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Introduction
Risk can be defined as the volatility of unexpected events, such 

as the representation of the value of assets, equity or profit.1 In 
this context, in financial institutions, a credit granting operation is 
characterized as credit risk. This type of risk is inherent to any financial 
transaction, being defined as the possibility of non-compliance 
with contractual obligations by the debtor, who does not honor the 
agreement established with the creditor at the time of contracting. 
Therefore, it is extremely important that financial institutions adopt 
appropriate measures and procedures to manage credit risk, ensuring 
the financial health of the institution and the confidence of the market 
and clients.

Credit analysis plays a crucial role in companies, as it is essential 
to assess the individual’s financial capacity and relationship with the 
market to determine the viability of granting credit. The analysis takes 
into account income, credit history, among other factors, in order 
to avoid financial losses for the institution. In this sense, the use of 
credit score models proves to be beneficial for allowing consistency 
in decisions in credit analysis, creating automation in granting, 
increasing the value of the analysis, ability to monitor and manage 
the risk of portfolio credit, among others. Furthermore, according to 
Silva, when considering the dynamics to which economic scenarios 
are linked and the way in which this directly affects the risk of default, 
the decision to grant credit, based on risk models, must be monitored 
and revised when necessary.

The occurrence of a financial crisis in the country is characterized 
by a reduction in the level of production in the country, resulting in 
a series of impacts. Among these impacts, it is possible to highlight 
the population’s indebtedness, caused by several factors, such as 
increased inflation, high unemployment and restricted access to credit. 
In the current scenario, the recovery of the financial system could be 
a slow and uncertain process, lacking assertive predictions about the 
ideal moment for recovery. Therefore, it is essential to use statistical 

models, such as Survival Analysis, which is a tool that can provide 
important support in these circumstances.

Survival analysis is made up of a set of statistical techniques and 
methods used to study the time elapsed until the occurrence of an 
event of interest. The term survival analysis is commonly used in the 
medical field, where the time until failure can be characterized as: 
death, cure, onset of a disease, side effect of a medication, among 
others. However, in addition to the medical area, survival analysis can 
be applied in other areas, such as the financial market.

Cure fraction modeling, also known as long-term modeling, 
studies cases in which, presumably, there are observations that are not 
susceptible to the event of interest. Boag2 was one of the pioneers of 
long-term modeling. Subsequently, other models were proposed, such 
as the standard mixture model by Berkson & Gage,3 the unified cure 
fraction model by Rodrigues,4 among others. In this type of modeling, 
there are individuals who are not susceptible to the occurrence of the 
event of interest, and can be considered as cured individuals/immune 
to the event of interest and the survival data set to which they belong 
has a cure fraction. In the financial market, the objective is to predict 
the recovery time of customers, with the recovered customer being the 
customer who returns to payment status. The use of long-term models 
in the financial market is considered a good tool for studying the time 
until the event of interest occurs, such as the return period until the 
payment status or the realization/delay of a portion of loan Toledo.5

Thus, applied in the financial market, long-term survival 
analysis is used to estimate the time of an event, such as the time 
elapsed from the acquisition of a loan until the delay in one of the 
installments, or even, as studied by Granzotto et al,6 the beginning of 
the customer’s relationship with the institution until the breakdown of 
that relationship.

However, in some studies there are individuals susceptible to early 
failures, which result in survival time equal to or close to zero. In this 
case, this scenario will be referred to as zero-adjusted. Therefore, in the 
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As the consumption of goods, services, and granting of credit increase, it becomes 
necessary to control the risk of the process. This measure aims to avoid possible defaults 
greater than what financial institutions can support while allowing for profit generation. 
Various statistical techniques can be used to build models that present the risk panorama, 
one of which is survival analysis. The application of this technique in the financial market 
seeks to study, for example, the time it takes for an individual to recover credit after the 
end of a financial crisis in their country. The use of such data can support the prediction 
of the ideal amount of credit to be provisioned in possible crisis scenarios and infer when 
the resumption of credit operations may occur. In this context, this work aims to study 
two defective regression models for modeling zero-adjusted survival data in the credit 
risk scenario. This approach accommodates three types of units: customers with “zero” 
survival times, that is, early failures, customers susceptible, and not susceptible to the event 
of interest. The methodology studied will be applied to a database provided by a leading 
institution in credit services and information in Brazil. 

Keywords: survival analysis, financial data, credit risk, cure fraction, defective 
distribution, zero-adjusted

Biometrics & Biostatistics International Journal

Research Article Open Access

https://crossmark.crossref.org/dialog/?doi=10.15406/bbij.2024.13.00422&domain=pdf


Zero-adjusted defective regression models applied for modeling credit risk data 116
Copyright:

©2024 Menezes et al.

Citation: Menezes CM, Souza CF, Tomazella LVLD. Zero-adjusted defective regression models applied for modeling credit risk data. Biom Biostat Int J. 
2024;13(4):115‒125. DOI: 10.15406/bbij.2024.13.00422

context of cure fraction, defective models offer the strategy to model 
zero-adjusted survival data. Although some articles have already used 
the idea of defective models, Balka,7 Rocha et al.,8 Scudilio et al.9 and 
Calsavara et al.10 have recently popularized the term “defective”. In 
the literature, there are several probability distributions that have a 
defective form.

In this context,the main objective of this paper is to consider 
an approach proposed by Calsavara et al.,10 called “Zero-Adjusted 
regression models” for analyzing credit risk data in the financial 
market. This approach makes it possible to accommodate three types of 
units, such as customers with “zero” survival times, i.e., early failures, 
customers susceptible and not susceptible to the event of interest. To 
estimate the survival function with the possibility of cure fraction and 
a lifetime proportion set to zero, we consider the defective Gompertz 
and Inverse Gaussian models. The dataset used in the application 
was analyzed by Toledo et al.5 The data were provided by a Brazilian 
financial institution, which provides services aimed at the credit 
market, containing information involving characteristics related to the 
habits and customs of individuals regarding commitments involving 
credit requests.

The rest of the article is organized as follows. In Section 2, we 
present the background on cure rate model and defective model. In 
Section 3, we present the formulation the zero-adjusted defective 
model and Inference methods based on the likelihood function. In 
Section 4, we apply the proposed model to the real data set used in the 
application was analyzed by Toledo et al.5 The data were provided by 
a Brazilian financial institutions. Finally, some concluding remarks 
are considered in Section 5.

Background
In this section, we present a brief description of the cure rate 

model proposed by Tsodikov and Yakovlev et al.,1 Ibrahim et al.,11 
later extended by Rodrigues et al.4 as well as description of defective 
model.7

Cure rate models

The survival theory has been widely explored by many researchers 
in various areas, with a major focus on analysis of clinical data. 
Generally the survival function ( ) ( )S t P T t= > is the function used 

to represent the random behavior of T . A property of ( )S t is that it 
goes to zero as the time pass, which characterizes an event of interest 
that eventually always occur.

However, there are situations in which a portion of the population 
is considered cured and cannot fail. For example, there are cases when 
it is considered the recurrence of a cancer. Some people can have the 
recurrence, however, there may be some others that is completely 
cured from that cancer and, therefore, it would never recur. To solve 
such problems, Berkson & Gage,3 based on the work of Boag,2 
proposed the standard mixture model for cured fraction. The survival 
function is set to 

( ) ( ) ( )01 ,popS t p p S t= + −                                                 (1)

 in a way that ( )0S t is a proper survival function. Thus, it follows 
that ( )S t converges top as the time increases. The above function has 
the following properties: 

 • If 0p = , then ( ) ( )0popS t S t= ; 

 • ( ) 1popS t = ; 

 • ( )popS t  is decreasing; 

 • ( )limt popS t p→∞ =

The last property demonstrates that the population survival 
function is improper, as the survival curve stabilizes at p , which 
exactly represents the cure probability of the population.

In addition to this approach, we have a unified long-term theory, 
proposed by Rodrigues et al.4 that generalizes, among others, the 
mixture model. Let N be a random variable that represents the number 
of causes of risk, for a particular event of interest, with probability 
distribution of ( )Np P N n= =  in which 0,1,2,n = … . In this case, 

N is a latent random variable. Given N n= , let , 1, ,vZ v n= … , be 
independent, non-negative random variables, with distribution
( ) ( )1F t S t= − . Consider also that N is independent of vZ , where 

vZ  represents the time until the occurrence of an particular event of 
interest, because of the v -th cause of risk.

The time of occurrence of the event of interest is defined as: 

{ }1 2, , , ,NT min Z Z Z= …                                                   (2)

in which [ ]0 1P Z = ∞ = , leads to a proportion 0p  of the non-

susceptible subjects to the event of interest. The variables vZ  are latent 
and T is an observable random variable or censoring. The survival 
function of the random variable T is given by: ( ) [ ]popS t P T t= > .

Let { }na  be a sequence of real numbers and [ ]0,1s∈ . Consider 

then the following: 

( ) 2
0 1 2 .A s a a s a s= + + +…

According to Feller,12 if ( )A s converges, then ( )A s and defined as 
the generating function of the sequence fang. Given a proper survival 
function ( )S t , the survival function of the random variable T , as in 
(2), is given

0

( ) [ ( )] [ ( )]n
npop

n

S t A S t Sp t
∞

=

= =∑                                                (3)

This implies that ( ) [ ] 0lim 0t popS t P N p→∞ = = = , with 0p  

denoting the cured fraction.

The survival function ( )popS t  obtained in (3) is not proper. The 

associated density and hazard function are given, respectively, by:

( ) ( ) ( ) ( ) ,pop s S t
df t f t A s s
ds ==                                                       (4)

( ) ( )
( ) ( )

( ) ( )

( )
.s S tpop

pop
pop pop

A s sf t
h t f t

S t S t
=  = =                                      (5)

Some examples of generating function can be obtained by using 
the distributions: Bernoulli, binomial, negative binomial, Poisson, 
geometric, power series, among others. If we assume the distribution 
for N is Bernoulli, then ( )popS t  is the same proposed in Berkson & 
Gage.3

Defective model

A distribution is considered defective if the integral of its density 
function does not result in 1, but in a value ( )0,1p∈ when the domain 
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of the parameters is changed. In defective models, it is possible to 
estimate a cure rate using a naturally improper distribution. Instead of 
directly estimating the proportion p as a mixture model, we employ a 
distribution by altering the domain of its parameters.

In a defective distribution, the cumulative function no longer 
approaches to 1, but to p and, therefore, the survival function 
approaches to1 p− . Figure 1 illustrates the cumulative function of 
a defective distribution. Obviously, the defective distribution is not 
proper. 

Figure  1 Defective accumulated distribution function.

 In the literature, there are two known distributions that can be 
used for this purpose: the inverse Gaussian and Gompertz distributio.8

The defective gompertz distribution: The Gompertz distribution 
is often used to model survival data in various areas of knowledge 
Gieser et al.13 The probability density function for the Gompertz 
distribution is given by

( ) ( )1

.
b ateat af t be e

−−
=

 
                                                                   (6)

where 0, 0a b> > and 0t > . The corresponding survival function 
and hazard function are given respectively by

( ) ( )1

,
b ate
aS t e

−−
=                                                                    (7)

( ) .ath t be=                                                                                 (8)

The defective Gompertz distribution is the Gompertz distribution 
that allows the scale parameter to have negative values ( 0a < ). The 
cure fraction p in the population is calculated when the limit of the 
survival function (7) tends to infinity with ( 0a < ), that is,

( ) ( ) ( )
1

/lim lim 0,1
b ate b aa

x x
p S t e e

−−

→∞ →∞
= = = ∈                                    (9)

The defective inverze gaussian distribution: The inverse 
Gaussian distribution arises as the first passage time of a Wiener 
process.7 Lee and Whitmore14 noted its potential as models for cure 
rate. Its density function is

( ) 2
3

1 1exp (1 ) ,
22

f t at
btb tπ

 = − − 
 

                              (10)

 where 0, 0a b> > and 0t > . The corresponding survival function 
is given by,

2 /1 1( ) 1 a bat atS t e
bt bt

 − + − −   = − Φ + Φ    
    

                               (11)

 where ( )Φ ⋅  denotes the cumulative distribution of the standard 
normal. The hazard function is

2
3

2 /

1 1exp (1 )
22( )

1 11 a b

at
btb th t

at ate
bt bt

 − − 
 =

 − + − −   − Φ + Φ    
    

π                                 (12)

The defective inverse Gaussian distribution is the inverse Gaussian 
distribution that allows negative values of a . The cure fraction p in 
the population is calculated when the limit of the survival function 
(11) tends to infinity with ( )0a < that is,

2 /lim ( ) li .m1 1 1 21 exp (0,1)
t t

a bp at at ae
bbt b

S t
t→∞ →∞

 − + − −     Φ + Φ = − ∈     
    

= −


=
     

(13)

Zero-adjusted defective model
In the context of cure fraction, defectives models offer the 

strategy to model zero-adjusted survival data. In this sense, instead of 
estimating the cure fraction directly, as in the standard mixture model, 
the defective model is an alternative for modeling long-term service 
life data. To accommodate zero-adjusted lifetimes in defectivos 
models, Calsavara et al.,10 proposed a new survival function as 
follows: 

( ) ( ) ( )*
0; 1 ; ,   0,popS t p S t t= − >θ θ                               (14)

where ( );S ⋅ θ  is a proper or improper survival function, 00 1p≤ ≤

denotes the zero-adjusted proportion and ( )*
0 ,p=

θ θ  is a vector 
of parameters.

It is important to highlight that if ( );S ⋅ θ  is a proper survival 
function, that is, ( )lim ; 0t S→∞ ⋅ =θ , the model (14) becomes a 

standard zero-adjusted survival model. Otherwise, if the survival 

function ( );S ⋅ θ  is improper, then the proposed model satisfies, 

( ) ( )*
0; 1 1,popS t p= − ≤θ

and the limit of the survival function is 

( ) ( ) ( ) ( ) ( )*
1 0 0lim ; 1 lim ; 1 0,1 ,pt t

p S t p S t p p
→∞ →∞

= = − = − ∈θ θ

where p is the cure fraction of the improper/defective distribution. 
Models that consider such proportions simultaneously are called zero-
inflated (or zero-adjusted) cure rate survival models, or zero-inflated 
cure rate models. Figure 2, we illustrate the behavior of the survival 
function for this model.

Figure 2 Survival function of the zero-inflated cure rate model.
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 The associated cumulative distribution and probability density 
functions are, respectively,

( ) ( ) ( )*
0 0; 1 ; ,   0,popF t p p F t t= + − >θ θ

 and 

( ) ( ) ( )
0*

0

,    if   0,
;

1 ; ,    if   0.pop
p t

f t
p f t t

==  − >
θ

θ

Note that if 0 0p = , the faulty standard model is obtained as a 
special case.

Defective model gompertz zero-adjusted

Based on the equation (14) with the survival function in (7), the 
survival function of the zero-adjusted Gompertz defective model will 
be given by: 

( ) ( ) ( )*
0; 1 exp 1 ,at

pop
bS t p e
a

 = − − − 
 

θ  

where *
0( , , )p a b= θ  is a vector of parameters, where 00 1p≤ ≤

, a∈ and 0b > .

The corresponding probability density function is defined by, 

( ) ( ) ( )*
0; 1 exp 1 .at

pop
bf t p b at e
a

 = − − − 
 

θ

As seen in the defective Gompertz distribution (6), the defective 
zero-adjusted Gompertz distribution also allows negative values for 
the parameter a . In this case, the corresponding cure fraction when

0a < is given by 

( ) ( )
( )( ) ( ) ( ) ( )

/ 1* /
1 0 0 0lim ; 1 lim 1 1 0,1 .

atb a e b a
pt t

p S t p e p e p p
− −

→∞ →∞
= = − = − = − ∈θ    (15)

From (15) the defective zero-adjusted Gompertz distribution 
shows that the cure fraction decreases as b increases.

Defective model gaussian-inverse zero-adjusted 

Again, based on the equation (14) with the survival function in 
(11), the survival function of the zero-adjusted Gaussian-Inverse 
defective model is given by: 

( )* 2 /
0

1 1; (1 ) 1 a b
pop

at atS t p e
bt bt

  − + − −   = − − Φ + Φ     
     

θ

 where *
0( , , )p a b= θ  is a vector of parameters, where 00 1p≤ ≤

, a∈ and 0b > .

The corresponding probability density function,is given by, 

( )* 20
3

1 1; exp (1 ) .
22

pop
pf t at

btb t

−  = − − 
 

θ
π

Following the same concept as the zero adjusted Gompertz 
defective model, the zero adjusted Gaussian-Inverse defective model 
allows 0a < , and its cure fraction is, 

( )* 2 /
01 lim lim 1 1; (1 ) 1 b

p t

a

t

at attp
b

S p e
bt t→∞ →∞

  − + − −   = − − Φ + Φ     
    

=


θ

 

( )( ) ( ) ( )2 /
0 01 1 1 0,1 .a bp e p p= − − = − ∈                              (16)

From the (16) the zero-adjusted Inverse Gaussian distribution 
shows that the cure fraction decreases as  increases.

In this sense, if the estimated parameter a is negative ( 0a <
), then the cure fraction for the defective Gompertz and Inverse 
Gaussian models defined as zero can be obtained, respectively, from 
(15) and (16). Otherwise, if the estimated model parameter is positive, 
there will be no cure fraction, according to the zero-adjusted defective 
models.

The advantage of the model proposed by Calsavara et al.15 is the 
ability to accommodate a zero-adjusted life expectancy proportion, as 
well as the possibility of a fraction of cure in the population.

Inference

In this section, we describe the inference for the model parameters 
based on a maximum likelihood approach and also on the asymptotic 
theory of large samples. Let 0T ≥ be a random variable that 
represents the time until the event of interest occurs. Consider the time 
of the indicator variable *

iδ , that is, * 0iδ = if 0T = (survival time set 

to zero) and * 1iδ =  if 0, 1,..., .T n> = Furthermore, let iδ  be the 

censorship indicator variable, where 0iδ =  if the data is censored and 

1iδ =  otherwise. The explanatory variables will be incorporated into 
the model with a set of two-variable vectors, 1

1
s+∈x  and 1

2   qin +x 

, such that ( )1 2, w= ∈x x x     is a covariate vector with dimension

w , where 2w s q= + + . 

According to Calsavara et al.15 the logito and log link functions 
were considered, being: 

( )0 1
1 0 2 2 1

0 1

ln   e   ln ,
1

p
b

p

 
= =  − 

x i
i i i

x i

x x x β β

 where ( )1 1 111, ,...,i i isx x x=  and ( )2 2 11, ,...,i iq isx x x=  are the sets 

of covariates and ( )0 00 01 0, ,..., sβ β β β=  and ( )1 10 11 1, ,..., qβ β β β=  

and their regression coefficients, respectively. In this way, the link 
function will depend on the covariates and can be expressed as follows 

{ }
{ } ( ) { }1 0

0 2 2 11
1 0

exp
   and  exp .

1 exp
p b= =

+

i
x i ii

i

x
x x

x






β
β

β

In practice, the covariate vectors can be the same, that is,

1 2x x x= = . Furthermore, the logit and log link functions will be 
used to maintain the range of values of 0p and b , respectively. Other 
linkage functions can be used for the proportion of failures, such as 
the probit and complementary log-log linkage functions.

In this sense, in the data set to be observed, we have
 ( )*, , ,D t= δ δ

, on what 1( ,..., )nt t=t  will be the observed lifetimes, ( )1,..., n= δ δ δ
 

and ( )* * *
1 ,... n=


δ δ δ , are, respectively, the censoring and censoring 

time indicators, and  is the matrix containing the covariate 
information.

Considering that iT ’s are dependent and identically distributed 
random variables with the survival function specified by ( );pS ⋅ ϑ ,on 
what 0 1( , , )a= ϑ β β  é um vetor de parâmetros desconhecidos. The 
likelihood function ofϑ under non-informative censoring is expressed 
as,  
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{ }
*

*
0 11

1
2 1 2

1
( ; ) ( )1 ( ; , ( ; , ., ) , )

n
i

i p
i

i iL D p f ti Sp ti
=

−∝ −∏ x i i i ii x x x xδ δ δ
ϑ δ ϑ ϑ        (17)

The corresponding log-likelihood is given by 

( ) ( )log ;l L D=ϑ ϑ

( ) * *
0 1 2 1 21

1 1 1
, ) , ).((1 *)log ( ; , (1 ) ; ,

n n n

i i p i i i p i
i i i

p ogf t ogS t
= = =

∝ − + + −∑ ∑ ∑x i i i ii x x x xδ δ δ ϑ δ δ ϑ

The previous log-likelihood function can be rewritten as follows, 

( ) ( ) ( )*
0 01 1

1 1
(1 *)log log 1

n n

i i
i i

l p p
= =

∝ − + −∑ ∑x xi iϑ δ δ δ

( ) ( )* *
1 2 1 2

1 1
log ; , (1 ,) log ; ,,,

n n

i i i i
i i

f ti S ti
= =

+ + −∑ ∑i i i ix x x xδ δ ϑ δ δ ϑ

on what ( )1 2; , ,f ⋅ i ix xϑ e ( )1 2; , ,S ⋅ i ix xϑ are, respectively, the 

probability density function and the survival function associated with 
the defective distribution. The full proof of the likelihood function can 
be found in Calsavara et al.15

Maximum likelihood estimates of the parameters are obtained 
by numerically maximizing the log-likelihood function. There are 
several methods for this numerical maximization, however, the optim 
routine in the statistical software R was used for this maximization.

Therefore, the asymptotic properties of maximum likelihood 
estimates are necessary to construct confidence intervals and test 
hypotheses about model parameters. Under certain conditions, ϑ̂
has an asymptotic multivariate normal distribution with mean ϑ  and 

variance ( )ˆΣ ϑ , being estimated by, 

( ) ( ){ } 1
ˆ

ˆ ˆ ˆl d
−

=Σ = − =
ϑ ϑϑ ϑ ϑ ϑ ϑ

Thus, an approximate confidence interval of ( )100 1 %−α  for iϑ  

is
 
( )/2

ˆ ii
i z± Σαϑ , where iiΣ  denotes the ith element of the diagonal 

of the inverse of Σ  evaluated at ϑ̂  and zα  denotes the ( )100 1−α  
percentile of the standard normal random variable.

The results of the asymptotic normality of maximum likelihood 
estimates are valid under certain conditions. In Calsavara et al.15 
a simulation study was carried out to verify whether the usual 
asymptotes of maximum likelihood estimates are valid, since 
simulations have been used in many works to verify the asymptotic 
behavior of maximum likelihood estimates, especially when a 
Analytical investigation is not trivial.

Application
Data description

In this study, the dataset for this application was provided by a 
financial institution providing credit-oriented services. These data 
were analysed by Toledo et al.5 considering the model proposed by 
Ribeiro et al.16 The period considered was after the Brazilian economic 
recession, starting in mid-2014, in which there was an increase in the 
financial crisis in the country. For this application, a random sample 
of 9,645 CPFs will be considered. The main characteristic of the 
individuals that make up this data set is the acquisition of debts, that 
is, there are customers with overdue and unpaid debts in the period 
from July/2015 to December/2015.

The process of collecting outstanding debts is done in a traditional 
way. This type of process can be carried out through telephone 
charges, collection letters or extrajudicial calls. Devido ao cenário da 
crise econômica, há a lentidão do processo de restituição do status do 
clientes de inadimplente para adimplente, sendo necessário a utilização 
de modelos estatísticos para estimar o prazo para a ocorrência destes 
eventos. The failure time in this study is the time from the date of debt 
acquisition to the completion of the study, a period of 24 months. In 
this context, to identify differences in customer behaviors for different 
scenarios, the situation will be studied using two covariates.

Consultation information: Indicates whether the customer in 
question has been consulted by companies (from any segment) on 
credit reports in the past 180 days. 

Type of debt: Indicates whether the debt acquired in the period of 
the economic crisis is from the financial segment (Banks) or other 
segments. 

In Table 1 shows the covariates according to their categories.

Table  1 Description of covariables

Covariable Description  Category   n  % 

 1X
Consultation 
information 

 0: without consultation 295 3.06%
 1: with consultation 9350 96.90%

 2X  Type of debt 
 0: Banks 5103 52.90%
 1: Other segments 4542 47.10%

Furthermore, through the data set it is possible to verify the 
distribution of clients subgroups, since it is possible to perceive 
different behaviours in relation to the payment status recovery time 
for different clients subgroups, being,

Client having an event at time zero: Indicates clients who have 
settled their debt at time zero, immediately recovering their ability 
to pay; 

Client susceptible to the event: Indicates clients who settled their 
debt within the observed period of 24 months, that is, they reversed 
their debts over the period and as of such settlement recovered their 
ability to pay; 

Client not susceptible to the event: Clients not susceptible to 
the event of interest, which according to the theory are considered 
immune/cured, that is, they are clients who continued with their 
outstanding debts after the 24-month period, thus remaining with the 
status of default. 

In Table 2 there is the number of each subgroup present in the data 
set. 

Table  2 Subgroups of customers in the dataset

  Subgroups  No. of Clients  % of Clients 
(I) Client having an event at time zero 2292 23.76%
(II) Client susceptible to event 5268 54.62%
(III) Client not susceptible to event 2085 21.62%
 Total 9645 100%

Therefore, Table 2 shows that there is a concentration of events 
at time zero, accounting for about 23.76% of the observations, 
identifying an excess of zeros. In addition, around 21.62% of clients 
do not present the event of interest, which is theoretically considered 
immune. Finally, about 54.62% of the clients had an interest event, 
that is, they paid off the debt within 24 months.
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The Figure 3 shows the distribution of debt settlement times for 
the observed data set. In this sense, it is possible to notice in the Figure 
3, the inflation of the zeros for this data set. This is interesting given 
that the study is being conducted in a scenario of economic crisis and 
most indebted clients were paying off their debts at the start of the 
study. This may be due to the client’s interest in normalising their 
status in order to perform other actions that a default might prevent.

Figure 3 Debt settlement time (in months).

In Figure 4 we have the Kaplan-Meier curve estimated for the 
clients debt settlement times. It is possible to see a large number of 
censures on the right, that is, a large number of clients who did not 
pay off their debts within the 24-month period. Furthermore, it is 
important to highlight that the survival curve estimated in Figure 4 
starts approximately at point 0.75, due to the presence of zero inflation 
in Figure 3.

Figure 4 Survival curve for debt repayment times (in months).

 The estimated Kaplan-Meier curves stratified by the categorical 
covariate are shown in Figure 5, where there are differences in the 
curves for different categories within the covariate, representing a 
difference in survival.

Therefore, in Figure 5 it is possible to highlight the Debt Type 
covariate, in which clients who have debts in banks pay off their debts 
in a greater proportion when compared to debts that come from other 
segments. In relation to the covariate Consultation Information, it can 
be observed that customers who do not have consultations on their 
credit reports tend to prioritise paying off their debts more than those 
who do.

Figure 5 Estimated Kaplan-Meier curves considering covariates: Consult 
credit reports and segment of adquired debt.

Application of the proposed model

 In this section we present the implementation of the Zero-adjusted 
defective model Gompertz and inverse Gaussian. The model will be 
adjusted in the presence of covariates separately and jointly. To select 
the best model, two metrics are used to measure its quality, the Akaike 
Information Criterion (AIC) and the Bayesian Information Criterion 
(BIC).

Thus, the goal is to evaluate whether the type of Debit and the 
Consulation information influence the Debt settlement time (in 
months). To simplify the interpretations, it should be noted that the 
coefficients 0β  , 1,2i = , are related to the influence of the covariates 
type of Debit and the Consulation information on zero inflation, while 
the coefficients 1iβ , 1,2i = , are related to the influence of the same 
covariates on the parameter b  of the Gompertz and Inverse Gaussian 
distributions. So, we have the following relations, to proportion of the 
zeros, 0p  and b  respectively, 

( ) { }
{ }

00 1 01 2 02
0

00 1 01 2 02

exp
,

1 exp
x x

p
x x

+ +
=

+ + +
x

β β β
β β β

( ) { }10 1 11 2 12exp .b x x= + +x β β β

 where ( )1 2,x x=x  is a covariate vector, where 1 0x =  indicates 

Consultation information (without consultation) and 1 1x =  (with 

consultation); 2 0x = type of debt (bank) and 2 1x = (other segments) 

and ( )0 00 01 02, ,=β β β β  and ( )1 10 11 12, ,=β β β β  and their regression 

coefficients, respectively.

Adjustment of the model without the effect of covariates: Table 3 
shows the results of the parameter estimates (MLE), standard errors 
(SE) and 95%  confidence intervals obtained by fitting the zero-
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adjusted Gompertz and inverse Gaussian models, respectively, without 
the presence of covariates. It is important to note that all parameters 
are significant at the 5%  significance level, as the confidence 
intervals do not include the zero value. We can see that the estimates 

of the parameters associated with the proportion of zeros ( 0p ) are 
very close for both models. Also can be noted that the cure rate found 
for the Gompertz model is higher than for the Inverse Gaussian model 
with respect to the cure rate parameter ( 1p ).

Table  3 MLE, Maximum likelihood estimates; SE, Standard error; CI, Confidence interval; CI (95%) for the zero-adjusted gompertz and inverse gaussian models 
without effect of covariates

  3*Parameters  Zero-adjusted defective models   
  Gompertz  Inverse Gaussian  
   MLE  SE  CI (95%)  MLE  SE  CI (95%)
a -0.147 0.002 -0.065 0.003
b 0.187 0.007 0.454 0.007

-1.166 0.024 -1.166 0.024
1.679 0.018 -0.79 0.018
0.238 0.004 0.238 0.004

 0.213 0.004  0.19 0.007  

( )00 intercepto
β

( )10 intercepto
β

0p
1p

( )0.152; 0.142− −

( )0.173;0.200
( )1.213; 1.119− −

( )1.715; 1.643− −
( )0.230;0.245
( )0.206;0.221

( )0.071; 0.059− −
( )0.440;0.467
( )1.213; 1.119− −

( )0.826; 0.754− −
( )0.230;0.245
( )0.177;0.204

Figure 6 shows the adjustment of the defective zero-adjusted 
Gompertz (a) and Inverse Gaussian (b) models, respectively, without 
the presence of covariates. In this sense, it is possible to verify that 
the Gompertz model (a) obtained a better fit than the inverse Gaussian 
model (b), since the survival curve estimated by the Gompertz model 
is very close to the Kaplan-Meier curve.

Figure 6 Kaplan-Meier estimate and the survival curve estimated by the 
Gompertz Adjusted Zero Defective Model (a) and Gaussian-Inverse Adjusted 
Zero Defective Model (b), without the presence of a covariate.

By analysing the survival functions represented by equations and, it 
is possible to establish a relationship with the population accumulated 

risk function, where ( ) ( )( )l ˆˆ ogpop popH t S t= − . 

Figure 7 shows the estimated curves of the cumulative risk function 
for each of the models. In this sense, the when analysing the Gompertz 
model showed the best fit to the data, we can observe that there is 

a greater risk that the individual who acquired a debt has a greater 
chance of paying it off by month 030 , as the estimated cumulative 
curve stabilises shortly after this point. However, it is worth noting 
that the risk is almost the same if the debt is repaid in up to 35 months 
or up to 60 months. 

Adjustment of the model by considering each covariate separately: 
Table 4 shows the parameter estimates, standard errors and their 95%
confidence intervals for the covariates “Consultation information” 
and “type of debt” for each of the proposed models. “It is also possible 
to observe that all the parameters of the models adjusted considering 
the Debt Type covariate are significant, since the confidence intervals 
established in both models do not include the value zero.

Figure 7 Estimation of the cumulative risk function (H(t)) by the Gompertz 
Adjusted Zero Defective Model (a) and Gaussian-inverse adjusted zero 
defective model (b), without the presence of a covariate.

Table  4 MLE, Maximum likelihood estimates; SE, Standard error; CI, Confidence interval; CI (95%) for the zero-adjusted gompertz and inverse gaussian models 
without effect of covariates

  3*  3*Parameters  Zero-adjusted defective models    

   Gompertz  Inverse Gaussian 

   MLE  SE  CI (95%)    MLE  SE  CI (95%)

 10*Consultation information  a  -0.147 0.002  (-0.152;-0.142)   -0.065 0.003  (-0.071; -0.059)

 b 0.186 0.054  (0.171;0.292)  0.454 0.008  (0.438; 0.469)

  -0.855 0.127  (-1.105;-0.606)   -0.856 0.127  (-1.105; -0.067)

  -0.321 0.130  (-0.575;-0.067)   -0.320 0.13  (-0.574; -0.066)

  -1.641 0.082  (-1.802;-1.481)   -0.800 0.094  (-0.985; -0.615)

( )00 intercepto
β

( )01 11x =
β

( )10 intercept
β
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  3*  3*Parameters  Zero-adjusted defective models    

   Gompertz  Inverse Gaussian 

   MLE  SE  CI (95%)    MLE  SE  CI (95%)

  -0.038 0.082  (-0.199;-0.122)  0.010 0.095  (-0.176; 0.196)

 0.298 0.027  (0.245;0.351)  0.298 0.027  (0.245;0.351) 

 0.236 0.004  (0.228;0.244)  0.236 0.004  (0.228;0.244) 

 0.187 0.021  (0.146;0.228)  0.177 0.017  (0.143;0.210) 

 0.214 0.004  (0.206;0.222)  0.191 0.007  (0.177;0.205) 

  AIC -46305.09  -45249.05

 BIC -46223.35  -45167.31

10*type of debt  a  -0.142 0.002  (-0.146;-0.137)   -0.066 0.003  (-0.071; 0.060)

 b 136 0.01  (0.116; 0.155)  0.367 0.01  (0.347; 0.387)

  -1.030 0.032  (-1.092;-0.967)   -1.030 0.032  (1.092; -0.967)

 -1.030 0.048  (-0.397; -0.207) -0.302 0.048  (-0.397; -0.207)

  -0.302 0.021  (-1.467; -1.481)  -0.606 0.024  (-0.653; -0.558)

  -1.426 0.028  (-0.626; -0.516)  -0.397 0.031  (-0.458; 0.335)

 0.263 0.006  (0.251;0.275)  0.263 0.006  (0.251;0.275) 

 0.209 0.006  (0.197;0.221)  0.209 0.006  (0.197;0.221) 

 0.135 0.005  (0.125;0.145)  0.158 0.006  (0.146;0.170) 

 0.303 0.007  (0.290;0.317)  0.238 0.008  (0.223;0.254) 

  AIC -45851.5  -45055.3

  BIC -45769.4    -44973.6   

Table 4 Continued...

For the covariate “Consultation information”, it can be seen that 
the estimates of the parameters associated with the proportion of zeros 
( 00p ) are very close for both models, indicating that this covariate 
has a greater inflation of zeros 00 0.298p =  for customers who have 
not received any consultation from companies on their credit report. 
In terms of the cure rate, the highest cure rate is given by modelling 
using the Gompertz distribution 11 0.214p =  for clients who received 
consultations from companies on their credit report, while the lowest 
cure rate is given by modelling using the Inverse Gaussian distribution 

10 0.177p =  for clients who did not receive any consultation.

For the covariate “type of debt”, in the table 4, can also be seen 
that the estimates of the parameters associated with the proportion of 
zeros ( 00p ) are very close for both models. In this case, the variable 
“type of debt” has a higher inflation of zeros 00 0.263p =  for clients 

with bank debts, while the lower inflation of zeros 01 0.209p =  for 
clients with debts from other segments. Furthermore, in both models, 
the highest proportion of cure is given to clients with debts to other 
segments, while the lowest proportion of cure is given to clients with 
debts to banks.

Figure 8 shows the survival curve estimated by the defective zero-
adjusted Gompertz (a) and Inverse-Gaussian (b) models, respectively, 
with the presence of the covariate consultation Information on credit 
reports. It can be seen that the Gompertz model provides a better fit 
to the data than the inverse Gaussian model. The emphasis on the 
Gompertz model is due to the fact that its estimated survival curve 
is significantly close to the Kaplan-Meier estimated survival curve.

Figure 9 shows the estimated curves of the population cumulative 
risk function, ( )ˆ

popH t , for each of the models. We can observed that 

the risk of an individual repaying their debt at a given point in time is 

greater for clients who have not had any consultation on their credit 
reports.

Figure 8 Kaplan-Meier estimate and the survival curve estimated by the 
defective Zero- Adjusted Gompertz model (a) and defective Zero-Adjusted 
Gaussian-Inverse model (b), with the presence of the covariate information 
from checking credit reports.

Figure 9 Estimation of the accumulated risk function (H(t)) by the defective 
Zero-Adjusted Gompertz model (a) and the defective Zero-Adjusted 
Gaussian-Inverse model (b), with the presence of the covariate Information 
from consultation credit reports.

( )11 11x =
β

00p

01p

10p

11p

( )00 intercepto
β

( )02 12x =
β

( )10 intercept
β

( )12 12x =
β

00p

01p

10p

11p
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Figure 10 shows the survival curve estimated by the defective 
zero-adjusted Gompertz (a) and Inverse-Gaussian (b) models, 
respectively, for the debt type covariate. It is possible to verify that 
the best fit occurs in the Gompertz model compared to the Inverse 
Gaussian model.

Figure 10 Kaplan-Meier estimate and the survival curve estimated by the 
defective Zero- Adjusted Gompertz model (a) and defective Zero-Adjusted 
Gaussian-Inverse model (b), with the presence of the covariate debt type.

Figure 11 shows the estimated curves of the population 

accumulated risk function, ( ) ( )( )l ˆˆ ogpop popH t S t= − , for each of the 

models, considering the covariate Type of Debt. In this sense, can be 
seen that the risk of an individual repaying his debt at a given time is 
higher for clients who owe money to the financial sector, i.e. to banks. 
On the other hand, the risk that an individual will repay his debt in a 
given period is lower for clients with debts in other segments.

Figure 11 Estimation of the accumulated risk function (H(t)) by the defective 
Zero-Adjusted Gompertz model (a) and the defective Zero-Adjusted 
Gaussian-Inverse model (b), with the presence of the covariate debt type.

Adjustment of the model with the presence of covariates jointly: 
Table 5 shows the adjustment of the Gompertz and Inverse Gaussian 
zero-adjusted defective models, considering both covariates. It is 
observed that the parameters associated with the Gompertz and 
Inverse Gaussian distributions are significant, in addition it is verified 
that the majority of the estimates of the regression parameters
β associated with the parameter b and the proportion of zero are 
significant, considering the same criteria for trust regions observed in 
previous models.

The Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) for model selection show that the Gompertz zero-
adjusted defective model is the most appropriate, as it presents the 
lowest AIC and BIC values. Thus, in Table 6, we present the estimates 
of the zero proportions and cure proportions for the zero-adjusted 
Gompertz defective model for the covariates consultation information 
and debt type. In this context, it is possible to observe from Table 6 

that the highest proportion of individuals who regularise their debts at 
time zero is associated with customers who have not had their credit 
reports consulted by companies and who have debts in the financial 
segment i.e. banks, with a proportion of 000 0.3267p = . On the other 
hand, the lower proportion of individuals paying off their debts at time 
zero is associated with customers who have had their credit reports 
checked and who have debts from other segments.

Table  5 MLE, Maximum likelihood estimates; SE, Standard error; CI, Confidence interval; CI (95%) for the zero-adjusted Gompertz and Inverse Gaussian models 
without effect conjunto of covariates

   3*Parameters  Zero-adjusted defective models    

  Gompertz   Inverse Gaussian  

   MLE  SE  CI(95%)  MLE  SE  CI(95%)

 a -0.142 0.002  (-0.146; -0.137) -0.066 0.003 (-0.071; -0.060)

 b 0.136 0.01  (0.188; 0.227) 0.367 0.01 (0.348; 0.387)

-0.723 0.129  (0.976; -0.470) -0.721 0.129 (-0.974; -0.468)

 -0.317 0.13  (-0.572; -0.206) -0.318 0.13 (-0.573; -0.064)

 -0.301 0.048  (-0.396; -0.206) -0.303 0.048 (-0.398; -0.208)

 -1.397 0.082  (-1.558; -1.235) -0.618 0.095  (-0.805; -0.431)

 -0.031 0.082 (-0.626; -0.516) 0.011 0.095 (-0.175; 0.197)

 -0.571 0.028  -0.395 0.031 (-0.456; -0.334)

AIC -45841.3 -45045.6

BIC -45726.9   -44931.2   

( )00 intercept
β

( )01 11X =
β

( )02 12X =
β

( )10 intercept
β

( )11 11X =
β

( )12 12X =
β
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Table  6 Estimates of the proportions of zeros and cure for the gompertz zero-adjusted defective Model for the covariates 1x and 2x  jointly

   2*Proportions of zeros and cures  2* 1x
 

 2* 2x
 

 2*Estimativa  2*Erro padrão 
 IC (95%)  
 LI  LS 

 4*p0  2*0 0 0.3267 0.028 0.2718 0.3816
 1 0.2642 0.025 0.2152 0.3132

  2*1 0 0.2611 0.006 0.2494 0.2729
 1 0.2073 0.006 0.1955 0.2190

 4*p1  2*0 0 0.1173 0.018 0.0820 0.1526
 1 0.2742 0.024 0.2271 0.3212

  2*1 0 0.1356 0.005 0.1258 0.1454
  1 0.3041 0.007 0.2904 0.3178

It is also worth noting that clients whose credit reports have been 
consulted by a company and who have debts from other segments 
are those with the highest concentration of people who have not paid 
their debts within the 24-month period, as the cure rate is given by

111 0.3041p = . With regard to clients whose credit reports have not 
been consulted by any company and who have debts from banks, it is 
important to note that they have the smallest amount of outstanding 
debts, as the cure proportion is 100 0.1173p = . If we compare the 
results obtained by Toledo et al.,16 and the results in Table 6, we can 
see that the estimates of the proportions of zeros and cure are quite 
similar, which highlights the effectiveness of the model. It is important 
to highlight that the methodology used in this study has the advantage 
of only having to estimate the parameters of the defective model and 
the proportion of zeros ( 0p ), whereas in the other methodology it 
was necessary to estimate the proportion of zeros ( 0p ), the cure rate (

1p ) and the parameters of the basic survival models. Finally, through 
Table 6, it was observed which patterns of clients tend to pay or not 
pay their debts within the 24-month period, using the Gompertz zero-
adjusted defective model.

Conclusion
In this study, statistical survival models called Zero-adjusted 

defective regression models were studied. These models have two 
main characteristics that differentiate them from usual survival models: 
the incorporation of a portion of individuals who do not present the 
event of interest, even after a long period of follow-up, and also the 
possibility that a proportion of the times under study are equal to zero. 
To illustrate the modelling presented here, we analysed survival data 
from a real database of clients who acquired debt between the months 
of July and December 2015, provided by Serasa Experian, a leading 
institution in credit information and services in Brazil. The model 
made it possible to estimate the proportions of three groups of clients 
in a given dataset: a group in which time equals zero (clients who paid 
off their debts at time zero and immediately regained the ability to 
pay); another group of clients susceptible to the interest event (clients 
who paid off their debts over time and then regained the ability to 
pay); and a group of clients not susceptible to the event (clients who 
did not pay off their debts).

The results showed that the Gompertz zero-adjusted defective 
model performed better. The criteria used to select the best model 
were measured by AIC and BIC.However, it is important to emphasise 
that the real performance of the models presented here can be assessed 
in the light of their daily use by companies, using a greater variety 
of available data and covariates, since the model allows the use of 
as many covariates as necessary, whether continuous or categorical. 
Furthermore, it was found that the modelling presented here is 

similar to the modelling of the zero-adjusted cure rate models studied 
by Toledo et al.,5 However, zero-adjusted defective models have 
a significant advantage, as they require the estimation of one less 
parameter, the parameters of the defective model and the proportion 
of zeros, i.e. the proportion of clients who paid off their debts at the 
beginning of the study.

At the end of this study, it was found that it is possible to gain 
additional knowledge, leading to the conclusion that we can use the 
survival analysis technique to estimate and select an efficient model 
in customer portfolios with access to credit, such as those of large 
banks or retailers.
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