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Introduction
Flexible cure rate modeling via discrete frailty under a minimum 

activation scheme1 focuses on describing, in a biological scenario, 
the process by which patients may achieve a cure by considering 
the competition among multiple risk factors, such as initiated cells 
or pathological agents. In this formulation, the central element is the 
latent number of risk factors, treated as a discrete random variable 
representing discrete frailty and capturing individual heterogeneity 
with respect to the population baseline risk.

The approach was initially developed by Yakovlev et al.,2 
Yakovlev,3 and Tsodikov et al.,4 and is referred to as the “first activation 
scheme” (or “time minimums”). This approach offers a framework 
for modeling competing risks in survival analysis. A more in-depth 
explanation of the concepts and methodology of the competing causes 
model applied to survival data analysis in clinical epidemiology was 
provided by Nie et al.5 Similarly, do Nascimento et al.6 examined the 
impact of covariates on the causes of death in patients with sickle 
cell anemia. In this context, it is assumed that activation triggers the 
event of interest; that is, the first activation among all latent factors is 
decisive for the manifestation of the event.

Initially, without considering overdispersion or additional 
hierarchical structure, Yakovlev et al.2 proposed the Poisson 
distribution to model this latent quantity, leading to the well-known 
promotion time model.7 In later works, the need to accommodate 
overdispersion led to considering a random Poisson mean following 
a gamma distribution, resulting in the Negative Binomial (NB) 

distribution. However, although widely used, the NB does not 
adequately distinguish the intrinsic variability of patients (internal 
effect) from variability arising from unobserved factors (external 
effect), hindering a more precise decomposition of heterogeneity.

From this perspective, the Waring distribution8 emerges as a 
more appropriate alternative, as its mixture structure allows greater 
flexibility in modeling different heterogeneity levels associated with 
the number of risk factors. The Waring distribution clearly separates 
the internal effect, associated with inherent biological characteristics 
of the individual, and the external effect, associated with unobserved 
covariates influencing risk. Consequently, this approach promotes 
the personalization of the cure rate, making it especially suitable for 
clinical scenarios where individual response is determinant, as in 
modern oncological treatments.

Within this framework, discrete frailty stands out as a particularly 
suitable approach for representing unobserved heterogeneity in 
survival studies (Balakrishnan and Peng,8 Chen et al.,9 Tomazella,10 
Hougaard,11 Caroni et al.,12 Vaupel et al.,13 Vasquez et al.,).14 Unlike 
traditional continuous frailty distributions, discrete formulations 
allow the frailty term to take the value zero, enabling the explicit 
identification of individuals who are completely immune to the event 
of interest and, consequently, compatible with the presence of a cure 
fraction. This feature is especially relevant in modern clinical contexts, 
where therapeutic advances have produced groups of patients who 
remain event-free for extended periods of follow-up.

Furthermore, the discrete specification facilitates the biological 
interpretation of the number of risk factors accumulated by each 
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Abstract

This paper develops a flexible survival model for data with a cure fraction, where the number 
of latent risk factors follows a Waring distribution under a minimum activation scheme. The 
primary objective is to provide a framework that more accurately captures and disentangles 
the distinct sources of heterogeneity, namely internal (individual susceptibility) and external 
(unobserved covariates), often confounded in traditional cure rate models. While models 
based on the Negative Binomial distribution are commonly used, they lack the flexibility to 
independently characterize these dual sources of variability, thereby limiting their biological 
interpretability and personalization potential. Motivated by this shortcoming, we propose 
the Waring frailty model. Its structural properties allow for an explicit decomposition of 
variance, offering a principled way to distinguish individual-specific risk from contextual 
or environmental factors. This leads to a personalized cure rate, a critical feature in modern 
therapeutic areas such as immunotherapy, where patient response is highly heterogeneous. 
The model’s performance is evaluated through a comprehensive Monte Carlo simulation 
study and is illustrated with an application to real colon cancer data. The results confirm that 
the Waring distribution, renowned in accident theory for variance decomposition, provides 
an effective and interpretable tool for cure rate estimation in survival analysis.
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individual, naturally aligning with the hierarchical structures 
underlying Waring-based models (Rodrigues et al.,1 Mota et al.,15 
de Souza et al.,16 Vasquez et al.,17Cancho et al.,).18 Incorporating 
discrete distributions such as zero-modified power series families19 
also increases modeling flexibility, allowing the framework to 
accommodate diverse patterns of variability arising from a higher 
prevalence of immune individuals, overdispersion, or internal 
mechanisms of risk activation.

Taken together, the hierarchical structure of the Waring distribution 
and the ability to employ discrete frailty provide a robust, interpretable, 
and biologically coherent framework for cure rate survival modeling, 
offering a more accurate representation of the complex underlying 
risk-generating processes.

The structure of this article is organized as follows: in Section 2, 
the Waring distribution and its hierarchical representation are briefly 
presented, highlighting their main properties. Then, in Section 3, the 
proposed model with Waring frailty under a minimum activation 
scheme is introduced. Section 4 describes a simulation study 
performed to evaluate the model’s performance and the associated 
inferential procedure. In Section 5, the methodology is applied to a 
real dataset on colon cancer. Finally, in Section 6, final considerations 
are presented.

The waring distribution: a hierarchical 
framework for heterogeneity

We begin this section by discussing the Waring Series, a 
fundamental structure for deriving the Waring distribution.20 This 
distribution can be interpreted as a generalization of the Yule–Simon 
distribution21 and, simultaneously, as a special case of the generalized 
Waring distribution when k=1.22 With two parameters, the Waring 
distribution has a relatively simple form and has therefore proven 
especially attractive in various research areas. Below, we present the 
Waring Series, which underpins its probabilistic properties and allows 
for understanding its role in modern statistical models.
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where 0α > ,  0ρ > , (if 2ρ < , the distribution has infinite 
variance).

A classic and widely adopted way to define the Waring distribution 
is through its hierarchical representation. This seeks to explicitly 
distinguish between internal and external sources of variability.23 
Irwin proposed a three-stage framework in which different levels of 
uncertainty are organized in a systematic and interpretable way. 

We can observe in Figure 1 the stochastic representation of the 
discrete distribution (M), highlighting its three sources of variability 

2 2
1 2, σ σ  and 2

3σ  that contribute to the observed overdispersion. These 
variability components characterize the variance decomposition 
structure associated with the Waring distribution, allowing a clearer 
interpretation of the mechanisms governing model heterogeneity, 
from which it follows that

( ) ,  ~ ,M a Waring aρ ρ                    (3)

The mean of the Waring distribution is given by
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1
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                         (4)

The Waring distribution is characterized by over dispersion, 
meaning that ( ) ( )E M Var M< . The variance is given by
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Figure 1 Hierarchical representation of the waring distribution.

Table 1 presents the decomposition of the total variance of the 
Waring distribution into three sources of variability: the random 
effect, the external effect, and the internal effect, with their respective 
variation rates.
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Table 1 Variance decomposition of the waring distribution

Source of Variability Variance Variance rate (%)

Random Effect

External Effect
        

Internal Effect         

Total            1

Algorithm 1 Generate a sample from the waring ( ,a ρ ) distribution

Require: 1, , ,n a xρ
For 1i =  to n do

( )  ,1p Beta← ρ

1, ,i i
pGamma a shape a scale

p
 −

λ ← = = 
 

[ ] ( )  M i Poisson← λ
end for return M

Algorithm 2 A generation of failure and censorship times

Require: , , , ,n M a ρ λ
For 1i = to n do

[ ] ( )  1, ,  N i Waring a← ρ

if [ ] 0N i = then

[ ]  te i ←∞
  else           

[ ] ( ) ( ) [ ]( )0 01  , , N ite i min Exp Exp← λ λ

end if 

[ ] ( )  2,5ce i Uniforme←

    [ ] [ ] [ ]( )  ,y i min te i ce i←              

[ ] [ ] [ ]  ( ,1,0)status i ifelse te i ce i← <
end for  return (y, status)

From Table 1, the random effect is linked to unobserved 
heterogeneity among individuals; the external effect pertains to 
environmental or contextual factors that influence the time to the 
event; and the internal effect captures changes associated with the 
mean survival time itself. When the mean survival time is low, the 
random effect explains the largest share of the variability, as increases, 
greater weight shifts to the internal effect, reflecting modifications 
in the overall risk structure. The contribution of the external effect 
occupies an intermediate position and depends on the parameter, 
which, as it increases, diminishes the relative importance of this 
component in the total variability.

Model specification with waring discrete 
frailty

This section formalizes the Waring discrete frailty model under a 
minimum activation scheme. In this framework, the event of interest 

occurs upon the activation of the first one among a set of latent risk 
factors. This characterizes systems where a single triggering event is 
sufficient for failure, making the scheme particularly apt for modeling 
phenomena where exposure to an initial hazard leads to immediate 
consequences.

Within survival analysis, this approach models a competing risks 
scenario where an individual possesses M latent risk factors, with 
M being a discrete random variable. The event manifests when the 
earliest of these potential causes is activated, capturing the biological 
or clinical premise that the first active agent initiates the disease or 
failure process.

Let M be a random variable representing the number of risk factors 
or causes associated with the occurrence of the event of interest, with 
a probability distribution given by:

[ ] ,  0,1 , 2, mp P M m m= = =                    (6)

Given M m= , let iT , for 1, 2, ,i m=  , be continuous and 
independent (non-negative) random variables, representing the time 
of occurrence or activation of the event of interest due to the thi
risk factor. The variables iT  are independent of M . The probability 
density function of iT  is denoted by ( )0 if t , such that the cumulative 
distribution function (c.d.f.) of iT  is given by ( )0 if t the survival 
function by ( )0 iS t , and the associated risk function by ( )0 ih t .

We opted to use the notation T t=  instead of i iT t=  to simplify 
the representation. Thus, we consider ( ) ( ) ( )1 2, , MT T T , where 
( ) ( ) ( )1 2 MT T T≤ ≤ ≤  correspond to the first M order statistics of iT

. We emphasize that only the time ( )KT , with 1, 2, K M=  , which 
triggers the mechanism, will be observed.

Here, K can be understood as an indicator of the individual’s 
immune system capacity. When the event of interest occurs, the time 
until that occurrence is represented by the thi  statistic of order ( )KT
. In the studies by Cooner et al.,24,25 and Rodrigues et al.,26 the event 
manifests when K of the M possible causes are activated. Following 
this line of reasoning, we can explore three different configurations 
for K. In this context, considering the particular case where k=1 the 
observed time is ( )MT , indicating the activation of all risk factors.
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As indicated by Cooner et al.25 and Rodrigues et al., 26 the survival 
function under the minimum activation scheme is expressed by

  ( ) ( )

( )( )
0

02 ,1, 1 ; , t 01
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a
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ρ

= + + ρ >
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   (7)         

where 2F1(a,1,a+1+ρ;S0(t)) is the Gaussian hyper geometric 
function Irwin,7 and 2ρ > .

Given the survival function, ( )pS t , (7) we have that

( ) [ ] 0lim 0 , 2,pt
S t P M p

a→∞

ρ
= = = = ρ >

+ ρ
                 (8)

where 0p  is the proportion of “cured” or “immune” individuals 
that may be present in the population. An individual is considered 
immune if they are not subject to the event of interest, and their 
corresponding probability 0p  is the cure rate.
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From (7), we can obtain its respective density function, given by
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1p p
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Therefore, the hazard function is given by
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Inference

The following presents the inferential methodology adopted for 
estimating the model parameters, using the maximum likelihood 
method. For its application, the expressions for the survival function 
(7) and the probability density function (9) are necessary. Thus, the 
maximum likelihood functions for the model are given by
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Therefore, its corresponding log-likelihood is
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where ( ),aϑ = ρ , ( ){ }, , 1, ,i iD t i n= δ =  , ( )0 if t  is the basis density function and ( )0 iS t  is the basis survival function.

The inclusion of covariates in the minimum activation model is 
achieved through an exponential link function applied to the parameter 
a, linking it to the linear predictor x β . This specification ensures 
the positivity of the parameter a, and allows for a straightforward 
interpretation of the effects of covariates on the cure fraction. 
Here, 1(1, ),... px x x= denotes the vector of observed covariates, 
while ( )0 1, , , pβ = β β β


 represents the corresponding regression 

coefficients. Furthermore, the activation times 0 1, , , MZ Z Z  are 
assumed to be independent and to follow an Exponential distribution 
with rate parameter λ>0, leading to the model parameter vector

),( ,ϑ = β ρ λ . In practical applications, the same set of covariates 
may simultaneously influence different components of the model. 

Simulation study
A Monte Carlo simulation study for the model will be presented. 

Following this, Algorithm 1 is presented to generate samples from 
a Waring distribution, which is a consequence of the hierarchical 
representation presented in (3). In this algorithm, however, we only 
generate the number iM  of failure factors for the thi  individual, with

1, ,i n=  . In applications, the value of iM is a latent variable in our 
model.  

Next, we detail the Algorithm 2 for generating failure and 
censoring times.

The study involved simulations with 1000 samples, considering the 
sizes n = 100, 250, 500, 750, 1000, fixing the value of 4ρ = , 0 2β =  
and 1 1β = − , with the covariate 1x generated according to a Binomial 
(1, 0, 5) distribution. The censoring times were simulated from a 
uniform distribution in the interval [2, 5], so that approximately 50% 
of the data were censored. The times until the occurrence of the event 
of interest followed an exponential distribution with parameter 1λ = . 
This procedure aimed to investigate the performance of the proposed 
model under different sample sizes.

The simulation results, generated using code in the R Studio 
software, are presented in Figure 2

In the analysis of Figure 2, it can be observed that as the sample size 
increases, the mean of the maximum likelihood estimator becomes 

closer to the real values, indicating asymptotic consistency. The 
absolute bias decreases systematically, showing that the estimators 
are asymptotically unbiased, especially for  ρ , whose high initial bias 
becomes almost zero with n = 1000. The standard deviations of the 
estimators decrease with increasing sample size, improving precision, 
although ρ  shows relatively greater variability even in large 
samples. The mean squared error also decreases for all parameters, 
especially for λ , 0β , and 1β , reflecting a good balance between bias 
and variance. Furthermore, the confidence intervals show coverage 
proportions close to 95%, even in smaller samples, demonstrating 
good calibration of the estimators.

Application for real data
The dataset “colon”, available in the “survival” package of 

the R language, will be used. This database provides data from a 
multicenter clinical trial conducted to evaluate the efficacy of adjuvant 
chemotherapy in patients undergoing surgical resection of stage B or 
C colon cancer, according to the Dukes classification. The study, led 
by Moertel et al.,27 compared three therapeutic strategies: a control 
group (observation only after surgery), levamisole administration, and 
a combination of levamisole with fluorouracil (5-FU), with the aim of 
assessing their impact on tumor recurrence and mortality.

The database contains information from 929 patients, each with 
up to two recorded observations: one regarding disease recurrence 
and the other regarding death, totaling 1,858 records. The collected 
information covers both demographic and clinical aspects of the 
individuals, allowing for robust analyses of time-to-event models, 
especially survival models with or without competing risks.

Regarding the status of the events, it is observed that approximately 
50.5% of the observations correspond to censored data, while 49.5% 
indicate observed events, a proportion that ensures a good balance 
between events and censoring in the survival models that are intended 
to be used. The main variables available in the dataset are described 
in the Table 2.
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Figure 2 Mean, SD, Bias, MSE, and CP of the parameters as a function of sample size for simulated model data.

Table 2 Description of the covariates belonging to the colon cancer data

Covariate Category Description n %

 1 :X Age - 60µ = , 
11.95σ =  

1858 -

 2 :X Treatment
0 Did not receive 630 33.90%
1 Received 1028 66.10%

3 :X Intestinal obstruction caused by the tumor
0 No 1498 80.62%
1 Yes 360 19.38%

4 :X Tumor attached to other structures
0 No 1588 85.47%
1 Yes 270 14.53%

5 :X More than four lymph nodes affected
0 No 1348 72.55%
1 Yes 510 27.45%

Model adjustment considering the presence of 
covariates

We begin by analyzing the isolated effect of each covariate on 
the time to death of patients with colon cancer, considering the link 
function applied to the parameter a . The parameter estimates and 
the corresponding cure rates were obtained using the L-BFGS-B 
optimization method28 and are presented below.

In the analysis of Table 3, it is observed that treatment is associated 

with an increase in the cure fraction for treated patients, compared 
to those who were not treated, suggesting a beneficial effect of the 
intervention. On the other hand, the presence of intestinal obstruction 
caused by the tumor, tumor adherence to other structures, and 
involvement of four or more lymph nodes are related to lower chances 
of cure. This last covariate presented the greatest negative impact for 
patients with more than 4 positive lymph nodes, compared to the 
others.

Table 3 MLE, SE and CI(95%) obtained for the model according to the covariates treatment, intestinal obstruction caused by the tumor, Tumor adhered to other 
structures and presence of more than four compromised lymph nodes

Parameter MLE SE
CI 95%

Lower Upper

ρ 2.944 1.266 0.463 5.426

λ -2.006 0.138 -2.277 -1.735

α 1.478 0.071 1.340 1.617

01β  (intercept) 0.725 0.236 0.262 1.187

11β  (Treatment) -0.280 0.093 -0.461 -0.098

01p  (No) 0.423 0.159 0.112 0.735

11p (Yes) 0.492 0.147 0.204 0.781

AIC 5521.68

BIC 5549.32

https://doi.org/10.15406/bbij.2026.15.00443
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ML -2755.84

ρ 3.248 1.613 0.087 6.409

λ -1.982 0.143 -2.261 -1.702

α 1.470 0.071 1.330 1.610

02β  (intercept) 0.423 0.226 -0.020 0.866

12β  (Intestinal obstruction) 0.382 0.112 0.163 0.602

02p  (No) 0.486 0.156 0.181 0.792

12p  (Yes) 0.392 0.174 0.051 0.734

AIC 5519.20

BIC 5546.83

ML -2754.60

ρ 2.949 1.287 0.428 5.471

λ -2.008 0.139 -2.282 -1.735

α 1.479 0.071 1.340 1.618

03β  (intercept) 0.481 0.227 0.036 0.925

13β (Tumor attached) 0.401 0.122 0.163 0.639

03p  (No) 0.483 0.150 0.188 0.778

13p  (Yes) 0.385 0.167 0.059 0.712

AIC 5520.00

BIC 5547.64

ML -2755.00

ρ 4.078 2.488 -0.798 8.954

λ -2.072 0.142 -2.351 -1.794

α 1.502 0.069 1.367 1.637

04β (intercept) 0.082 0.204 -0.318 0.481

14β (More than 4 lymph nodes) 1.302 0.100 1.106 1.498

04p  (No) 0.550 0.134 0.287 0.812

14p  (Yes) 0.249 0.206 -0.154 0.652

AIC 5356.33

BIC 5383.96

ML -2673.16

Next, in Figure 3, we observe strong evidence of a cure fraction for 
all covariates, with the model curves (dashed lines) fitting well with 
the Kaplan-Meier estimate (solid line), indicating a good fit of the 

model to the melanoma data. 

Table 4 shows the decomposition of the total variance of the 
Waring frailty model considering the different covariates.

Table 4 Decomposition of the variance of the Waring frailty model according to treatment, intestinal obstruction caused by the tumor, tumor adherent to other 
structures, and presence of more than four compromised lymph nodes

Source of 
variability

Treatment Intestinal obstruction

No Yes No Yes

Variance VR Variance VR Variance VR Variance VR
Random Effect 2.06 0.11 1.56 0.12 1.53 0.15 2.24 0.12
External Effect 4.37 0.22 3.3 0.27 2.45 0.24 3.59 0.19
Internal Effect 13.27 0.67 7.59 0.61 6.07 0.61 13.04 0.69

No Yes No Yes
Variance VR Variance VR Variance VR Variance VR

Random Effect 1.62 0.12 2.41 0.09 1.09 0.24 3.99 0.1
External Effect 3.41 0.26 5.09 0.2 1.04 0.24 3.84 0.1

Internal Effect 8.12 0.62 18.1 0.71 2.31 0.52 31.25 0.8

Table 3 Continued....

https://doi.org/10.15406/bbij.2026.15.00443
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Figure 3 Kaplan-Meier estimate and waring frailty model survival curves for colon cancer dataset according to treatment, tumor-induced bowel obstruction, 
tumor adherence to other structures, and presence of more than four compromised lymph nodes.

In all groups, the highest rate of change (VR) is associated with 
the internal effect of the total variance. This result indicates that 
endogenous processes related to disease progression are primarily 
responsible for the observed variability. The external effect, 
associated with contextual or environmental factors, contributes 
less significantly, while the random effect, linked to unobserved 
individual heterogeneity, has a relatively smaller share. The highest 
RV for the internal effect was observed in the group with more than 
four affected lymph nodes, followed by the group with an adherent 
tumor, suggesting that in these subgroups the variability is strongly 
determined by factors intrinsic to the tumor progression process.

After analyzing each covariate individually, we now proceed to 
include all of them simultaneously in the model. As in the individual 
parameter estimation, the same estimation procedure was employed in 
this joint adjustment, using the L-BFGS-B optimization method28 to 
obtain the parameter estimates 

The Table 5 presents the parameter estimates of the fitted model 
with all covariates considered simultaneously. The structural 
parameters ρ , λ and α  have confidence intervals that do not 
include zero, indicating statistical significance. Among the covariate 
coefficients, the intercept 0( )β is not statistically significant, given 
that its confidence interval includes zero.

Table 5 MLE, SE and CI (95%) obtained for the model considering all covariates together

Parameter MLE SE CI 95%
Lower Upper

ρ 3.091 0.964 1.201 4.981

λ -2.164 0.11 -2.38 -1.948

α 1.539 0.059 1.424 1.655

0β  (intercept) 0.119 0.288 -0.447 0.684

1β  (Treatment) -0.303 0.094 -0.488 -0.119

2β  (Intestinal obstruction) 0.442 0.114 0.218 0.665

3β  (Tumor attached) 0.423 0.124 0.18 0.666

4β  (More than 4 lymph nodes) 1.342 0.101 1.144 1.54

5β  (Age) 0.002 0.004 -0.005 0.009

https://doi.org/10.15406/bbij.2026.15.00443


Decomposing heterogeneity in cure rate models via discrete waring frailty under minimum activation 9
Copyright:

©2026 Vasque et al.

Citation: Vasquez JKJ, Tomazella VLD, Marinho PRD. Decomposing heterogeneity in cure rate models via discrete waring frailty under minimum activation. 
Biom Biostat Int J. 2026;15(1):1‒11. DOI: 10.15406/bbij.2026.15.00443

The treatment 1( )β showed a significant negative effect, suggesting 
a higher probability of cure among treated patients. However, 
adverse clinical variables such as intestinal obstruction 2( )β , tumor 
adherent to other structures 3( )β , and the presence of more than four 
compromised lymph nodes 4( )β  showed positive and statistically 
significant effects, indicating a worse prognosis for patients with 
these conditions. Finally, age 5( )β did not show a significant effect, 

suggesting that, in this model, age does not significantly influence the 
cure rate.

Table 6 shows the influence of the covariates age, treatment, 
intestinal obstruction, adherent tumor and +4 lymph nodes, on the 
cure rate 0( )p and on the rate of change of the internal effect (RCIE).

Table 6 0p  and RCIE of patients with influence of all covariates in the proposed model

Age Treatment Intestinal obstruction Tumor attached +4 lymph RCIE

20 No

No
No

No 0.558 0.54
Yes 0.25 0.818

Yes
No 0.452 0.641
Yes 0.178 0.873

Yes
No

No 0.448 0.646
Yes 0.175 0.875

Yes
No 0.347 0.736
Yes 0.122 0.914

20 Yes

No
No

No 0.631 0.464
Yes 0.309 0.768

Yes
No 0.528 0.569
Yes 0.226 0.835

Yes
No

No 0.523 0.574
Yes 0.223 0.837

Yes
No 0.418 0.673
Yes 0.158 0.887

60 No

No
No

No 0.538 0.559
Yes 0.233 0.829

Yes
No 0.433 0.66
Yes 0.166 0.881

Yes
No

No 0.428 0.664
Yes 0.164 0.883

Yes
No 0.329 0.751
Yes 0.114 0.92

60 Yes

No
No

No 0.612 0.484
Yes 0.292 0.782

Yes
No 0.508 0.589
Yes 0.213 0.846

Yes
No

No 0.503 0.593
Yes 0.209 0.848

Yes
No 0.399 0.69
Yes 0.148 0.895

We can observe that, regardless of age or treatment, the presence of adverse clinical factors such as intestinal obstruction, tumor adherence 

to adjacent structures, and more than four compromised lymph nodes 
is associated with a significant reduction in the cure fraction and 
an increase in RCIE (transient ischemic attack). For example, for 
a 20-year-old patient without treatment and with all other adverse 
conditions present, the cure fraction drops to 0.122, with a high TVEI 
of 0.914, reflecting high intrinsic variability in disease progression. On 
the other hand, young treated individuals without adverse conditions 
have a higher probability of cure and lower RCIE, indicating a more 
favorable prognosis and less influence of internal variability. Age, by 
itself, shows a discrete impact, with a slight reduction in cure rates and 
an increase in RCIE when comparing patients aged 20 and 60 under 

the same conditions. Treatment, in all scenarios, is associated with 
higher cure rates and lower RCIE values, reinforcing its protective 
role. Thus, the table shows that the patient’s prognosis depends on 
a combination of the presence of unfavorable clinical conditions, 
age, and therapeutic intervention, with the internal effect being more 
pronounced in the most severe profiles.

Next, in Figure 4, the rates of change associated with the 
components of the Waring frailty model are presented, based on data 
from the Colon study and considering all covariates included in the 
analysis.
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Decomposing heterogeneity in cure rate models via discrete waring frailty under minimum activation 10
Copyright:

©2026 Vasque et al.

Citation: Vasquez JKJ, Tomazella VLD, Marinho PRD. Decomposing heterogeneity in cure rate models via discrete waring frailty under minimum activation. 
Biom Biostat Int J. 2026;15(1):1‒11. DOI: 10.15406/bbij.2026.15.00443

Figure 4 Sources of variability influenced by all covariates in waring’s frailty model for colon cancer dataset.

It is observed that the internal effect is the main source of 
variability, with an average of 62.0%, indicating that a large part of 
the heterogeneity in patient survival is related to the disease’s own 
evolutionary process over time. The external effect, associated with 
environmental and contextual factors, represents approximately 
24.6% of the total variation, highlighting its relevance in explaining 
the model. On the other hand, the random effect, linked to unobserved 
individual heterogeneity, contributes only 13.4%, suggesting a more 
limited impact. These results highlight that most of the variability 
observed in the Colon study sample stems from structural components, 
especially the internal effect, which reinforces the importance of 
models that adequately capture the temporal dynamics of survival.

Final remarks
In this work, we present a frailty model with a minimal activation 

scheme that employs a discrete structure to represent the latent 
factors underlying the risk process. This approach provides a clear 
and interpretable depiction of how these factors accumulate among 
individuals and contribute to the observed variability in survival 
times. The model allows for the decomposition of this variability 
into three fundamental components: the random effect inherent to the 
process, the external effect associated with unobserved factors, and 
the internal effect linked to each patient’s intrinsic characteristics. 
This decomposition, grounded in the stochastic representation of the 
Waring distribution, offers a more comprehensive understanding of 
population heterogeneity.

Furthermore, we conducted a simulation study to assess the 
model’s performance across different scenarios, confirming its ability 
to accurately recover parameters and reliably identify sources of 
variability. The application of the model to real colon cancer data 
demonstrated its capacity to capture relevant patterns in the risk 

process that traditional approaches fail to explain. These results 
highlight the potential of the proposed methodology as a robust tool 
for survival analyses requiring explicit assessment of heterogeneity 
and identification of the structural mechanisms influencing risk.
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