6%) α -pinene (6,0%) β -elemene (12,3%) β -caryophyllene (3,8%)	Rodríguez et al. ¹⁹
	<i>Piper corrugatum</i> Kuntze (FLORPAN 4653)	Leaves	β -pinene (26,6%) 6E-nerolidol (12,8%) α -pinene (12,2%) <i>p</i> -cymene (8,6%) β -phellandrene (8,2%) 1,8-cineole (5,9%) α -phellandrene (4,7%) linalool (4,2%)	Mundina et al. ¹⁸
	<i>Piper curtisicum</i> C.DC. (FLORPAN 3263)	Leaves	α -pinene (19,4%) β -caryophyllene (13,9%) limonene (8,1%) δ -cadinene (3,7%)	Rodríguez et al. ¹⁹
	<i>Piper darienense</i> C.DC. (FLORPAN 4643)	Leaves	<i>trans</i> - β -farnesene (63,7%) limonene (6,3%) camphene (3,4%) <i>p</i> -cymene (3,3%)	Rodríguez et al. ¹⁹
	<i>Piper fimbriulatum</i> C.DC. (FLORPAN 2479)	Leaves	germacrene D (12,8%) β -caryophyllene ((11,3%) linalool (5,3%) linalyl acetate (5,3%)	Mundina et al. ¹⁸
	<i>Piper friedrichsthali</i> (FLORPAN 3107)	Leaves	11-selin-4- α -ol (12,8%) α -selinene (12,0%) β -selinene (7,9%) germacrene D (9,6%) β -caryophyllene (4,3%) spathulenol (4,3%)	Vila et al. ²⁰

Table Continued

Family	Species	Plant part	Main components	Reference		
			δ -cadinene (4,2%) α -copaene (3,3%)			
			<i>Piper grande</i> Vahl. (FLORPAN 6653)	Leaves	p -cymene (43,9%) β -pinene (14,5%) γ -terpinene (8,0%) α -pinene (6,3%)	Rodríguez et al. ¹⁹
			<i>Piper hispidum</i> Sw. (FLORPAN 3266)	Leaves	dillapiol (57,7%) piperitone (10,0%) β -caryophyllene (4,3%)	Rodríguez et al. ¹⁹
			<i>Piper jacquemontianum</i> Kunth. (FLORPAN 6611)	Leaves	linalool (14,5%) α -phellandrene (13,8%) limonene (12,2%) β -pinene (10,1%) α -pinene (9,6%) p -cymene (7,4%) <i>6E</i> -nerolidol (4,6%)	Rodríguez et al. ¹⁹
			<i>Piper longispicum</i> C.DC. (FLORPAN 3265)	Leaves	β -caryophyllene (45,2%) α -copaene (3,4%) caryophyllene oxide (5,5%) spathulenol (3,8%) germacrene D (3,3%)	Rodríguez et al. ¹⁹
			<i>Piper marginatum</i> Jacq (FLORPAN 8367)	Leaves	isosafrol (34,4%) myristicin derivative (10,7%) γ -terpinene (10,5%)	Santana et al. ⁶
			<i>Piper multiplinervium</i> C.DC. (FLORPAN 6610)	Leaves	linalool (16,5%) α -phellandrene (11,8%) limonene (11,4%) p -cymene (9,4%) β -pinene (7,9%) α -pinene (7,1%) <i>6E</i> -nerolidol (5,5%)	Rodríguez et al. ¹⁹
			<i>Piper obliquum</i> Luis Lopez & Pavón (FLORPAN 2480)	Leaves	β -caryophyllene (27,6%) spathulenol (10,6%) caryophyllene oxide (8,3%) α -copaene (5,6%) β -bisabolene (4,5%) germacrene D (3,9%)	Rodríguez et al. ¹⁹
			<i>Piper reticulatum</i> L. (FLORPAN 3109)	Leaves	β -selinene (19,0%) β -elemene (16,1%) α -selinene (15,5%) spathulenol (6,1%)	Rodríguez et al. ¹⁹

Table Continued

Family	Species	Plant part	Main components	Reference
	<i>Piper trigonum</i> C.DC. (FLORPAN 3267)	Leaves	germacrene D (19,7%) α -copaene (6,0%) β -elemene (8,4%) δ -cadinene (7,2%) β -caryophyllene (7,1%) α -cadinol (5,8%) γ -muurulene (3,7%)	Rodríguez et al. ¹⁹

Table 3 shows the name of the species, family, and biological activity

Family	Species	Plant part	Biological activity	Reference
Lauraceae	<i>Protium confusum</i> (Rose) Pittier (FLORPAN 2932)	Leaves	Sa: 62.5 μ g/mL Ms: 62.5 μ g/mL No active: Ca, Ec, Kp, Sg, Pa. Active against <i>Aedes aegypti</i> (LC ₁₀₀ : 250 μ g/mL)	Santana et al. ⁷
		Fruits	Inactive against: Sa, Ms, Ca, Ec, Kp, Sg, Pa No active against <i>Aedes aegypti</i> (LC ₁₀₀ : 500 μ g/mL)	Santana et al. ⁷
		Bark	Sa: 500 μ g/mL Ms: 500 μ g/mL Inactive against: Ca, Ec, Kp, Sg, Pa Active against <i>Aedes aegypti</i> (LC ₁₀₀ : 125 μ g/mL)	Santana et al. ⁷
		Stem	Sa: 500 μ g/mL Ms: 500 μ g/mL Inactive against: Ca, Ec, Kp, Sg, Pa No active against <i>Aedes aegypti</i> (LC ₁₀₀ : 500 μ g/mL)	Santana et al. ⁷
			Disminution of elongation of lettuce seeds germination (250 μ g/mL)	Santana et al. ¹⁰
	<i>Calyptranthes hylobates</i> Standl. Ex. Amshoff (FLORPAN 8852)	Leaves	Inactive against: Sa, Bs, Pa, and Ksp.	Santana et al. ¹¹
			Strong antibacterial	Vila et al. ¹²
			Active against Sa and Ms at a concentration of 1,000 μ g/mL; the MIC=125 and 250 μ g/mL, respectively.	Vila et al. ¹²
	<i>Eugenia acapulcensis</i> Steud (FLORPAN 2630)	Leaves	Inactive against <i>A. aegypti</i>	Santana et al. ¹¹
			Inactive against: Sa, Bs, Pa and Ksp.	Santana et al. ¹¹
			Ec: > 1000 μ g/mL Sa: 125 μ g/mL Ms, Ca, Kp, Sg: 1000 μ g/mL Pa: 62,5 μ g/mL Ca, Ct, Sc, Cn, Afl, Ani, Afu, Mc, Ef CIM > 250 μ g/mL Mg: 125 μ g/mL	Vila et al. ¹⁴ Durant et al. ¹⁵

Table Continued

Family	Species	Plant part	Biological activity	Reference
			Tr. 62,5µg/mL Tm: 32µg/mL larvicidal activity = 10 µg/mL Anti- <i>Helicobacter pylori</i> activity: 0.1 µg/mL	
	<i>Myrcia aff fosteri</i> Croat (FLORPAN 8544)	Leaves	Good activity against <i>Sa</i> and <i>Bs</i> ; Inactive against Gram negative bacteria <i>Pa</i> and <i>Ksp</i> Inactive <i>in vitro</i> against seven cancer cell-lines: (M-14, DU-145, ME-180, H460, MCF-7, K562, HT-29) but was not toxic	Santana et al. ¹¹
Piperaceae	<i>Piper aduncum</i> L. (FLORPAN 3264)	Leaves	(M-14, DU-145, ME-180, H460, MCF-7, K562, HT-29) but was not toxic	Vila et al. ¹⁶
	<i>Piper amalago</i> L. (FLORPAN 3014)	Stems	2-Hexanoyl-3-hydroxycyclohex-2-en-1-one (75 mg) showed the highest activity against <i>C. albicans</i> and <i>S. cerevisiae</i> . 2-Octanoyl-3-hydroxycyclohex-2-en-1-one (230mg) was the most active against <i>C. lacto-condensi</i> .	Arroyo et al. ²⁵
	<i>Piper augustum</i> Rudge (FLORPAN 4654)	Leaves	2-Decanoyl-3-hydroxycyclohex-2-en-1-one (35mg) showed activity against <i>C. lacto-condensi</i> . Moderate biological activity against <i>Artemia salina</i> .	Freixa et al. ¹⁷
	<i>Piper curtispicum</i> C.DC. (FLORPAN 3263)	Leaves	Inactive against <i>Aedes aegypti</i> $LC_{100} > 500\mu\text{g/mL}$	Rodríguez et al. ¹⁹
	<i>Piper darienense</i> C.DC. (FLORPAN 4643)	Root	Piperkallosine, showed, local anesthetic activity	Delgado et al. ²⁶
	<i>Piper fimbriulatum</i> C.DC. (FLORPAN 2479)	Leaves	Active against <i>Aedes aegypti</i> (6.25mg/mL) and Active against <i>Plasmodium falciparum</i> (11mg/mL) and at 150mg/mL against <i>Aedes aegypti</i>	Rodríguez et al. ¹⁹
	<i>Piper grande</i> Vahl. (FLORPAN 6653)	Leaves	Inactive against: <i>Ec</i> , <i>Sa</i> , <i>Kp</i> , <i>Ms</i> , <i>Ca</i> , <i>Sg</i> , <i>Pa</i> and against fungal strains. Inactive against <i>Plasmodium falciparum</i>	Mundina et al. ¹⁸
	<i>Piper hispidum</i> Sw. (FLORPAN 3266)	Leaves	Active against <i>Aedes aegypti</i> ($LC_{100} = 250\mu\text{g/mL}$)	Calderón et al. ²⁷
	<i>Piper jacquemontianum</i> Kunth. (FLORPAN 6611)	Leaves	Inactive against bacterial and fungal strains tested	Rodríguez et al. ¹⁹
	<i>Piper longispiculum</i> C.DC. (FLORPAN 3265)	Leaves	Inactive against bacterial and fungal strains tested.	Mitscher et al. ²¹
	<i>Piper multiplinervium</i> C.DC. (FLORPAN 6610)	Leaves	Active against <i>Aedes aegypti</i> ($LC_{100} = 250\mu\text{g/mL}$)	Ríos JL et al. ²⁸
	<i>Piper reticulatum</i> L. (FLORPAN 3109)	Leaves	Inactive against <i>Aedes aegypti</i> ($LC_{100} > 500\mu\text{g/mL}$).	Rodríguez et al. ¹⁹
	<i>Piper trigonum</i> C.DC. (FLORPAN 3267)	Leaves	Inactive against <i>Aedes aegypti</i> and <i>Sa</i> , <i>Ec</i> , <i>Kp</i> , <i>Pa</i> , <i>Ms</i> .	Rodríguez et al. ¹⁹

Ec, *Escherichia coli*; *Sa*, *Staphylococcus aureus*; *Kp*, *Klebsiella pneumoniae*; *Kps*, *Klebsiella* sp; *Ms*, *Mycobacterium smegmatis*; *Ca*, *Candida albicans*; *Sg*, *Salmonella gallinarum*; *Pa*, *Pseudomonas aeruginosan* not active ($> 1000\mu\text{g/mL}$).

Ct, *Candida tropicalis*; *Sc*, *Saccharomyces cerevisiae*; *Cn*, *Cryptococcus neoformans*; *Afl*, *Aspergillus flavus*; *Ani*, *Aspergillus niger*; *Afu*, *Aspergillus fumigatus*; *Mg*, *M gypseum*; *Mc*, *M canis*; *Tr*, *T rubrum*, *T mentagrophytes*; *Ef*, *E floccosum*

Discussion and conclusions

It is interesting to note that many essential oils (EOs) are new and many have very high percentages of chemical constituents and some are mainly constituted by a single component, for example estragol (95%) in *Myrcia platicada*, methyl eugenol (78.7%) in *Ocimum basilicum* has use as a flavouring agent in confectionery, icecreams and other food items. It is also an attractant of male insects and has been used in programs of monitoring and control of insects.²⁹ *Protium confusum* has varied concentration of components in oils from different plant parts. In the EO from the stems limonene (60.2%) is the principal component. EO from the leaves was the most active against *Staphylococcus aureus* and *Mycobacterium smegmatis*, (MIC=62.5µg/mL). EO from the bark was active against *Aedes aegypti* (LC_{100} =125µg/mL).⁷ Most of our work has concentrated on more prevalent species of Myrtaceae and Piperaceae. EO from leaves of *Myrcia platyclada* was active against *Helicobacter pylori* at a concentration of 0.1µg/mL. This species was rich in stragole which has acaricidal, analgesic, antibacterial and anti-inflammatory activities. In addition, it finds application in perfumery and as a flavoring agent.¹³ EO of *Plinia cerrocampanensis* is an excellent source of α -bisabolol (42.8%), and showed activity against *Aedes aegypti*, and bacterial and fungal strains tested. The strongest activity was against *Staphylococcus aureus*, *Pseudomonas aeruginosa*, *Microsporum gypseum*, *Trichophyton mentagrophytes* and *Trichophyton rubrum* (MIC=32 to 125µg/mL). EO also was active against three strains of *Helicobacter pylori* (MIC and MBC 62.5µg/mL) and at a concentration of 500µg/mL caused 100% mortality of *A. aegypti*.¹² EO of *P. cerrocampanensis* at a concentration <10µg/mL showed activity against *Plasmodium falciparum*. This effect was synergistic when tested in combination with chloroquine.¹⁵ EO of *Calycolpus warszewiczianus* has been also studied in Costa Rica and the sesquiterpenes were the principal components (61.2% vs. 85.1% in Panama sample).³⁰

The main components of EO of *Eugenia principium* have shown antimicrobial, larvicidal and anti-inflammatory activities.¹¹ EO from the leaves of *Calyptrothecia hylobates* has carotol (29.8%), elemicin (23.7%), and myristicin (18.0%) and this species has been studied for the first time. EO showed inhibitory activity of seed germination of *Lactuca salvia*.¹⁰ EO from 18 species of Piper (Piperaceae) have been studied and the results are summarized in a review.³⁰ Larvicidal activity against *A. aegypti* of six essential oils was tested. Only two EOs from *P. hispidum* and *P. longispiculum* were active (LC_{100} =250µg/mL).¹⁹ *P. curtispiculum*, *P. multiplinervium*, *P. reticulatum* and *P. trigonum* were inactive (LC_{100} ≥500µg/mL). The essential oils of *P. grande*, *P. jacquemontianum*, and *P. multiplinervium* showed a significant antifungal activity (MIC>250µg/mL) against several yeasts and filamentous fungal strains. EOs from different parts of *Protium confusum* show antimicrobial activities against *Staphylococcus aureus* and *Mycobacterium smegmatis*, EO from the leaves being the most active (62.5µg/mL).

Acknowledgements

Thanks are due to the SNI Program of the National Secretariat for Science, Technology, and Innovation of Panama (SENACYT). Organization of American States for financial support and to the National Environment Authority (ANAM), Ministry of Environment for granting plant collection permission. Thanks are due to Dr. Susana Zacchino, University of Rosario, Argentina, for carrying out the antifungal activities studies and to Dr. Sergio Mendonca, San

Francisco University, Brazil for anti-Helicobacter pylori screening. Thanks are due to the Office of Vice President of Research and Graduate Studies, University of Panama for Grants No VIP-01-14-00-02-2005-02 and VIP 01-14-00-02-2013-05.

Conflict of interest

The author declares that there is no conflict of interest.

References

1. Bouayed J. *Nutrition, Well-Being and Health*. InTech Published online; 2012. 224 p.
2. Correa M, Galdames C, de Staf M. *Catálogo de las Plantas Vasculares de Panamá*. Primera Edición. Universidad de Panamá, Instituto Smithsonian de Investigaciones Tropicales. SA Bogotá, Colombia; 2004.
3. Durant-Archibald A, Santana AI, Gupta MP. Ethnomedical uses and pharmacological activities of most prevalent species of genus *Piper* in Panama: A review. *Journal of Ethnopharmacology*. 2018;217:63–82.
4. Adams RP. *Identification of Essential oils by gas chromatography mass spectroscopy*. Caron Stream IL, Allured; 1995.
5. European Directorate for the Quality of Medicines & Healthcare (EDQM). *European Pharmacopoeia*. 5th ed. Strasbourg, Council of Europe; 2005.
6. Santana AI, Pinzón E, Vergara I. *Composición de aceites esenciales de dos especies aromáticas*. Poster Presented at National Science Congress of Panama, APANAC, Panamá; 2014.
7. Santana AI, Vila R, Espinosa A, et al. Composition and biological activity of essential oils from *Protium confusum*. *Natural Products Communications*. 2009;4(10):1401–1406.
8. Vila R, Iglesias J, Cañigueral S, et al. Chemical Composition and Biological Activity of the Essential Oil from the leaf of *Siparuna tecaphrora* (Poepp. & Endl.) A.DC. *Journal of Essential Oil Research*. 2002;14(1):66–67.
9. Santana AI, Durant A. Composición química de los aceites esenciales de las hojas de *Calycolpus warszewiczianus* O. Berg, *Eugenia principium* McVaugh y *Eugenia venezuelensis* O. Berg. Congreso Latinoamericano de Química, Lima, Perú; 2014.
10. Santana AI, Vélez U, Gupta MP. Chemical composition of leaf essential oil from *Calyptrothecia hylobates* Standl. Ex Amshoff. Poster presented at The First International Flavor and Fragrance Conference, Cartagena, Colombia; 2017.
11. Santana AI, Vargas D, Espinosa A, et al. Chemical composition of leaf essential oils of *Calyptrothecia microphylla* B. Holts & M.L., *Myrcia aff fosteri* Croat and *Eugenia octopetala* Krug & Urb from Panama. *Journal of Essential Oil Research* 2011;23(5):36–40.
12. Vila R, Iglesias J, Cañigueral S, et al. Constituents and biological activity of the essential oil of *Eugenia acapulcensis* Steud. *Journal of Essential Oil Research*. 2004;16(4):384–386.
13. Santana AI, Pérez-Rosés R, Vila R, et al. Composición y actividad biológica del aceite esencial de las hojas de *Myrcia platyclada*. *Revista de Fitoterapia*. 2006;6(SI):55.
14. Vila R, Santana AI, Pérez-Rosés R, et al. Composition and biological activity of the essential oil from leaves of *Plinia cerrocampanensis*, a new source of α -bisabolol. *Biosource Technology*. 2010;101(7):2510–2514.
15. Durant A, Rodríguez C, Herrera L, et al. Anti-malarial activity and

HS-SPME-GC-MS chemical profiling of *Plinia cerrocampensis* leaf essential oil. *Malaria Journal*. 2014;13–18.

16. Vila R, Tomi F, Mundina M, et al. Unusual composition of the essential oils from the leaves of *Piper aduncum*. *Flavour and Fragrance Journal*. 2005;20(1):67–69.
17. Freixa B, Vila R, Santana AI. Poster Presented at 53th Annual Congress of the Society for Medicinal Plant Research. Florence, Italy; 2005.
18. Mundina M, Vila R, Tomi F, et al. Leaf essential oils of three Panamanian *Piper* species. *Phytochemistry*. 1998;47(7):1277–1282.
19. Rodriguez N, Rodriguez M, Calderon AI, et al. Anesthetic activity of Piperallosine from *Piper fimbriulatum*. *Revista Latinoamericana de Química*. 2005;33:115–120.
20. Vila R, Mundina M, Tomi F, et al. Constituents of the essential oils from *Piper friedrichsthali* C.DC. and *P. pseudolinderni* C. DC. from Central America. *Flavour and Fragrance Journal*. 2003;18(3):198–201.
21. Mitscher LA, Leu RP, Bathala MS, et al. Antibiotic agents from higher plants. I. Introduction, rationale, and methodology. *Lloydia*. 1971;35(2):157–166.
22. Cepleanu F. *Validation and applications of three bench-top bioassays for screening of crude plant extracts and subsequent activity-guided isolation*. Université de Lausanne, Lausanne, Switzerland; 1993.
23. Solís PN, Olmedo DA. *Un nuevo ensayo larvicida para detectar plantas con actividad anti-Aedes aegypti*. XV Congreso Científico Nacional. Panamá, República de Panamá; 1996.
24. Fujii Y, Matsuyama M, Hiradate S, et al. Development of new bioassay for volatile allelochemicals: dish pack method. *Weed Science Technology*. 2000;45:80–81.
25. Arroyo J, Herrera OC, Chávez-Asmat R, et al. Efecto antitumoral in vitro del aceite esencial de *Piper aduncum* L. (matico) y su toxicidad ora en ratones. *Anales de la Facultad de Medicina*. 2014;75(1):13–18.
26. Delgado A, Wilman A, de Díaz AMP. Alcaloides bencilisoquinolínicos del tallo de *Piper augustum* Rudge. *Revista Colombiana de Química*. 1998;27(1):13–21.
27. Calderón AI, Romero LI, Ortega-Barria E, et al. Evaluation of larvicidal and *in vitro* antiparasitic activities of plants in a biodiversity plot in the Altos de Campana National Park, Panama. *Pharmaceutical Biology*. 2006;44(7):487–498.
28. Ríos JL, Recio MC, Villar A. Screening methods for natural products with antimicrobial activity: A review of the literature. *J Ethnopharmacol*. 1988;23(2–3):127–149.
29. Kothari SK, Bhattacharya AK, Ramesh S. Essential oil yield and quality of methyl eugenol rich *Ocimum tenuiflorum* L.f. (syn. *O. sanctum* L.) grown in south India as influenced by method of harvest. *Journal of Chromatography A*. 2004;1051(1–2):67–72.
30. Tucker A, Maciarello M, Landrum L. Volatile leaf Oils of America Myrtaceae. II. *Calycolpus warszewiczianus* Berg of Costa Rica. *Journal of Essential Oil Research*. 1993;5(5):561–562.