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Introduction 

Borah et al.,1 report extensively on the chaotic behavior of 
pandemics in low- to mid-income countries. Examples include 
the Plague epidemic in Bombay, India, chaotic epidemic crisis 
management in Mexico, Ebola Virus epidemic in Guinea, Liberia, 
and Sierra Leone, and Dengue in Pakistan. Additionally, the authors 
noted that certain cancer models exhibit deterministic chaos or chaotic 
dynamics, resulting in complex oscillations. Jones and Strigul2 suggest 
that COVID-19 exhibits the qualitative characteristics of a chaotic 
system and is one of the deadliest pandemics in recent history due to 
its exponential spread. The Coronavirus disease, which emerged in 
2019, has a high mortality rate.1

The emergence of chaotic behavior can be attributed mostly to 
predator-prey and competition dynamics, as stated by Diekmann 
and Kretzschmar.3 Nonlinear interactions between cell populations, 
such as those found in cancer models and Parkinson’s disease, also 
contribute to chaotic behavior, according to Gross et al.4 Stiefs et al.,5 
have also observed chaotic long-term dynamics in models where the 
prey is infected.

Hesketh et al.,6 proposed that ecological models should consider 
the significance of human-environment interactions in comprehending 
and modifying human behavior. These models have been integrated 
at various levels of influence on behavior, including the policy, 

community, organizational, social, and individual levels. However, 
fewer studies have explored correlates at the social, physical, and 
policy levels. In contrast to the behavior of oscillations, the effect of 
chaos on the stability of ecological models has been a topic of debate 
for a considerable period of time.5

Debbouche et al.,7 has presented that the conceived COVID-19 
pandemic model that shows chaotic behaviors. The system dynamics 
are investigated via bifurcation diagrams, Lyapunov exponents, time 
series, and phase portraits. Besides that, which deterministic chaos 
is a common behavior in continuous time dynamical systems of 
differential equations with nonlinear terms, which show aperiodicity, 
ergodicity and sensitivity to initial conditions, which was argued by 
Allen et al.,8 This gives great importance to mathematical models 
as a possible tool for the development of strategies to plan for an 
anticipated epidemic or pandemic, and to deal with a disease outbreak 
in real time, Brauer et al.,9 pointed out. Mangiarotti et al.,10 presented 
an important study in the field of epidemiology. They developed 
several schemes to mathematically model infectious epidemics, with 
compartment models being the most used, these models divide in 
classes and determine interactions between them using mathematical 
formulation. Generally, it is difficult to formulate a complete model of 
an epidemic disease in equations within these formalisms due to the 
novelty of the disease and its rapidly changing shape and behavior. 
Volos11 conducted research pointed out that a pandemic’s propagation 

Biom Biostat Int J. 2024;13(3):107‒113. 107
©2024 Pariona. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and build upon your work non-commercially.

Chaotic attractors in cancer and epidemic models: 
insights from predator-prey interactions

Volume 13 Issue 3 - 2024

Moises Meza Pariona 
State University of Ponta Grossa, Department of Mathematica 
and Statistic, Brazil

Correspondence: Moises Meza Pariona, State University of 
Ponta Grossa, Department of Mathematica and Statistic, Ponta 
Grossa, PR, Brazil, Email 

Received: September 23, 2024 | Published: October 29, 2024

Abstract

The current study, in conjunction with an examination of existing literature, demonstrates 
that the emergence of chaotic behavior is predominantly attributed to interactions between 
predators and prey, as well as competitive dynamics. Similar patterns have been observed 
in the context of pandemics and cancer models, where deterministic chaos or chaotic 
dynamics result in complex oscillations and nonlinear interactions among cell populations. 
It is notable that the current pandemic exhibits key characteristics of a chaotic system and 
is recognized as one of the deadliest pandemics in contemporary history.

 This study presents an analysis of a dynamical model of an ecosystem comprising one 
predator and three prey species, one of them is sick, one is healthy and one is immune. The 
findings indicate that variations in the reproduction rates of healthy prey and predator-prey 
interactions induce chaotic dynamic transients, which manifest as damped oscillations over 
extended periods. Upon monitoring the disease infectivity parameter (R) over time, a rapid 
decline in the healthy prey population is observed within days. In contrast, the infected 
prey population demonstrates a damped oscillatory growth and decay pattern, indicating 
that the predator consumes both healthy and infected prey. Over extended periods, all 
variables exhibit a tendency towards equilibrium. Phase portrait diagrams, generated using 
3-D and 2-D representations with varied reproduction rates of healthy prey (parameter a) 
and disease infectivity (parameter R), reveal the existence of stable points, unstable points, 
saddle points, and bifurcation diagrams. The equilibrium points demonstrate characteristics 
of chaotic attractors. The chaotic propagation of a pandemic is highly sensitive to minor 
variations in the initial conditions (ICs) of physical factors. Mathematical models serve 
as crucial tools for devising strategic action plans to control epidemics and pandemics, 
offering real-time data for effective outbreak management. This research holds significant 
implications for ecological dynamics and disease modeling, with practical applications in 
public health and epidemiology.

Keywords: The chaotic dynamics, prey-predator interaction, time series, phase portraits 
diagrams, bifurcation diagram, Lyapunov exponents.
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is highly sensitive to slight variations in initial conditions of physical 
factors, such as the number of asymptomatic carriers, infected cases, 
and undetected cases. When studying an ongoing pandemic, chaos 
theory can be a powerful approach to define, model, and analyze 
the dynamics system. This involves taking into account relevant 
variables, equations that govern these variables, parameter values, 
constraints of the model, and reformulation of the equations based on 
existing observations are made, Mangiarotti et al.,10 have formulated 
this approach.

This work presents a study of a dynamical model of an ecosystem 
with one predator and three prey species, one of them is sick, one 
is healthy and other is immune. The study is based on the classical 
Lotka-Volterra model and the results show that the interaction 
between the predator and the prey species varying the reproduction 
rate of the healthy prey species. The time series results show a chaotic 
dynamic transient with damping oscillations for long times. This work 
demonstrates the potential usefulness of mathematical models that 
allows us to use strategies for planning for an anticipated epidemic 
or pandemic, as well as dealing with a disease outbreak in real time.

Materials and methods
Mathematical model

Eilersen et al.,12 analyzed a dynamical model of an ecosystem 
consisting of one predator and three prey species, one of them is 
sick, one is healthy and other is immune. The authors assumed that 
healthy and infected animals are equally difficult to catch and equally 
nutritious for the predator. They found that the system exhibits chaotic 
behavior for a wide range of parameters. Gakkhar and Naji13 pointed 
out that the emergence of chaotic behavior is mainly due to predator-
prey and competition dynamics.

The authors proposed the following model of the classical Lotka-
Volterra equations,12 which is represented by the system of equations 
(1).

( )
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dt
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

		                                (1)

The given equation describes the populations of sx and ix as healthy 
and infected populations of the susceptible prey species, respectively. 
The population of the immune prey species is represented by y ,and z
represents the population of predators.

a= the reproduction rates of the healthy prey.

R= the disease basic reproduction number or disease infectivity. In 
real epidemics R varies from around 1;

b= the immune growth rates

c= the rate of the prey of species x and y eaten by predator

d= the rate at that predators starve in the absence of prey.

Numerical methods

The Scilab software14 was used to obtain an approximate solution 
for system (1), which is given by the following recurrence formula:

( )( ) ( )( )*xp x inv JF x F x= −                                                        (2)

The solution, xp , is an approximation. F(x) represents the matrix 
function of the system functions, and JF(x) represents the Jacobian of 
the matrix function.

The parameters of the system (Eq. 1) have been proposed by 
Eilersen et al.,12

a = 7/400, b = 0.0208, c = 2, d = 0.3098, R = 1.025 and R=1.5. 

The parameters a, d, and R were varied between 0 and 2, and 1 
and 5, respectively. The most relevant results were obtained for these 
parameter variations. Other ranges and parameters were tested, but the 
results were not satisfactory. The initial conditions for xs, xi, y, and z 
were 2.5, 0.001, 0.2, and 0.4, respectively. The time variation ranged 
from 0 to 450 days with a step of 0.04.

In this work, time series and phase portraits are presented in both 
2D and 3D. The phase portraits display several stabilizations and/or 
critical points, each of which was analyzed to determine its stability. 
The eigenvalues of each point were calculated using the Jacobian 
matrix (2), and the Lyapunov exponents were also calculated to 
determine the behavior of the curves.

Results and discussions
A numerical simulation of the system (1) was carried out using 

the values of the parameters previously given. The system displays 
the critical points presented in Table 1 with their corresponding 
eigenvalues. The numerical values of the parameters and the initial 
values of the variables mentioned in the previous section were used to 
obtain the graphical results.

Table 1 The critical points and their corresponding eigenvalues in the phase portrait diagram

Variables Xs-Xi-Z, varying a for R=1.5, Figure 4 (a)
Point Eigenvalues:

 
Lyapunov exponents Point characteristic

1.1;0.01;0.2;1.5, for a=0.8
converge

-2.132, 
-0.210+0.619i, 
-0.210 - 0.619i, -0.508

Stable point

1.6;0.2;0.2;0.75, for a=1.0
No converge

0.174+1.010i,
 0.174-1.01i, 
-1.241, 
+0.512 

0.0248310
0.0248310    
-0.669730

Unstable point

1, 2 : 3 : 4:λ λ λ λ
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3.5;0.2;0.2;1.52, for a=1.7
no converge

-4.911, 
-0.133+1.805i, 
-0.133-1.805i, 
+1.597

Saddle point

Variables Xs-Y-Z, varying a for R=1.5, Figure 5 (a)

0.01; 0.5; 0.2; 2.202, for a=0.5 
converge

  -0.166
  -1.367
  -2.069
  -1.918

Stable point

1.442; 0.1 ;0.3; 1.242, for a=0.8
No converge. At the beginning of the branch

-1.698, 
-0.123+0.866i, 
-0.123-0.866i,
 0.251

Unstable point

2.522 0.2 0.5 1.793, for a=1.6
No converge

-0.739+1.624i, 
-0.739- 1.624i, 
+0.366, 
-5.476

Saddle point

Variables Xs-Xi-Z, varying a for R=1.025, Figure 6 (a)

1.057;0.1;0.2;2.447, for a=0.7
Converge

-0.642+ 0.380i, 
-0.642-0.380i, 
-1.411, 
-3.1580

Stable point

3.21;0.2;0.2;2.771, for a=1.7
Converge

  -0.671
  -2.11 + 1.295i
  -2.105 - 1.295i
  -9.159

Stable point

Variables Xs-Y-Z, varying a for R=1.025, Figure 7 (a)

0.361;0.2;0.1;1.079, for a=0.4
Converge

-0.2485+0.196i, 
-0.248-0.196i, 
-0.948, 
-0.613

Stable point

2.572;0.2;0.1;1.597, for a=1.4
Not converge

-0.527+1.319i, 
-0.527-1.319i, 
-0.033, 
-4.238

Saddle point

Table 1 Continued...

The results of varying time up to 40 days with a step of 0.1 are 
shown in the following time series figures. Figure 1 illustrates the 
variables Xs, Xi, Y, and Z as a function of time, while varying the 
parameter a, which represents the reproduction rates of the prey’s 
healthy population.

Figure 1 displays the interaction between prey and predator at the 
initial instant for parameter a (approximately zero) in dotted line. 
While Xs (the prey’s health) rises and falls sharply, Z (the predator) 
rises only slightly. After 11 days, Xs begins to grow again but with 
an oscillatory shape that exhibits damping behavior. Similarly, Z also 
exhibits damped oscillatory behavior. Eilersen12 also observed in the 
results of their work, which seemingly dampens oscillations and makes 
chaotic dynamics transient. However, after 30 days, the Xs and Z 
variables, along with other parameters, exhibit chaotic characteristics, 
while the other variables Xi and Y show no effect. For parameter a 
(approximately 2), shown with dashed lines, the variable Xs decreases 
after approximately 5 days. However, it has no further effect on the 
predator. Meanwhile, the predator Z grows until approximately 7 
days and then slowly decreases due to a lack of food. The variable Xi, 
which represents infected prey, experiences slight growth and decline 
without any significant impact on the predator. Therefore, the variable 
Y, which represents immune prey, does not have any noticeable effect. 
The solid line represents the range of variation between the dotted and 
dashed lines.

Figure 1 Time series showing the variation in reproductive rates of healthy 
prey (a).

Figure 2 shows the variables Xs, Xi, Y and Z as a function of time 
when the parameter d is varied from 0 to 2 and the time is increased 
up to 10 days. The variables Xs and Z, represented by dotted lines 
when d is around zero, exhibit an almost equilibrium interaction up to 
3 days, after which they decay almost simultaneously. However, the 
Xi variable shows a slight increase until around 4 days, followed by 
a decrease, while the Y variable has no effect. For values of d close 
to 2 with the dashed lines, Xs decreases similarly to the dotted lines, 
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but the Xi variable increases until around 4 days and then decreases. 
For long times, there is a notable decrease in the levels of both Xs 
and Xi; in contrast, the Z variable demonstrates a significant and 
positive increase. This evidence suggests that the predator has fed on 
two distinct categories of prey, specifically those that are infected and 
those that are healthy.

Figure 2 Time series in which the starvation rate of the predator in the 
absence of prey (d) varies.

In Figure 3, when the R parameter (which varies between 1-5), 
the Xs variable decreases rapidly within a few days. However, the 
variable Xi has a significant effect in the first few days as it grows 
and then decays in a damped oscillatory fashion. Meanwhile, Z grows 
and decays slowly as R increases, and it grows increasingly in an 
oscillatory way. From this we can deduce that Z feeds on Xs and Xi. 
Over long periods of time, all the variables tend to decrease and come 
into equilibrium.

Figure 3 shows a time series of the disease basic reproduction number (R) 
as it varies over time.

Strogatz15 argued that deterministic chaos is a common behavior 
in continuous-time dynamical systems of differential equations with 
nonlinear terms. Such systems exhibit aperiodicity, ergodicity, and 
sensitivity to initial conditions. Momani et al.,16 presented numerical 
results and graphs showing the existence of chaos in the arbitrary 
order SIR epidemic system, by fractional order nonlinear system. 
Additionally, it is argued that this technique has significant potential for 
comprehending the intricate behaviors of diverse biological systems 
with chaotic characteristics. The time series outcomes of this study 
are highly consistent with those of the authors, despite not utilizing 
the fractional-order nonlinear system technique. Mangiarotti et al.,10 
have employed time series plots and phase portraits to demonstrate 
that their proposed COVID-19 model displays chaos. The authors 
have identified the existence of chaos in their model by comparing 
their results with observed data. Chaotic behavior is mainly attributed 
to predator-prey and competition dynamics, as previously observed 

by Gakkhar and Naji.13 Deterministic chaos is a common behavior 
in continuous-time dynamical systems of differential equations with 
nonlinear terms that exhibit aperiodicity, ergodicity, and sensitivity to 
initial conditions, this was confirmed by Strogatz.15 The parameter a 
was varied by setting R at 1.0 and 1.5, as suggested by Eilersen et al.12 
In each step of a that was 0.2, the time was varied from 0 to 450 days, 
as shown in Figures 4–7. Due to this variation, the figures presented 
different points of stability and non-stability, as shown in Table 1. 
At each critical point, we determined whether it was convergent or 
not by calculating the eigenvalues using the Jacobian matrix (2) and 
identifying the characteristics of each point. Figures 1–3 (time series), 
which were also analyzed by Borah et al.,1 show the lack of significant 
effect of Xi and Y variables on Z.

Figure 4 (a) shows the phase portraits of healthy prey (Xs), infected prey (Xi), 
and predator (Z). (b) The projections in the Xs-Z and (c) The projections in 
the Xs-Xi planes are presented varying a when R=1.5.

Figure 4 (a) in the Phase Portraits diagram shows the interaction of 
the variables Xs, Xi and Z in 3-D, varying the parameter a and fixing 
R=1.5, where three points of stability and non-stability appear (see 
Table 1), such as a stable point with chaos attractor characteristic, 
the other critical points are unstable point with chaos characteristic 
and saddle point. The interaction of Xs-Z and Xs-Xi variables 
in 2-D is also displayed. Figure 4 (b) represents the stable point 
with chaos attractor characteristics, the unstable point with chaos 
characteristics, and the other with saddle point. In Figure 4 (c), the 
interaction between Xs and Xi also shows a stable point with a chaos 
attractor characteristic and a saddle point. Borah et al.,1 observed that 
the gradual evolution of chaos is distinctly visible through a period 
doubling pathway. Uthamacumaran’s17 research showed that cancers 
are complex cybernetic systems that exhibit strange signaling attractors 
and a pattern gene expression like reaction-diffusion systems. The 
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author also argues that chaos, despite appearing random, may serve 
as a robust biomarker for tumor complexity and is bound to well-
defined pattern structures in state space, known as strange attractors. 
The concept of “strange signaling attractors” refers to the idea that 
cancer cells can enter into stable yet abnormal states due to the altered 
dynamics of their signaling networks. These attractors can cause the 
cells to behave in ways that promote tumor growth and survival. This 
analogy is used to explain how cancer cells can create complex spatial 
patterns of growth and invasion, much like the patterns seen in certain 
chemical reactions.

Figure 5 (a) Phase portraits of health prey (Xs), immune prey (Y) and 
predator (Z), (b) Projection in the Xs-Y. Showing a bifurcation diagram and 
varying a for R=1.5.

Figure 6 shows the phase portraits of healthy prey (Xs), infected prey (Xi), 
and predators (Z) in (a), and the projection in the Xs-Z plane with varying a 
for R=1.025 in (b).

Figure 7(a) shows the phase portraits of healthy prey (Xs), immune prey (Y), 
and predator (Z). In (b), the projection in the Xs-Y plane displays a bifurcation 
diagram. The parameter a was varied for R=1.025.

In addition, Figure 5 (a) shows the iteration behavior of the Xs-
Y-Z variables, varying the parameter a when R=1.5 is set. Where 
three critical points are observed, one stable with a chaos attractor 
characteristic, other showing the bifurcation diagram and the third 
with saddle point. However, Figure 5 (b) shows with more detail the 
bifurcation diagram on the projection Xs-Y. Elnawawy et al.,20 stated 
that a bifurcation diagram reveals periodic windows and examines 
the robustness of the chaotic behavior versus parameter variations. 
And so, chaotic dynamics are efficient methods to control the gene 
expression, required for complex cellular processes involved in 
homeostasis.17

Chaotic dynamics in gene expression can play a role in regulating 
and controlling genes. Research suggests that chaotic behavior in 
transcription factors can modulate gene expression, up-regulating 
certain families of genes even amidst extrinsic and intrinsic noise. 
This modulation can lead to increased production of protein 
complexes and enhance the efficiency of their assembly, as proposed 
by Heltberg et al.18 Additionally, chaotic dynamics are associated with 
pluripotency in cells. According to Furusawa and Kaneko,19 cells 
that display irregular oscillations in gene expression have the ability 
to differentiate into multiple cell types. However, as differentiation 
proceeds, these irregular oscillations disappear, resulting in a 
reduction in pluripotency.

These findings suggest that chaotic dynamics have functional 
implications in cellular processes, including gene expression control, 
rather than being mere random fluctuations. They can contribute to the 
heterogeneity of cell states, which is beneficial in various biological 
contexts, such as multi-toxic environments.20 However, it is important 
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to note that chaotic dynamics can be efficient under certain conditions. 
They are part of a larger and complex regulatory network that controls 
gene expression.

Next, the interaction of the Xs-Xi-Z variables varying the 
parameter a when R=1.25 is set, it is shown in Figure 6 (a). This 
shows two critical points, a stable point with attracting chaos behavior 
and a saddle point. Also was shown in Figure 6 (b) the projection in 
the Xs-Z, showing a stable point and a saddle point. Elnawawy et al.,20 
suggest that chaotic attractors could be indicative of therapy resistance, 
tumor recurrence, and cancer stemness. Although mathematical 
cancer models have shown that the emergence of chaotic attractors 
may indicate aggressive (adaptive) cancer states, their detection from 
empirical datasets is still underexplored.

Figure 7 (a) displays the interaction of the Xs-Y-Z variables, with 
the parameter a varying and R fixed at 1.025. The diagram shows 
two critical points: one stable with chaos attractor behavior and the 
other a saddle point. The bifurcation diagram behavior is shown in 
the Xs-Y projection, as seen in Figure 7 (b). The mathematical models 
used for the description of the complex dynamical processes in cancer 
have been shown to be a useful tool for the investigation of chaotic 
dynamics in cancer processes.20

In their study, Hat et al.,21 analyzed the bifurcation diagram in the 
context of cancer research. This diagram is a visual representation 
used in mathematical and computational models to understand how 
changes in parameters within the system can lead to different states 
or behaviors of a tumor. It helps identify critical points where a small 
change in parameters can cause a significant shift in the system’s 
dynamics, such as a transition from a stable state to uncontrolled 
growth (tumor development) or vice versa. In technical terms, a 
bifurcation diagram displays the potential steady states or equilibria 
of a system as a function of a parameter. It illustrates how the number 
and stability of these steady states change as the parameter varies. This 
tool is especially valuable in cancer research for comprehending how 
various genetic or environmental factors may impact the progression 
or treatment of the disease. Bifurcation diagrams can illustrate the 
concept of hysteresis in cancer, where the tumor’s growth history 
affects its current behavior and potential treatment responses. This 
information is crucial for personalized medicine approaches as a 
tumor may react differently to the same treatment depending on its 
developmental path.

Borah et al.,1 investigated eight fractional order (FO) models of the 
Bombay plague, cancer, and the COVID-19 pandemic through phase 
portraits, time series, Lyapunov exponents, and bifurcation analysis. 
The authors’ results are similar to the present work in 2D, including 
phase portraits, time series, and bifurcation analysis. Debbouche 
et al.,7 examined the nonlinear dynamic behavior of a COVID-19 
pandemic model described by commensurate and incommensurate 
fractional-order derivatives. The stability of the equilibrium points 
was analyzed, and the results showed that the model exhibits chaotic 
behavior. The system dynamics were investigated via bifurcation 
diagrams, Lyapunov exponents, time series, and phase portraits. Thus, 
our results were like those presented in the article, both in 2-D and 
3-D phase portraits, as well as in the time series results. Gupta and 
Dubey22 studied the dynamics of a prey-predator system in 2-D and 
3-D, similar to our work. The authors posit that if an illness cannot 
be transmitted to offspring or predators that consume affected prey, 
then unaffected prey are assumed to be strong and will perform group 
defense against predators. The author’s note that several animals, 
including buffalo, wildebeest, bees, ants, elephants, sardines, and 
tuna, exhibit this behavior.

After extensive simulations of the system (2), we found that some 
parameters correspond to chaotic behavior only in very narrow ranges 
of their values, such as, d. Therefore, the parameters a and R can 
generate chaos for wider ranges. Elnawawy et al.,20 argued that the 
spread of epidemics and diseases exhibits chaotic dynamics, which 
have been modeled mathematically and confirmed by experimental 
results. Real-time control of these dynamics has also been presented. 
Eilersen et al,12 confirmed that the Lotka-Volterra equations, on 
which their work was based, present a highly simplified and slightly 
pathological picture of ecosystems. The authors argued that the 
pervasiveness of chaos depends on the validity of their assumptions. 
They also suggested that the Lotka-Volterra model can be used as a 
rough approximation of real ecosystem dynamics.

The applications of this work are numerous and include the 
understanding of complex ecological systems. The study analyzed 
the dynamics of a prey-predator system and provided insights 
into the behavior of interacting populations. This can assist in the 
understanding of the dynamics of real ecosystems and the design of 
effective conservation and management strategies. Additionally, the 
modeling of epidemics and diseases is another area where this work 
can be applied. The chaotic dynamics observed in the study can be 
applied to the modeling of the spread of epidemics and diseases. An 
understanding of the chaotic behavior of infectious diseases can assist 
in the prediction of their spread, the design of control measures, and 
the development of effective treatment strategies.

Conclusion
This study and the literature show that the emergence of chaotic 

behavior has been attributed mostly to predator-prey and competitive 
dynamics, therefore, the pandemics have a behave chaotic, as well 
as, cancer models have been found to display deterministic chaos 
or chaotic dynamics giving rise to complex oscillations, nonlinear 
interactions between cell populations occurs, in addition, it is worth 
emphasizing, COVID-19 manifests the main qualitative characteristics 
of a chaotic system and the most lethal of pandemics recently known.

The most relevant results of this work will be presented as follows.

The reproduction rates of prey affect the interaction between prey 
and predator. In the time series results, for a short period showed a 
chaotic dynamic transient with damping oscillations. For longer 
periods over 30 days, all parameters exhibited chaotic characteristics.

As the R parameter (which varies between 1 and 5) changes over 
time, the health of the prey declines rapidly within a few days, while 
the infected prey grows and decays in a damped oscillatory fashion. 
This leads us to deduce that the predator feeds on both healthy and 
infected prey. Over long periods of time, all variables tend to decrease 
and reach equilibrium. 

A pandemic’s chaotic propagation is highly sensitive to even 
minor variations in the initial conditions of physical factors.

The phase portrait diagrams were created using 3-D and 2-D 
geometry, varying a and R in only two values, and varying the Health, 
Infected, Immune, and Predator variables. Consequently, where are 
presented as stable point, unstable point, saddle point and bifurcation 
diagram appeared as in Table 1, these characteristics are shown in the 
results of the figures. It is worth noting that the equilibrium points 
exhibit the characteristics of chaotic attractors.

Mathematical models can be essential for developing strategies 
to plan for and deal with disease outbreaks in real-time. However, 
formulating a complete model of an epidemic disease in its equations 
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within these formalisms is a significant challenge due to the novelty 
of such diseases and their rapidly developing shape, behavior, and 
propagation.

This research has implications for ecological dynamics and disease 
modeling for practical applications.
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