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Abstract

This paper develops a flexible survival model for data with a cure fraction, where the number
of latent risk factors follows a Waring distribution under a minimum activation scheme. The
primary objective is to provide a framework that more accurately captures and disentangles
the distinct sources of heterogeneity, namely internal (individual susceptibility) and external
(unobserved covariates), often confounded in traditional cure rate models. While models
based on the Negative Binomial distribution are commonly used, they lack the flexibility to
independently characterize these dual sources of variability, thereby limiting their biological
interpretability and personalization potential. Motivated by this shortcoming, we propose
the Waring frailty model. Its structural properties allow for an explicit decomposition of
variance, offering a principled way to distinguish individual-specific risk from contextual
or environmental factors. This leads to a personalized cure rate, a critical feature in modern
therapeutic areas such as immunotherapy, where patient response is highly heterogeneous.
The model’s performance is evaluated through a comprehensive Monte Carlo simulation
study and is illustrated with an application to real colon cancer data. The results confirm that
the Waring distribution, renowned in accident theory for variance decomposition, provides
an effective and interpretable tool for cure rate estimation in survival analysis.
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Introduction

Flexible cure rate modeling via discrete frailty under a minimum
activation scheme' focuses on describing, in a biological scenario,
the process by which patients may achieve a cure by considering
the competition among multiple risk factors, such as initiated cells
or pathological agents. In this formulation, the central element is the
latent number of risk factors, treated as a discrete random variable
representing discrete frailty and capturing individual heterogeneity
with respect to the population baseline risk.

The approach was initially developed by Yakovlev et al.?
Yakovlev,® and Tsodikov et al.,* and is referred to as the “first activation
scheme” (or “time minimums”). This approach offers a framework
for modeling competing risks in survival analysis. A more in-depth
explanation of the concepts and methodology of the competing causes
model applied to survival data analysis in clinical epidemiology was
provided by Nie et al.’ Similarly, do Nascimento et al.® examined the
impact of covariates on the causes of death in patients with sickle
cell anemia. In this context, it is assumed that activation triggers the
event of interest; that is, the first activation among all latent factors is
decisive for the manifestation of the event.

Initially, without considering overdispersion or additional
hierarchical structure, Yakovlev et al.?> proposed the Poisson
distribution to model this latent quantity, leading to the well-known
promotion time model.” In later works, the need to accommodate
overdispersion led to considering a random Poisson mean following
a gamma distribution, resulting in the Negative Binomial (NB)

distribution. However, although widely used, the NB does not
adequately distinguish the intrinsic variability of patients (internal
effect) from variability arising from unobserved factors (external
effect), hindering a more precise decomposition of heterogeneity.

From this perspective, the Waring distribution® emerges as a
more appropriate alternative, as its mixture structure allows greater
flexibility in modeling different heterogeneity levels associated with
the number of risk factors. The Waring distribution clearly separates
the internal effect, associated with inherent biological characteristics
of the individual, and the external effect, associated with unobserved
covariates influencing risk. Consequently, this approach promotes
the personalization of the cure rate, making it especially suitable for
clinical scenarios where individual response is determinant, as in
modern oncological treatments.

Within this framework, discrete frailty stands out as a particularly
suitable approach for representing unobserved heterogeneity in
survival studies (Balakrishnan and Peng,® Chen et al.,” Tomazella,'
Hougaard,'" Caroni et al.,'”? Vaupel et al.,'”’ Vasquez et al.,).'* Unlike
traditional continuous frailty distributions, discrete formulations
allow the frailty term to take the value zero, enabling the explicit
identification of individuals who are completely immune to the event
of interest and, consequently, compatible with the presence of a cure
fraction. This feature is especially relevant in modern clinical contexts,
where therapeutic advances have produced groups of patients who
remain event-free for extended periods of follow-up.

Furthermore, the discrete specification facilitates the biological
interpretation of the number of risk factors accumulated by each
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individual, naturally aligning with the hierarchical structures
underlying Waring-based models (Rodrigues et al.,! Mota et al.,®
de Souza et al.,' Vasquez et al.,”"Cancho et al.,)."® Incorporating
discrete distributions such as zero-modified power series families'
also increases modeling flexibility, allowing the framework to
accommodate diverse patterns of variability arising from a higher
prevalence of immune individuals, overdispersion, or internal
mechanisms of risk activation.

Taken together, the hierarchical structure of the Waring distribution
and the ability to employ discrete frailty provide a robust, interpretable,
and biologically coherent framework for cure rate survival modeling,
offering a more accurate representation of the complex underlying
risk-generating processes.

The structure of this article is organized as follows: in Section 2,
the Waring distribution and its hierarchical representation are briefly
presented, highlighting their main properties. Then, in Section 3, the
proposed model with Waring frailty under a minimum activation
scheme is introduced. Section 4 describes a simulation study
performed to evaluate the model’s performance and the associated
inferential procedure. In Section 5, the methodology is applied to a
real dataset on colon cancer. Finally, in Section 6, final considerations
are presented.

The waring distribution: a hierarchical

framework for heterogeneity

We begin this section by discussing the Waring Series, a
fundamental structure for deriving the Waring distribution.?’ This
distribution can be interpreted as a generalization of the Yule—Simon
distribution®' and, simultaneously, as a special case of the generalized
Waring distribution when k=1.22 With two parameters, the Waring
distribution has a relatively simple form and has therefore proven
especially attractive in various research areas. Below, we present the
Waring Series, which underpins its probabilistic properties and allows
for understanding its role in modern statistical models.
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x—a mo(x)
where (&) =ala+1)-(a+g-1) ;if a>0it follows that
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where o >0, the distribution has infinite

variance).

p>0,

A classic and widely adopted way to define the Waring distribution
is through its hierarchical representation. This seeks to explicitly
distinguish between internal and external sources of variability.
Irwin proposed a three-stage framework in which different levels of
uncertainty are organized in a systematic and interpretable way.
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We can observe in Figure 1 the stochastic representation of the
discrete distribution (M), highlighting its three sources of variability
61,65 and o7 that contribute to the observed overdispersion. These
variability components characterize the variance decomposition
structure associated with the Waring distribution, allowing a clearer
interpretation of the mechanisms governing model heterogeneity,
from which it follows that

Ma,p ~Waring(a,p) 3)
The mean of the Waring distribution is given by

a
E(M)—ﬁ—u 4

The Waring distribution is characterized by over dispersion,

meaning that £ (M ) < Var(M ) . The variance is given by
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Figure | Hierarchical representation of the waring distribution.

Table 1 presents the decomposition of the total variance of the
Waring distribution into three sources of variability: the random
effect, the external effect, and the internal effect, with their respective
variation rates.
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Table | Variance decomposition of the waring distribution

Source of Variability Variance Variance rate (%)
) p-2 1
Random Effect Gy =1L p lip
21
External Effect 2 o
oy =——u pl+p
i
L8
Internal Effect s P I+p
o] =——n
p-2
2 P 2
Total G =p7?[.u+.u) I

Algorithm | Generate a sample from the waring ( a,p ) distribution

Require: n,p,a,x;
For i =1 to n do

p(—Bem(p,l)

1
A« Gamma[ai,shape =a;,scale = j

M [i](—Poisson(}»)
end for return M

Algorithm 2 A generation of failure and censorship times

Require: n,M ,a,p,A
For i=1tondo
N[i](—Waring(l,p,a)
if N[i]=0 then
te[i](—oo

else

il min Exp (3) B ()
ce[i](—Uniforme(2,5)

y[i](—min(te[i],ce[i])
status[i]eifelse(le[i] < ce[i],l,O)

end for return (y, status)

From Table 1, the random effect is linked to unobserved
heterogeneity among individuals; the external effect pertains to
environmental or contextual factors that influence the time to the
event; and the internal effect captures changes associated with the
mean survival time itself. When the mean survival time is low, the
random effect explains the largest share of the variability, as increases,
greater weight shifts to the internal effect, reflecting modifications
in the overall risk structure. The contribution of the external effect
occupies an intermediate position and depends on the parameter,
which, as it increases, diminishes the relative importance of this
component in the total variability.

Model specification with waring discrete
frailty

This section formalizes the Waring discrete frailty model under a
minimum activation scheme. In this framework, the event of interest
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occurs upon the activation of the first one among a set of latent risk
factors. This characterizes systems where a single triggering event is
sufficient for failure, making the scheme particularly apt for modeling
phenomena where exposure to an initial hazard leads to immediate
consequences.

Within survival analysis, this approach models a competing risks
scenario where an individual possesses M latent risk factors, with
M being a discrete random variable. The event manifests when the
carliest of these potential causes is activated, capturing the biological
or clinical premise that the first active agent initiates the disease or
failure process.

Let M be a random variable representing the number of risk factors
or causes associated with the occurrence of the event of interest, with
a probability distribution given by:

 =P[M =m], m=0,1,2,-- (6)

Given M =m, let T;, for i=12,---,m, be continuous and
independent (non-negative) random variables, representing the time
of occurrence or activation of the event of interest due to the i
risk factor. The variables 7; are independent of M . The probability

density function of 7, is denoted by fo( ) » such that the cumulative

distribution function (c.d.f.) of T; is given by fo( )the survival
function by S, (#;) , and the ass0c1ated risk function by A, (z;)

We opted to use the notation 7' =¢ instead of —t to simplify

the representation Thus, we consider T} . , Where

< T, correspond to the first M) order statlstlcs of T,

{’3] empha51ze that only the time T, with K =1,2,---M , Whlch
triggers the mechanism, will be observed.

Here, K can be understood as an indicator of the individual’s
immune system capacity. When the event of interest occurs, the time
until that occurrence is represented by the i statistic of order T( X
. In the studies by Cooner et al.,>** and Rodrigues et al.,”® the event
manifests when K of the M possible causes are activated. Following
this line of reasoning, we can explore three different configurations
for K. In this context, considering the particular case where k=1 the
observed time is 72 M)> indicating the activation of all risk factors.

Y =min{T Ty T
o0,if M =0

r()= },if,M >1,

As indicated by Cooner et al.® and Rodrigues et al.,?¢ the survival
function under the minimum activation scheme is expressed by

S, (1) =G [So(1)] ™)
p
= F(al,a+1+p;S,(t)),t>0
a+p 1( PsSo ( ))
where F (a,1,a+1+p;S(#)) is the Gaussian hyper geometric

function Irwin,” and p>2.

Given the survival function, S, (t) , (7) we have that

lims, (1) = P[M =0]= p,=—P—, p>2, ®
t—© a+ p

where p, is the proportion of “cured” or “immune” individuals
that may be present in the population. An individual is considered
immune if they are not subject to the event of interest, and their
corresponding probability p, is the cure rate.
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From (7), we can obtain its respective density function, given by

1,0 ==L, (0)= fo (1) ——22

— O F 1,2 2;8,
dr (a+p)(a+p+1)2 1(a+ e O(t))

©

Therefore, the hazard function is given by

7fp(t)7 afy(t) 2Fl(a+1,2,a+p+2;S0(1,‘))
hp(t)_Sp(t)_a+p+l_ JF(aa+1+p;S, (1)) (10

L(9|D)—}_[l|:ﬁ)(ti)([l_|_ﬁ))(tl(fﬂ)_‘_l)

Therefore, its corresponding log-likelihood is

o=F s 0

3
2Fi(a+1,2,a+p+2;8, (tl)):l [

2F1(a +L2,a+p+ 2;50(1[))}+(1—6i)10g[
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Inference

The following presents the inferential methodology adopted for
estimating the model parameters, using the maximum likelihood
method. For its application, the expressions for the survival function
(7) and the probability density function (9) are necessary. Thus, the
maximum likelihood functions for the model are given by

a

1-5;
2F1(a,1,a+l+p;S0(t,~))} (11)

a+p

(12)

a+p

a 2F1(a,1,a +1+P;So(ti))}}

where 8 =(p,a), D= {(t,.,Bl. ).i=1 --,n} . fo(t;) is the basis density function and S, (#;) is the basis survival function.

The inclusion of covariates in the minimum activation model is
achieved through an exponential link function applied to the parameter
a, linking it to the linear predictor x™B . This specification ensures
the positivity of the parameter a, and allows for a straightforward
interpretation of the effects of covariates on the cure fraction.
Here, x" = (l,x],...xp) denotes the vector of observed covariates,
while B:(BO,B,,-~-,B p)T represents the corresponding regression
coefficients. Furthermore, the activation times Z,,Z,,---,Z,, are
assumed to be independent and to follow an Exponential distribution
with rate parameter >0, leading to the model parameter vector
9=(B",p,A). In practical applications, the same set of covariates
may simultaneously influence different components of the model.

Simulation study

A Monte Carlo simulation study for the model will be presented.
Following this, Algorithm 1 is presented to generate samples from
a Waring distribution, which is a consequence of the hierarchical
representation presented in (3). In this algorithm, however, we only
generate the number M, of failure factors for the i individual, with
i=1,---,n . In applications, the value of M, is a latent variable in our
model.

Next, we detail the Algorithm 2 for generating failure and
censoring times.

The study involved simulations with 1000 samples, considering the
sizes n = 100, 250, 500, 750, 1000, fixing the value ofp=4, B, =2
and B, = -1, with the covariate x, generated according to a Binomial
(1, 0, 5) distribution. The censoring times were simulated from a
uniform distribution in the interval [2, 5], so that approximately 50%
of the data were censored. The times until the occurrence of the event
of interest followed an exponential distribution with parameter A =1.
This procedure aimed to investigate the performance of the proposed
model under different sample sizes.

The simulation results, generated using code in the R Studio
software, are presented in Figure 2

In the analysis of Figure 2, it can be observed that as the sample size
increases, the mean of the maximum likelihood estimator becomes

closer to the real values, indicating asymptotic consistency. The
absolute bias decreases systematically, showing that the estimators
are asymptotically unbiased, especially for p, whose high initial bias
becomes almost zero with n = 1000. The standard deviations of the
estimators decrease with increasing sample size, improving precision,
although p shows relatively greater variability even in large
samples. The mean squared error also decreases for all parameters,
especially for A , 3, , and B, , reflecting a good balance between bias
and variance. Furthermore, the confidence intervals show coverage
proportions close to 95%, even in smaller samples, demonstrating
good calibration of the estimators.

Application for real data

The dataset “colon”, available in the “survival” package of
the R language, will be used. This database provides data from a
multicenter clinical trial conducted to evaluate the efficacy of adjuvant
chemotherapy in patients undergoing surgical resection of stage B or
C colon cancer, according to the Dukes classification. The study, led
by Moertel et al.,”” compared three therapeutic strategies: a control
group (observation only after surgery), levamisole administration, and
a combination of levamisole with fluorouracil (5-FU), with the aim of
assessing their impact on tumor recurrence and mortality.

The database contains information from 929 patients, each with
up to two recorded observations: one regarding disease recurrence
and the other regarding death, totaling 1,858 records. The collected
information covers both demographic and clinical aspects of the
individuals, allowing for robust analyses of time-to-event models,
especially survival models with or without competing risks.

Regarding the status of the events, it is observed that approximately
50.5% of the observations correspond to censored data, while 49.5%
indicate observed events, a proportion that ensures a good balance
between events and censoring in the survival models that are intended
to be used. The main variables available in the dataset are described
in the Table 2.
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Figure 2 Mean, SD, Bias, MSE, and CP of the parameters as a function of sample size for simulated model data.
Table 2 Description of the covariates belonging to the colon cancer data
Covariate Category Description n %
. - u=:060, 1858 -
X 1 Age 6=11.95
0 Did not receive 630 33.90%
X2 :Treatment | Received 1028 66.10%
0 No 1498 80.62%
X3 Intestinal obstruction caused by the tumor I Yes 360 19.38%
0 No 1588 85.47%
X 4 : Tumor attached to other structures I Yes 270 14.53%
0 No 1348 72.55%
X'5: More than four lymph nodes affected I Yes 510 27.45%

Model adjustment considering the presence of
covariates

We begin by analyzing the isolated effect of each covariate on
the time to death of patients with colon cancer, considering the link
function applied to the parameter @ . The parameter estimates and
the corresponding cure rates were obtained using the L-BFGS-B
optimization method®® and are presented below.

In the analysis of Table 3, it is observed that treatment is associated

with an increase in the cure fraction for treated patients, compared
to those who were not treated, suggesting a beneficial effect of the
intervention. On the other hand, the presence of intestinal obstruction
caused by the tumor, tumor adherence to other structures, and
involvement of four or more lymph nodes are related to lower chances
of cure. This last covariate presented the greatest negative impact for
patients with more than 4 positive lymph nodes, compared to the
others.

Table 3 MLE, SE and CI(95%) obtained for the model according to the covariates treatment, intestinal obstruction caused by the tumor,Tumor adhered to other

structures and presence of more than four compromised lymph nodes

Parameter MLE SE C195%

Lower Upper
p 2.944 1.266 0.463 5.426
A -2.006 0.138 -2.277 -1.735
o 1.478 0.071 1.340 1.617
By, (intercept) 0.725 0.236 0.262 1.187
Bi1 (Treatment) -0.280 0.093 -0.461 -0.098
oy (No) 0.423 0.159 0.112 0.735
Py (Yes) 0.492 0.147 0.204 0.781
AIC 5521.68
BIC 5549.32
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Table 3 Continued....

ML -2755.84
P 3.248 1.613 0.087 6.409
A -1.982 0.143 -2.261 -1.702
o 1.470 0.071 1.330 1.610
. 0.423 0.226 -0.020 0.866
By, (intercept)
Bi; (Intestinal obstruction) 0.382 0.12 0.163 0.602
0.486 0.156 0.181 0.792
Pgo (No)
0.392 0.174 0.051 0.734
Drp (Yes)
AlIC 5519.20
BIC 5546.83
ML -2754.60
P 2.949 1.287 0.428 5.471
A -2.008 0.139 -2.282 -1.735
o 1.479 0.071 1.340 1.618
BO3 (intercept) 0.481 0.227 0.036 0.925
BB (Tumor attached) 0.401 0.122 0.163 0.639
0.483 0.150 0.188 0.778
Po3 (No)
0.385 0.167 0.059 0.712
D3 (Yes)
AlC 5520.00
BIC 5547.64
ML -2755.00
P 4.078 2.488 -0.798 8.954
by -2.072 0.142 -2.351 -1.794
o 1.502 0.069 1.367 1.637
. 0.082 0.204 -0.318 0.481
Bos (intercept)
Bus (More than 4 lymph nodes) 1302 0.100 1.106 1.498
0.550 0.134 0.287 0.812
Dos (No)
0.249 0.206 -0.154 0.652
Dis (Yes)
AIC 5356.33
BIC 5383.96
ML -2673.16

Next, in Figure 3, we observe strong evidence of a cure fraction for ~ model to the melanoma data.
all covariates, with the model curves (dashed lines) fitting well with

the Kaplan-Meier estimate (solid line), indicating a good fit of the Table 4 shows the decomposition of the total variance of the

Waring frailty model considering the different covariates.

Table 4 Decomposition of the variance of the Waring frailty model according to treatment, intestinal obstruction caused by the tumor, tumor adherent to other
structures, and presence of more than four compromised lymph nodes

Treatment Intestinal obstruction
‘s’:::;;?l;:; No Yes No Yes

Variance VR Variance VR Variance VR Variance VR
Random Effect  2.06 0.11 1.56 0.12 1.53 0.15 2.24 0.12
External Effect  4.37 0.22 33 0.27 2.45 0.24 3.59 0.19
Internal Effect 13.27 0.67 7.59 0.6l 6.07 0.6l 13.04 0.69

No Yes No Yes

Variance VR Variance VR Variance VR Variance VR
Random Effect 1.62 0.12 241 0.09 1.09 0.24 3.99 0.1
External Effect  3.41 0.26 5.09 0.2 1.04 0.24 3.84 0.1
Internal Effect 8.12 0.62 18.1 0.71 2.31 0.52 31.25 0.8
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Figure 3 Kaplan-Meier estimate and waring frailty model survival curves for colon cancer dataset according to treatment, tumor-induced bowel obstruction,

tumor adherence to other structures, and presence of more than four compromised lymph nodes.

In all groups, the highest rate of change (VR) is associated with
the internal effect of the total variance. This result indicates that
endogenous processes related to disease progression are primarily
responsible for the observed variability. The external effect,
associated with contextual or environmental factors, contributes
less significantly, while the random effect, linked to unobserved
individual heterogeneity, has a relatively smaller share. The highest
RV for the internal effect was observed in the group with more than
four affected lymph nodes, followed by the group with an adherent
tumor, suggesting that in these subgroups the variability is strongly
determined by factors intrinsic to the tumor progression process.

After analyzing each covariate individually, we now proceed to
include all of them simultaneously in the model. As in the individual
parameter estimation, the same estimation procedure was employed in
this joint adjustment, using the L-BFGS-B optimization method* to
obtain the parameter estimates

The Table 5 presents the parameter estimates of the fitted model
with all covariates considered simultaneously. The structural
parameters p,Aand o have confidence intervals that do not
include zero, indicating statistical significance. Among the covariate
coefficients, the intercept (f3,) is not statistically significant, given
that its confidence interval includes zero.

Table 5 MLE, SE and CI (95%) obtained for the model considering all covariates together

Parameter MLE SE Cl 95%
Lower Upper

P 3.091 0.964 1.201 4.981
A -2.164 0.11 -2.38 -1.948
o 1.539 0.059 1.424 1.655
B, (intercept) 0.119 0.288 -0.447 0.684
Bi (Treatment) -0.303 0.094 -0.488 -0.119
B2 (Intestinal obstruction) 0442 0.114 0218 0.665
B3 (Tumor attached) 0.423 0.124 0.18 0.666
Ba (More than 4 lymph nodes) 1.342 0.101 I.144 1.54

0.002 0.004 -0.005 0.009

Bs (Age)

5
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The treatment (B,) showed a significant negative effect, suggesting
a higher probability of cure among treated patients. However,
adverse clinical variables such as intestinal obstruction (B2), tumor
adherent to other structures (3) , and the presence of more than four
compromised lymph nodes (B,) showed positive and statistically
significant effects, indicating a worse prognosis for patients with
these conditions. Finally, age (Bs) did not show a significant effect,
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suggesting that, in this model, age does not significantly influence the
cure rate.

Table 6 shows the influence of the covariates age, treatment,
intestinal obstruction, adherent tumor and +4 lymph nodes, on the
cure rate (p,)and on the rate of change of the internal effect (RCIE).

Table 6 p, and RCIE of patients with influence of all covariates in the proposed model

Age Treatment Intestinal obstruction Tumor attached +4 lymph RCIE
No 0.558 0.54
No
Yes 0.25 0818
No
No 0.452 0.641
Yes
Yes 0.178 0.873
20 No
No 0.448 0.646
No
Yes 0.175 0.875
Yes
No 0.347 0.736
Yes
Yes 0.122 0914
No 0.631 0.464
No
Yes 0.309 0.768
No
No 0.528 0.569
Yes
Yes 0.226 0.835
20 Yes
No 0.523 0.574
No
Yes 0.223 0.837
Yes
No 0418 0.673
Yes
Yes 0.158 0.887
No 0.538 0.559
No
Yes 0.233 0.829
No
No 0.433 0.66
Yes
Yes 0.166 0.881
60 No
No 0.428 0.664
No
Yes 0.164 0.883
Yes
No 0.329 0.751
Yes
Yes 0.114 0.92
No 0.612 0.484
No
Yes 0.292 0.782
No
No 0.508 0.589
Yes
Yes 0213 0.846
60 Yes
No 0.503 0.593
No
Yes 0.209 0.848
Yes
No 0.399 0.69
Yes
Yes 0.148 0.895

We can observe that, regardless of age or treatment, the presence of adverse clinical factors such as intestinal obstruction, tumor adherence

to adjacent structures, and more than four compromised lymph nodes
is associated with a significant reduction in the cure fraction and
an increase in RCIE (transient ischemic attack). For example, for
a 20-year-old patient without treatment and with all other adverse
conditions present, the cure fraction drops to 0.122, with a high TVEI
0f0.914, reflecting high intrinsic variability in disease progression. On
the other hand, young treated individuals without adverse conditions
have a higher probability of cure and lower RCIE, indicating a more
favorable prognosis and less influence of internal variability. Age, by
itself, shows a discrete impact, with a slight reduction in cure rates and
an increase in RCIE when comparing patients aged 20 and 60 under

the same conditions. Treatment, in all scenarios, is associated with
higher cure rates and lower RCIE values, reinforcing its protective
role. Thus, the table shows that the patient’s prognosis depends on
a combination of the presence of unfavorable clinical conditions,
age, and therapeutic intervention, with the internal effect being more
pronounced in the most severe profiles.

Next, in Figure 4, the rates of change associated with the
components of the Waring frailty model are presented, based on data
from the Colon study and considering all covariates included in the
analysis.
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Figure 4 Sources of variability influenced by all covariates in waring’s frailty model for colon cancer dataset.

It is observed that the internal effect is the main source of
variability, with an average of 62.0%, indicating that a large part of
the heterogeneity in patient survival is related to the disease’s own
evolutionary process over time. The external effect, associated with
environmental and contextual factors, represents approximately
24.6% of the total variation, highlighting its relevance in explaining
the model. On the other hand, the random effect, linked to unobserved
individual heterogeneity, contributes only 13.4%, suggesting a more
limited impact. These results highlight that most of the variability
observed in the Colon study sample stems from structural components,
especially the internal effect, which reinforces the importance of
models that adequately capture the temporal dynamics of survival.

Final remarks

In this work, we present a frailty model with a minimal activation
scheme that employs a discrete structure to represent the latent
factors underlying the risk process. This approach provides a clear
and interpretable depiction of how these factors accumulate among
individuals and contribute to the observed variability in survival
times. The model allows for the decomposition of this variability
into three fundamental components: the random effect inherent to the
process, the external effect associated with unobserved factors, and
the internal effect linked to each patient’s intrinsic characteristics.
This decomposition, grounded in the stochastic representation of the
Waring distribution, offers a more comprehensive understanding of
population heterogeneity.

Furthermore, we conducted a simulation study to assess the
model’s performance across different scenarios, confirming its ability
to accurately recover parameters and reliably identify sources of
variability. The application of the model to real colon cancer data
demonstrated its capacity to capture relevant patterns in the risk

process that traditional approaches fail to explain. These results
highlight the potential of the proposed methodology as a robust tool
for survival analyses requiring explicit assessment of heterogeneity
and identification of the structural mechanisms influencing risk.
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