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Chaotic attractors in cancer and epidemic models:
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Abstract

The current study, in conjunction with an examination of existing literature, demonstrates
that the emergence of chaotic behavior is predominantly attributed to interactions between
predators and prey, as well as competitive dynamics. Similar patterns have been observed
in the context of pandemics and cancer models, where deterministic chaos or chaotic
dynamics result in complex oscillations and nonlinear interactions among cell populations.
It is notable that the current pandemic exhibits key characteristics of a chaotic system and
is recognized as one of the deadliest pandemics in contemporary history.

This study presents an analysis of a dynamical model of an ecosystem comprising one
predator and three prey species, one of them is sick, one is healthy and one is immune. The
findings indicate that variations in the reproduction rates of healthy prey and predator-prey
interactions induce chaotic dynamic transients, which manifest as damped oscillations over
extended periods. Upon monitoring the disease infectivity parameter (R) over time, a rapid
decline in the healthy prey population is observed within days. In contrast, the infected
prey population demonstrates a damped oscillatory growth and decay pattern, indicating
that the predator consumes both healthy and infected prey. Over extended periods, all
variables exhibit a tendency towards equilibrium. Phase portrait diagrams, generated using
3-D and 2-D representations with varied reproduction rates of healthy prey (parameter a)
and disease infectivity (parameter R), reveal the existence of stable points, unstable points,
saddle points, and bifurcation diagrams. The equilibrium points demonstrate characteristics
of chaotic attractors. The chaotic propagation of a pandemic is highly sensitive to minor
variations in the initial conditions (ICs) of physical factors. Mathematical models serve
as crucial tools for devising strategic action plans to control epidemics and pandemics,
offering real-time data for effective outbreak management. This research holds significant
implications for ecological dynamics and disease modeling, with practical applications in
public health and epidemiology.
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diagrams, bifurcation diagram, Lyapunov exponents.

Introduction

Borah et al.,! report extensively on the chaotic behavior of
pandemics in low- to mid-income countries. Examples include
the Plague epidemic in Bombay, India, chaotic epidemic crisis
management in Mexico, Ebola Virus epidemic in Guinea, Liberia,
and Sierra Leone, and Dengue in Pakistan. Additionally, the authors
noted that certain cancer models exhibit deterministic chaos or chaotic
dynamics, resulting in complex oscillations. Jones and Strigul® suggest
that COVID-19 exhibits the qualitative characteristics of a chaotic
system and is one of the deadliest pandemics in recent history due to
its exponential spread. The Coronavirus disease, which emerged in
2019, has a high mortality rate.'

The emergence of chaotic behavior can be attributed mostly to
predator-prey and competition dynamics, as stated by Diekmann
and Kretzschmar.* Nonlinear interactions between cell populations,
such as those found in cancer models and Parkinson’s disease, also
contribute to chaotic behavior, according to Gross et al.* Stiefs et al.,
have also observed chaotic long-term dynamics in models where the
prey is infected.

Hesketh et al.,® proposed that ecological models should consider
the significance of human-environment interactions in comprehending
and modifying human behavior. These models have been integrated
at various levels of influence on behavior, including the policy,

community, organizational, social, and individual levels. However,
fewer studies have explored correlates at the social, physical, and
policy levels. In contrast to the behavior of oscillations, the effect of
chaos on the stability of ecological models has been a topic of debate
for a considerable period of time.’

Debbouche et al.,” has presented that the conceived COVID-19
pandemic model that shows chaotic behaviors. The system dynamics
are investigated via bifurcation diagrams, Lyapunov exponents, time
series, and phase portraits. Besides that, which deterministic chaos
is a common behavior in continuous time dynamical systems of
differential equations with nonlinear terms, which show aperiodicity,
ergodicity and sensitivity to initial conditions, which was argued by
Allen et al.,* This gives great importance to mathematical models
as a possible tool for the development of strategies to plan for an
anticipated epidemic or pandemic, and to deal with a disease outbreak
in real time, Brauer et al.,” pointed out. Mangiarotti et al.,'’ presented
an important study in the field of epidemiology. They developed
several schemes to mathematically model infectious epidemics, with
compartment models being the most used, these models divide in
classes and determine interactions between them using mathematical
formulation. Generally, it is difficult to formulate a complete model of
an epidemic disease in equations within these formalisms due to the
novelty of the disease and its rapidly changing shape and behavior.
Volos'! conducted research pointed out that a pandemic’s propagation
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is highly sensitive to slight variations in initial conditions of physical
factors, such as the number of asymptomatic carriers, infected cases,
and undetected cases. When studying an ongoing pandemic, chaos
theory can be a powerful approach to define, model, and analyze
the dynamics system. This involves taking into account relevant
variables, equations that govern these variables, parameter values,
constraints of the model, and reformulation of the equations based on
existing observations are made, Mangiarotti et al.,' have formulated
this approach.

This work presents a study of a dynamical model of an ecosystem
with one predator and three prey species, one of them is sick, one
is healthy and other is immune. The study is based on the classical
Lotka-Volterra model and the results show that the interaction
between the predator and the prey species varying the reproduction
rate of the healthy prey species. The time series results show a chaotic
dynamic transient with damping oscillations for long times. This work
demonstrates the potential usefulness of mathematical models that
allows us to use strategies for planning for an anticipated epidemic
or pandemic, as well as dealing with a disease outbreak in real time.

Materials and methods
Mathematical model

Eilersen et al.,'”” analyzed a dynamical model of an ecosystem
consisting of one predator and three prey species, one of them is
sick, one is healthy and other is immune. The authors assumed that
healthy and infected animals are equally difficult to catch and equally
nutritious for the predator. They found that the system exhibits chaotic
behavior for a wide range of parameters. Gakkhar and Naji'* pointed
out that the emergence of chaotic behavior is mainly due to predator-
prey and competition dynamics.

The authors proposed the following model of the classical Lotka-
Volterra equations,'? which is represented by the system of equations

().
dx

dt

dx;
—L=Rx.x; —ax;z — x;
dt

=ax, — Rx x, —axz

dy (1)
—=by—ac
r Yy —acyz

%zd(xs+xi+y)z—dz

Copyright:
©2024 Pariona. 108

The given equation describes the populations of x; and x; as healthy
and infected populations of the susceptible prey species, respectively.
The population of the immune prey species is represented by y ,and z
represents the population of predators.

a= the reproduction rates of the healthy prey.

R= the disease basic reproduction number or disease infectivity. In
real epidemics R varies from around 1;

b= the immune growth rates
c= the rate of the prey of species x and y eaten by predator
d= the rate at that predators starve in the absence of prey.

Numerical methods

The Scilab software'* was used to obtain an approximate solution
for system (1), which is given by the following recurrence formula:

xXp=x-— inv(JF(x)) * (F(x)) 2)
The solution, xp , is an approximation. F(x) represents the matrix

function of the system functions, and JF(x) represents the Jacobian of
the matrix function.

The parameters of the system (Eq. 1) have been proposed by
Eilersen et al.,?

a=17/400, b =0.0208, ¢ =2, d=0.3098, R = 1.025 and R=1.5.

The parameters a, d, and R were varied between 0 and 2, and 1
and 5, respectively. The most relevant results were obtained for these
parameter variations. Other ranges and parameters were tested, but the
results were not satisfactory. The initial conditions for x, x,, y, and z
were 2.5, 0.001, 0.2, and 0.4, respectively. The time variation ranged
from 0 to 450 days with a step of 0.04.

In this work, time series and phase portraits are presented in both
2D and 3D. The phase portraits display several stabilizations and/or
critical points, each of which was analyzed to determine its stability.
The eigenvalues of each point were calculated using the Jacobian
matrix (2), and the Lyapunov exponents were also calculated to
determine the behavior of the curves.

Results and discussions

A numerical simulation of the system (1) was carried out using
the values of the parameters previously given. The system displays
the critical points presented in Table 1 with their corresponding
eigenvalues. The numerical values of the parameters and the initial
values of the variables mentioned in the previous section were used to
obtain the graphical results.

Table | The critical points and their corresponding eigenvalues in the phase portrait diagram

Variables Xs-Xi-Z, varying a for R=1.5, Figure 4 (a)

Eigenvalues: A, :A2:A3:14

Lyapunov exponents Point characteristic

Stable point

0.0248310

0.0248310 Unstable point

Point
-2.132,
(I::r;eé(:qlg,:l, 1.5, for a=0.8 0210+0.619i,
-0.210 - 0.619i,-0.508
0.174+1.010i,
1.6;0.2;0.2;0.75, for a=1.0 0.174-1.01i,
No converge -1.241,
+0.512

-0.669730
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Table | Continued...
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-4911,
3.5;0.2;,0.2;1.52, for a=1.7 -0.133+1.805i, Saddle point
no converge -0.133-1.805i, P
+1.597
Variables Xs-Y-Z, varying a for R=1.5, Figure 5 (a)
-0.166
0.01;0.5;0.2;2.202, for a=0.5 -1.367 Stable point
converge -2.069 P
-1.918
-1.698,
1.442;0.1 ;0.3; 1.242, for a=0.8 -0.123+0.866i, Unstable point
No converge. At the beginning of the branch -0.123-0.866i, P
0.251
-0.739+1.624i,
2.522 0.2 0.5 1.793,for a=1.6 -0.739- 1.624i, Saddle point
No converge +0.366, pol
-5.476
Variables Xs-Xi-Z, varying a for R=1.025, Figure 6 (a)
-0.642+ 0.380i,
1.057;0.1;0.2;2.447, for a=0.7 -0.642-0.380;i, .
Stable point
Converge -1.411,
-3.1580
-0.671
3.21;0.2,0.2;2.77 1, for a=1.7 -2.11 + 1.295i Stable point
Converge -2.105 - 1.295i P
-9.159
Variables Xs-Y-Z, varying a for R=1.025, Figure 7 (a)
-0.2485+0.196i,
0.361;0.2;0.1;1.079, for a=0.4 -0.248-0.196i, Stable point
Converge -0.948, P
-0.613
-0.527+1.319i,
2.572;0.2,0.1;1.597, for a=1.4 -0.527-1.319i, Saddle point
Not converge -0.033, po!
-4.238

The results of varying time up to 40 days with a step of 0.1 are
shown in the following time series figures. Figure 1 illustrates the
variables Xs, Xi, Y, and Z as a function of time, while varying the
parameter a, which represents the reproduction rates of the prey’s
healthy population.

Figure 1 displays the interaction between prey and predator at the
initial instant for parameter a (approximately zero) in dotted line.
While Xs (the prey’s health) rises and falls sharply, Z (the predator)
rises only slightly. After 11 days, Xs begins to grow again but with
an oscillatory shape that exhibits damping behavior. Similarly, Z also
exhibits damped oscillatory behavior. Eilersen'? also observed in the
results of their work, which seemingly dampens oscillations and makes
chaotic dynamics transient. However, after 30 days, the Xs and Z
variables, along with other parameters, exhibit chaotic characteristics,
while the other variables Xi and Y show no effect. For parameter a
(approximately 2), shown with dashed lines, the variable Xs decreases
after approximately 5 days. However, it has no further effect on the
predator. Meanwhile, the predator Z grows until approximately 7
days and then slowly decreases due to a lack of food. The variable Xi,
which represents infected prey, experiences slight growth and decline
without any significant impact on the predator. Therefore, the variable
Y, which represents immune prey, does not have any noticeable effect.
The solid line represents the range of variation between the dotted and
dashed lines.

Varying a

g — — — Ysshealth prey
i} — — = Xiinfected prey
| Yeimmune prey

asdit — — = Z=predator
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Figure | Time series showing the variation in reproductive rates of healthy
prey (a).

Figure 2 shows the variables Xs, Xi, Y and Z as a function of time
when the parameter d is varied from 0 to 2 and the time is increased
up to 10 days. The variables Xs and Z, represented by dotted lines
when d is around zero, exhibit an almost equilibrium interaction up to
3 days, after which they decay almost simultaneously. However, the
Xi variable shows a slight increase until around 4 days, followed by
a decrease, while the Y variable has no effect. For values of d close
to 2 with the dashed lines, Xs decreases similarly to the dotted lines,
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but the Xi variable increases until around 4 days and then decreases.
For long times, there is a notable decrease in the levels of both Xs
and Xi; in contrast, the Z variable demonstrates a significant and
positive increase. This evidence suggests that the predator has fed on
two distinct categories of prey, specifically those that are infected and
those that are healthy.

Varying d

Xs, Xi,y, Z

Figure 2 Time series in which the starvation rate of the predator in the
absence of prey (d) varies.

In Figure 3, when the R parameter (which varies between 1-5),
the Xs variable decreases rapidly within a few days. However, the
variable Xi has a significant effect in the first few days as it grows
and then decays in a damped oscillatory fashion. Meanwhile, Z grows
and decays slowly as R increases, and it grows increasingly in an
oscillatory way. From this we can deduce that Z feeds on Xs and Xi.
Over long periods of time, all the variables tend to decrease and come
into equilibrium.

Varying R
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Time, d

Figure 3 shows a time series of the disease basic reproduction number (R)
as it varies over time.

Strogatz'® argued that deterministic chaos is a common behavior
in continuous-time dynamical systems of differential equations with
nonlinear terms. Such systems exhibit aperiodicity, ergodicity, and
sensitivity to initial conditions. Momani et al.,'® presented numerical
results and graphs showing the existence of chaos in the arbitrary
order SIR epidemic system, by fractional order nonlinear system.
Additionally, it is argued that this technique has significant potential for
comprehending the intricate behaviors of diverse biological systems
with chaotic characteristics. The time series outcomes of this study
are highly consistent with those of the authors, despite not utilizing
the fractional-order nonlinear system technique. Mangiarotti et al.,'
have employed time series plots and phase portraits to demonstrate
that their proposed COVID-19 model displays chaos. The authors
have identified the existence of chaos in their model by comparing
their results with observed data. Chaotic behavior is mainly attributed
to predator-prey and competition dynamics, as previously observed
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by Gakkhar and Naji."”® Deterministic chaos is a common behavior
in continuous-time dynamical systems of differential equations with
nonlinear terms that exhibit aperiodicity, ergodicity, and sensitivity to
initial conditions, this was confirmed by Strogatz.!> The parameter a
was varied by setting R at 1.0 and 1.5, as suggested by Eilersen et al.'?
In each step of @ that was 0.2, the time was varied from 0 to 450 days,
as shown in Figures 4-7. Due to this variation, the figures presented
different points of stability and non-stability, as shown in Table 1.
At each critical point, we determined whether it was convergent or
not by calculating the eigenvalues using the Jacobian matrix (2) and
identifying the characteristics of each point. Figures 1-3 (time series),
which were also analyzed by Borah et al.,' show the lack of significant
effect of Xi and Y variables on Z.

Varying a for R=1.5

Varying a for R=15

Unstabde point
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Varying a for R=1.5
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T
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Figure 4 (a) shows the phase portraits of healthy prey (Xs), infected prey (Xi),
and predator (Z). (b) The projections in the Xs-Z and (c) The projections in
the Xs-Xi planes are presented varying a when R=1.5.

Figure 4 (a) in the Phase Portraits diagram shows the interaction of
the variables Xs, Xi and Z in 3-D, varying the parameter a and fixing
R=1.5, where three points of stability and non-stability appear (see
Table 1), such as a stable point with chaos attractor characteristic,
the other critical points are unstable point with chaos characteristic
and saddle point. The interaction of Xs-Z and Xs-Xi variables
in 2-D is also displayed. Figure 4 (b) represents the stable point
with chaos attractor characteristics, the unstable point with chaos
characteristics, and the other with saddle point. In Figure 4 (c), the
interaction between Xs and Xi also shows a stable point with a chaos
attractor characteristic and a saddle point. Borah et al.,' observed that
the gradual evolution of chaos is distinctly visible through a period
doubling pathway. Uthamacumaran’s'” research showed that cancers
are complex cybernetic systems that exhibit strange signaling attractors
and a pattern gene expression like reaction-diffusion systems. The
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author also argues that chaos, despite appearing random, may serve
as a robust biomarker for tumor complexity and is bound to well-
defined pattern structures in state space, known as strange attractors.
The concept of “strange signaling attractors” refers to the idea that
cancer cells can enter into stable yet abnormal states due to the altered
dynamics of their signaling networks. These attractors can cause the
cells to behave in ways that promote tumor growth and survival. This
analogy is used to explain how cancer cells can create complex spatial
patterns of growth and invasion, much like the patterns seen in certain
chemical reactions.

Varying a for R=1.5
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Saddle point
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Figure 5 (a) Phase portraits of health prey (Xs), immune prey (Y) and
predator (Z), (b) Projection in the Xs-Y. Showing a bifurcation diagram and
varying a for R=1.5.

Varying a for R=1.025

Varying a for R=1.025

(k)
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Figure 6 shows the phase portraits of healthy prey (Xs), infected prey (Xi),
and predators (Z) in (a), and the projection in the Xs-Z plane with varying a
for R=1.025 in (b).
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Figure 7(a) shows the phase portraits of healthy prey (Xs),immune prey (Y),
and predator (Z). In (b), the projection in the Xs-Y plane displays a bifurcation
diagram.The parameter a was varied for R=1.025.

In addition, Figure 5 (a) shows the iteration behavior of the Xs-
Y-Z variables, varying the parameter @ when R=1.5 is set. Where
three critical points are observed, one stable with a chaos attractor
characteristic, other showing the bifurcation diagram and the third
with saddle point. However, Figure 5 (b) shows with more detail the
bifurcation diagram on the projection Xs-Y. Elnawawy et al.,” stated
that a bifurcation diagram reveals periodic windows and examines
the robustness of the chaotic behavior versus parameter variations.
And so, chaotic dynamics are efficient methods to control the gene
expression, required for complex cellular processes involved in
homeostasis."”

Chaotic dynamics in gene expression can play a role in regulating
and controlling genes. Research suggests that chaotic behavior in
transcription factors can modulate gene expression, up-regulating
certain families of genes even amidst extrinsic and intrinsic noise.
This modulation can lead to increased production of protein
complexes and enhance the efficiency of their assembly, as proposed
by Heltberg et al.'® Additionally, chaotic dynamics are associated with
pluripotency in cells. According to Furusawa and Kaneko,"” cells
that display irregular oscillations in gene expression have the ability
to differentiate into multiple cell types. However, as differentiation
proceeds, these irregular oscillations disappear, resulting in a
reduction in pluripotency.

These findings suggest that chaotic dynamics have functional
implications in cellular processes, including gene expression control,
rather than being mere random fluctuations. They can contribute to the
heterogeneity of cell states, which is beneficial in various biological
contexts, such as multi-toxic environments.?’ However, it is important
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to note that chaotic dynamics can be efficient under certain conditions.
They are part of a larger and complex regulatory network that controls
gene expression.

Next, the interaction of the Xs-Xi-Z variables varying the
parameter @ when R=1.25 is set, it is shown in Figure 6 (a). This
shows two critical points, a stable point with attracting chaos behavior
and a saddle point. Also was shown in Figure 6 (b) the projection in
the Xs-Z, showing a stable point and a saddle point. Elnawawy et al.,?
suggest that chaotic attractors could be indicative of therapy resistance,
tumor recurrence, and cancer stemness. Although mathematical
cancer models have shown that the emergence of chaotic attractors
may indicate aggressive (adaptive) cancer states, their detection from
empirical datasets is still underexplored.

Figure 7 (a) displays the interaction of the Xs-Y-Z variables, with
the parameter a varying and R fixed at 1.025. The diagram shows
two critical points: one stable with chaos attractor behavior and the
other a saddle point. The bifurcation diagram behavior is shown in
the Xs-Y projection, as seen in Figure 7 (b). The mathematical models
used for the description of the complex dynamical processes in cancer
have been shown to be a useful tool for the investigation of chaotic
dynamics in cancer processes.?’

In their study, Hat et al.,?! analyzed the bifurcation diagram in the
context of cancer research. This diagram is a visual representation
used in mathematical and computational models to understand how
changes in parameters within the system can lead to different states
or behaviors of a tumor. It helps identify critical points where a small
change in parameters can cause a significant shift in the system’s
dynamics, such as a transition from a stable state to uncontrolled
growth (tumor development) or vice versa. In technical terms, a
bifurcation diagram displays the potential steady states or equilibria
of a system as a function of a parameter. It illustrates how the number
and stability of these steady states change as the parameter varies. This
tool is especially valuable in cancer research for comprehending how
various genetic or environmental factors may impact the progression
or treatment of the disease. Bifurcation diagrams can illustrate the
concept of hysteresis in cancer, where the tumor’s growth history
affects its current behavior and potential treatment responses. This
information is crucial for personalized medicine approaches as a
tumor may react differently to the same treatment depending on its
developmental path.

Borah et al.,! investigated eight fractional order (FO) models of the
Bombay plague, cancer, and the COVID-19 pandemic through phase
portraits, time series, Lyapunov exponents, and bifurcation analysis.
The authors’ results are similar to the present work in 2D, including
phase portraits, time series, and bifurcation analysis. Debbouche
et al.,” examined the nonlinear dynamic behavior of a COVID-19
pandemic model described by commensurate and incommensurate
fractional-order derivatives. The stability of the equilibrium points
was analyzed, and the results showed that the model exhibits chaotic
behavior. The system dynamics were investigated via bifurcation
diagrams, Lyapunov exponents, time series, and phase portraits. Thus,
our results were like those presented in the article, both in 2-D and
3-D phase portraits, as well as in the time series results. Gupta and
Dubey? studied the dynamics of a prey-predator system in 2-D and
3-D, similar to our work. The authors posit that if an illness cannot
be transmitted to offspring or predators that consume affected prey,
then unaffected prey are assumed to be strong and will perform group
defense against predators. The author’s note that several animals,
including buffalo, wildebeest, bees, ants, elephants, sardines, and
tuna, exhibit this behavior.
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After extensive simulations of the system (2), we found that some
parameters correspond to chaotic behavior only in very narrow ranges
of their values, such as, d. Therefore, the parameters @ and R can
generate chaos for wider ranges. Elnawawy et al.,”* argued that the
spread of epidemics and diseases exhibits chaotic dynamics, which
have been modeled mathematically and confirmed by experimental
results. Real-time control of these dynamics has also been presented.
Eilersen et al,'” confirmed that the Lotka-Volterra equations, on
which their work was based, present a highly simplified and slightly
pathological picture of ecosystems. The authors argued that the
pervasiveness of chaos depends on the validity of their assumptions.
They also suggested that the Lotka-Volterra model can be used as a
rough approximation of real ecosystem dynamics.

The applications of this work are numerous and include the
understanding of complex ecological systems. The study analyzed
the dynamics of a prey-predator system and provided insights
into the behavior of interacting populations. This can assist in the
understanding of the dynamics of real ecosystems and the design of
effective conservation and management strategies. Additionally, the
modeling of epidemics and diseases is another area where this work
can be applied. The chaotic dynamics observed in the study can be
applied to the modeling of the spread of epidemics and diseases. An
understanding of the chaotic behavior of infectious diseases can assist
in the prediction of their spread, the design of control measures, and
the development of effective treatment strategies.

Conclusion

This study and the literature show that the emergence of chaotic
behavior has been attributed mostly to predator-prey and competitive
dynamics, therefore, the pandemics have a behave chaotic, as well
as, cancer models have been found to display deterministic chaos
or chaotic dynamics giving rise to complex oscillations, nonlinear
interactions between cell populations occurs, in addition, it is worth
emphasizing, COVID-19 manifests the main qualitative characteristics
of a chaotic system and the most lethal of pandemics recently known.

The most relevant results of this work will be presented as follows.

The reproduction rates of prey affect the interaction between prey
and predator. In the time series results, for a short period showed a
chaotic dynamic transient with damping oscillations. For longer
periods over 30 days, all parameters exhibited chaotic characteristics.

As the R parameter (which varies between 1 and 5) changes over
time, the health of the prey declines rapidly within a few days, while
the infected prey grows and decays in a damped oscillatory fashion.
This leads us to deduce that the predator feeds on both healthy and
infected prey. Over long periods of time, all variables tend to decrease
and reach equilibrium.

A pandemic’s chaotic propagation is highly sensitive to even
minor variations in the initial conditions of physical factors.

The phase portrait diagrams were created using 3-D and 2-D
geometry, varying @ and R in only two values, and varying the Health,
Infected, Immune, and Predator variables. Consequently, where are
presented as stable point, unstable point, saddle point and bifurcation
diagram appeared as in Table 1, these characteristics are shown in the
results of the figures. It is worth noting that the equilibrium points
exhibit the characteristics of chaotic attractors.

Mathematical models can be essential for developing strategies
to plan for and deal with disease outbreaks in real-time. However,
formulating a complete model of an epidemic disease in its equations
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within these formalisms is a significant challenge due to the novelty
of such diseases and their rapidly developing shape, behavior, and
propagation.

This research has implications for ecological dynamics and disease

modeling for practical applications.
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