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Introduction
 The model { }Y 1nµ≡ = +   asserts the n rows of ( )Y n k×  

to be k –dimensional responses, having location parameters 
[ ]1 2, ,... kµµ µ µ=  where  1 [1,1,....1]n

′=  and with ( )n kε ×  as an 
array of random errors. Conventional analysts take the  rows of 
Y to be mutually independent and Gaussian, so that ( ) nV Y I= ⊗Σ
. To the contrary, independence often fails; venues include multiple 
time series, econometrics, and empirical adjustments that induce 
dependencies among the adjusted responses, as in references1,2 for 
calibrated data. Accordingly, it is instructive to replace independence 
among rows by exchangeable dependence, on letting ( )V Υ = Ω⊗Σ  
where exchangeably rests on the choice for ( )n nΩ × .

In short, the basic foundations remain to be reworked, as in 
this study with regard to independence. Specifically, with n  as 
Euclidean n –space and n k×  the real matrices of order ( )n k×  then 
the distribution ( ) Y  for n∈Y  is said to be exchangeable provided 
that ( ) ( )nP = Y Y  for every n nP ∈  the ( )n n×  permutation group, a 
concept due to Johnson.3 In this study exchangeable errors on n k×  
are identified; their use is seen to offer a rich class of alternatives to 
independence. A brief survey follows.

Selected classes of exchangeable errors on n k×  are studied, as 
are moments for the model M . The focus here centers on ( ),µ Σ  
as the conventional location/scale parameters. But since additional 
parameters are injected into the model on requiring that it should be 
exchangeable, it is essential to identify those properties, if any, which 
do carry over to include exchangeable errors. 

Preliminaries
Notation

Identify n  and n k×  as stated, with n
+  as the symmetric, 

positive definite matrices of order ( )n n× . Vectors and matrices are in 
bold type, with ( ){ } 1, , tr , and′ −A A A A  as the transpose, inverse, trace, 
and determinant of A . The unit vector in n  is  1 [1,1,....1]n

′= ; nI  is the 
( )n n×  identity;   1 1n n n

′

=J and Diag ( )1  . . . , kA A  is block–diagonal. Take 
( ) [ ]1Ch  0nα α= ≥…≥ >A  to be the eigenvalues of n

+∈A  . The condition 
number of n

+∈A   is ( ) 1Cnd / nα α=A . For ( )n n×A  and ( )k k×B , their 
direct product is 

ija ⊗ =  A B B  of order ( )nk nk× , and a g  –inverse of 

n k×∈A   is k n
−

×∈A   such that − =AA A A .

Random arrays

Consider n k×∈Y   to be random, with ( ) ( ) ( ){ }, ,E VY Y Y  as its law 
of distribution, its expected values in n k× , and its dispersion matrix in 

nk
+  under moments of first and second orders. Moreover, for displaying 

the elements of ( ) ( )iV X nk nk= ×Y , the matrix 1 2=[ , , . . . , ]n
′Y Y Y Y  of order 

( )n k×  is taken row–wise through the mapping ( ) '
1 2, ' , 'nJ  = … Y Y Y Y  

of order ( )1nk ×  as in the following from Jensen DR, et al.4

Proposition 1: 

i. For n k×∈Y  , then ( )V Y  is arrayed as ( ) iV =Y X , often of the form  
i = Ω⊗ΣX  with elements ( ){ },i j ijCov Y Y ω= Σ ; 

ii. Then for row iY  of Y  the element  is on the 
diagonal of iX , and  is off the diagonal; 

iii. For ( ) V Z = Ω⊗Σ  and fixed ( ),A B ,then ( )'Z ' ' BV A B A A B= Ω ⊗ Σ . 

Exchangeable arrays trace to Johnson3 as noted, and since have 
a rich history. Any mixture of independent, identically distributed 
( )iid  variables in n  is exchangeable; a converse of Finetti B5 is that 
elements of { }1 2 3, , ,Y Y Y …  if exchangeable, are conditionally iid  given 
some 1Z ∈ . Matrix arrays are considered next; refer also to Aldous.6

Definition 1: The distribution of n k×∈Y   is said to be left–
exchangeable provided that ( ) ( )nP ′=Y Y   for every n n∈P  ;

( )Y
 
is right–exchangeable provided that ( ) ( )k=Y YQ   for every 

k k∈Q  .  

Essential properties may be listed as follow. 

Lemma 1: Take n∈y   with ( )V y = Ω , and n k×∈Y   with ( )V Υ = Ω⊗Σ .

i. Let ( )y  be exchangeable on n ; then 'n nP PΩ = Ω  for every
n n∈P  , i.e. Ω  is invariant under 

nP  acting by congruence;

ii. Let ( )Y  be left–exchangeable; then 'n nP PΩ = Ω  for every n n∈P  ;

iii. Let ( )Y  be right–exchangeable; then 'k kQ QΣ = Σ  for every k k∈Q  . 

Proof: Clearly ( ) ( )'n=y P y   implies 'n nP PΩ = Ω  for every n n∈P  , to 
give conclusion (i). Conclusions (ii) and (iii) follow as in Definition 
1(iii), namely, ( )V 'YQ ' 'n k n n k kP P QP Q= Ω ⊗ Σ ; and applying 
Conclusion (i) in succession to }{ n→ ′Y YP  and { }k→Y YQ . 
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 Classes of exchangeable errors

An early version having exchangeable rows on n k×  is 
( ) ( ) ( )  

[I ; ,n n kV JY += ⊗ Γ −Σ + ⊗Σ Γ −Σ Σ ∈    , identified in7 as 

an Exchangeable General Linear Model. This is a block–partitioned 
version of an equicorrelation matrix, but differing from matrices of 
type ( )V Υ = Ω⊗Σ  as considered here and listed in Table 1. 

Table 1 Classes of matrices ( )Ωi
n i   for ni k∈ ×Y   as factors of  ( ) = ⊗ ΣΩV Yi i  having exchangeable rows, together with conditions ( )iΦ ⋅  for Ωi  to be positive 

definite, where λ  is of order ( )1n × , 1 1 nτ λ λ= +…+  and ( )22 1
n

iiτ λ λ= Σ −=

Class  Ωi  ( )iΦ ⋅  Source 

 
1
n ( ) [ 1 1 ]λ λλ λΩ = + ′ + ′ −n nI Jnn  11 2 }{ nτ τ −>  Jensen8

 2
n  

( , ) [ 1 1 )]λ γ λγ λΩ = + ′ + ′n n nI
1
2{ [( ) ]}1λ λγ τ> ′ −n

 Baldessari10

 3
n  ( ) [(1 ) 1 1 )]ρ ρ ρΩ = − + ′In n n

 

1
1

( 1)n
ρ

−
≤ ≤

+

 
 
 

 Halperin9

Remark 1: Given ( ),γ λΩ , then ( ) ( )   
1 n nI Jρ ρ ρ Ω = − +   follows on 

taking 1nλ θ=
 
and ( ){ }1 ,2γ ρ θ ρ= − = . 

 Essential properties may be summarized as follow.

Theorem 1: Consider the classes { }1 2 3, ,n n nC =    of Table 1, together 
with conditions iΦ  for iΩ  to be positive definite. Then

i. The classes are closed under congruence by 
nP , i.e. for 1 ( )i n iHΩ ∈ Ω , 

the matrices satisfy ( ){ }' i
n i n n iP PΩ ∈ Ω , for each 

n n∈P ;

ii. For each ( ){ }i
n iΩ , the conditions ( )iΦ ⋅  that ( )i

i n iΩ ∈ Ω  be positive 
definite, are identical for all elements of the classes  ;

iii. Consider 0λ λ=  to be fixed as are †
1τ  and †

2τ . Corresponding 
to ( )2

n Ω  is an equivalent subclass, namely †
2 , as given by  

{ }
  

†
2  0 0   

1 ' ' 1 ' ;n
n nn n n nI P P Pγ λ λ = + + ∈   , having identical values for

†
1τ  and †

2τ , consisting in number as !n  provided that elements of 
0λ  are distinct. 

Proof: (i) The conditions 
1Φ  of Table 1 are from Theorem 2 of Jensen 

DR8; 2Φ follows step–by–step on modifying that proof exclusive of 
λ ; and 3Φ  is given in Halperin M.9 (ii) Closure properties for 1

n  and 
2
n  follow with ( )

  
  1 ' 1 '
n n

A λ λ λ= +  since ( ) ( ) 1
  n n nI A I Aλ θ   + → + ∈      

and ( ) ( ) 2
  n n nI A I Aγ λ γ θ   + → + ∈     with  'nPθ λ= , and similarly 3

n  
reproduces itself. Conclusion (iii) holds for 2 ( )nH Ω  since †

1τ  
 and †

2τ  are invariant under permutations of 
0λ , and the members of 

†
2  clearly are generated from all !n  permutations of the elements of 
0λ  if distinct. 

Table 1 identifies additional parameters as required to achieve 
exchangeability. It is essential to examine the manner in which these 
may affect outcomes of the analysis, specifically, through the singular 
joint distribution of [ ]ˆ , Rµ  as  functions of Υ . 

Repeated use is made of ( )' 'V A Y A A= Ω  from Proposition 1(iii). 

In addition, 
0   

   

11 1 'n
n nn

⊥  = −  
PX I

 
is the idempotent projection operator 

onto the error span of the model  .

Theorem 2: Given ( ) ( ){ }
 
 1 ;
nn kY N µ×∈ Ω⊗Σ , consider ( ),ˆ Rµ  under 

the classes  of Table 1. Then

i. [ ] [ ],ˆ , 0E Rµ µ=  for each i
n ∈  ;

ii. The joint dispersion matrices ( ),ˆV Rµ  of order ( )1n +  under the 
Table 1 classes are given respectively by  

                                                                                                         (1) 

Proof: Conclusion (i) follows from ( ) ( )
   
   

1 11 ' 1 ' 1ˆ
n n n

E E Y
n n

µ µ µ = = =  , and 

( )E 0=R  by parallel arguments. Next let ] [
0 

' '
1 2  

1' , 1 ',
n

L
n

⊥ = =  
PXL L , so 

that [ ]' ,ˆL Y Rµ=  and ( ){ }( )' ' **iV L Y L L= Ω ⊗Σ  with iΩ  as in 
Table 1. Substituting these in succession into expression ( )**  gives 
the displayed matrices (1) for the classes 1 2 3{ , , }n n n   , respectively. 

In short, Theorem 2 catalogs the essentials of requiring that errors 
on n k×  be exchangeable as in Table 1. Both ,ˆ( )Sµ  are affected 
in having properties discordant with those of the conventional

 ( ) ( ),Y N Inn k µ= ⊗ Σ× . Specifically, requiring that errors be 
exchangeable may serve to compromise the evidence contained in S  
with regard to Σ , to be examined subsequently. Details are collected 
in the following Table 2 as excerpted from Theorem 2.

 Scale–invariance

This concept is central to establishing properties under 
independence as they may carry over to include exchangeable 
dependence. To these ends, associate with the classes 1 2 3{ , , }n n n=     
the values ( )1, , 1κ γ ρ∈ −    from the final row of Table 2.

Lemma 2: Let ( )T S  be scale invariant, i.e. ( ) ( )T T c=S S
 
for c 0;≠  

and consider these as they may apply in the exchangeable classes 
1 2 3{ , , }n n n=     of Table 1.

i. The scale parameters of ( )νS  are respectively  
for the classes of Table 1;

ii. Properties of  ( )T S   are identical to those for ( ) ({ { 1 ; )},  
Y N Inn k n µ∈ ⊗ Σ×  

for each of the exchangeable classes C .

Proof: Conclusion (i) is from Table 2 as noted.  The proof for (ii) hinges 
on scaling  properties of Wishart matrices, namely, that ' ν=R R S , 
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so that if ( ) ( ), ,0ν ν κ= ΣS Wk   as in Table 2, then ( ) ( ) ,/ , ,0S Wkν κ ν= Σ  
the  default state. Accordingly, infer that ( )T S  behaves as if from 
( ) ( ), ,0ν ν κ= ΣS Wk  in the third row of Table 2, and ( )T /κS  behaves 

as if from ( / ) ( , ,0)ν κ ν= ΣkS W . But T  is scale–invariant, so that
( ) ( )T T /κ=S S , as if from ( ) ({ { 1 ; )}  

Y N Inn k n µ∈ ⊗ Σ×  to complete a proof.  

Tests for µ
A complement to estimation is hypothesis testing under 

exchangeable errors. First consider µ . For ( ) nV Y I= ⊗Σ , recall that

i.  

ii.  [ ]ˆ ,µ S  are mutually independent; and 

iii. Hotelling’s11 test for :0 0µ µΗ =  vs :1 0µ µΗ ≠  utilizes the statistic 
 2 1( ) ( )0 0µ µ µ µ− ′= − −T n S                                                                      (2)

with distribution ( ) ( )2 2  ,ν θ=T Tk
 

of order k  having ( )n 1ν = −
degrees of freedom and noncentrality parameter θ . Under the error 

classes of Table 1, the principal negative finding of this study is the 
following. 

Lemma 3: Consider µ̂   in the classes { }1 2 3, ,n n n=    , together with 
2T  for testing :0 0µ µΗ =

 
vs :0 0µ µΗ = .

i. That ( )ˆ ,µ S  are independent is met only in the class 3
n ;

ii. Replacing n  in Equation (2) are reciprocals of  
( )1 11

, 2 ,
ργ

λ λ
+ −

+ +
    

          

n
n n n

, and these typically are unknown;

iii. In short, the classical tests for µ̂   are unsupported in the 
exchangeable error classes  . 

Proof: (i) The independence of ( )ˆ ,µ S , namely ( )ˆ , 0µ =Cov R , is met 

only in the class 3
n  in Theorem 2, unless ( )0λ ∈ S Xpn  for both 1

n  

and 2
n  in Equation (1), in which case ' 0

0
λ ⊥ =PX . Conclusion (ii) 

follows from Theorem 2 and Table 2, and Conclusion (iii) follows in 
summary.  

Inferences for Σ
Estimation

The dispersion matrix ( ){ } ω= ΣV Yi ii  within the rows of Y , and the 
cross–covariances 

 
between rows, all depend on Σ . 

In addition to properties of ( )' / 1n= −S R R  as reported in Theorem 2 
and Table 2, let [ ], ,1 2 3S S S  be the error mean squares for the classes

{ }1 2 3, ,n n n=    . Essential features are that ( ) ( ){ }, , ,0ν ν κ= ΣS Wi ik  

for ( )n 1ν = −  and ( )1, , 1κ γ ρ∈ −  i  for the classes  . Thus 1S  is 
unbiased for Σ , whereas ( ),2 3S S  are biased by the factors ( ), 1γ ρ−   . 
Moreover, as measures of scatter, the generalized variances are related 
as 2 1γ= kS S and (1 )3 1ρ= − kS S , whereas the condition numbers 

( ){ }iCnd ;i 1, 2,3=S  are identical. 

Hypothesis tests

 Five tests, historically devised and subsequently used under 
( ) ( ){ }{ 1 ;  
Y N Inn k n µ∈ ⊗ Σ×  are listed in Table 3, to include statements 

of hypotheses, commonly used test statistics, and references. 

As to exchangeable dependence, it remains to identify those of 
Table 3 that remain viable in the exchangeable classes of Table 1.

Theorem 3: Consider the tests for Σ  as in Table 3 for the 
classes 1 2 3

n n n{ , , }=     of Table 1, in lieu of the conventional
 ( ) ( ){ }{ 1 ,  

µ∈ ⊗ Σ×Y N Inn k n .

i. All statistics of Table 3 are scale–invariant;

ii. For the classes  , properties of the tests of Table 3 are identical to 

those for ( ) ( ){ }{ 1 ,  
µ∈ ⊗ Σ×Y N Inn k n , independently of [ ]1, , (1 )κ γ ρ∈ − . 

 Proof: As before, [ ]1, , (1 )κ γ ρ∈ −  are the scale parameters for S  in 
1 2 3
n n n{ , , }   . Conclusion (i) is apparent, where for 1:5 0 0

−= ΣH S S , we 
find on rescaling κΥ → Υ  that 2

κ→S S  and 2
0 0κΣ → Σ , leaving 0S  

to be scale–invariant. Conclusion (ii) follows on applying conclusion 
(i) in order to verify the scale–invariance and applicability of Lemma 
2. 

Remark 2: These tests accordingly exhibit genuinely nonparametric 
features, in that each applies for structured distributions in the classes 

1 2 3
n n n{ , , }    beyond that of the conventional ( ) ( ){ }{ 1 ,  

µ∈ ⊗ Σ×Y N Inn k n . 

Exact distributions of the Table 3 statistics i{ }u  rarely 
are known, supported instead by approximations, namely, 

[ ]i i i i i{ ( ); , }iu u c u u lnuφ φ→ ′ = ∈ , such that 2
i( ) iu νχ′ ≈ , namely, 

approximately chi–squared having  degrees of freedom. Details are 

Table 2 Properties of 
0

⊥= P YR X  and ν ′=S R R , where 
1

0 nn n n
⊥ = − ′

 
  

P 1 1IX ; moreover, the distribution ( , ,0)ν ΣkW  is central Wishart of order k , 

having ( 1)nν = −  degrees of freedom and scale parameters Σ

Item 
 

1
n  

2
n

 

3
n

( )µ
1

( , ( ) )1 µ λ+ Σ×N k n
( , ( 2 ) )1

γ
µ λ+ Σ×N k n

1 ( 1)
( , ( )1 µ ρ

+ −
×

n
N k n

( )R (0, )
0
⊥ ⊗ Σ×N PXn k (0, )

0
γ⊥ ⊗ Σ×N PXn k (0, (1 ) )

0
ρ⊥ ⊗ − Σ×N PXn k

( )ν S ( , ,0)ν ΣWk ( , ,0)ν γΣWk ( , (1 ), ,0)ν ρ− ΣWk

( )E S Σ γΣ (1 )ρ− Σ
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found in Sections 7.2.1 and 7.2.2 of Rencher12 and 7.3 of Morrison.13 
These details are omitted here in the interests of brevity, but suffice to 

say, those approximations all apply in the exchangeable error classes 
of this study. 

Table 3 Selected hypotheses regarding  Σ ; commonly used test statistics; references R to Rencher12 and M to Morrison13

Item  0 :Σ =H  Test statistic (u )i
 Reference 

1H
 

2
kσ I

 

| |
( / )ktr k
 
 
 

S
S

 7.2.2R¶

2H  2[(1 ) ]k kσ ρ ρ− + JI

 ( )2 ]

| |

[ 1 k ks r r

 
 
 +


− 
J

S
I

7.2.3R¶

3H  [ 1 1 ]λ λ λ′+ ′ + −k k Jk kI
 

( ) | |
( )tr

κ

κ
κ ′

′
C SC

C SC
 7.3M¶

4H  ( , , )11Σ … ΣDiag rr
 11 22

| | .
| || | | |rr

S
S S S

 7.4.2R¶

5H  0Σ  

1[ ln | | ( ) ]0
1

0ν −− Σ + Σ −−S tr S k  
7.2.1R¶

Legend ( )1κ = −k ;
( )

1 12 2{ ; /
11

= → = =∑ ∑ ≠−=

       

k
S s s r s si jij ijk k ki

 and [ ]' κ ×C k  consists of κ  linear contrasts

Correlation analyses
Here sample entities depend on sij =  S , corresponding parameters 

are identical functions of Σ . To these ends take [ ]1 2,=Y Y Y  of orders 
( ) ( ){ , ; }n s n t s t× × ≤ , and partition ( )k k×S  as 

( )
1 1

11 12 2 2
11 12 22

21 22
;

'
s

t
s t

− −  
= → = ×  
   

I GS S
S G S S S

G IS S
.                  (3)

 Then 
1 1
2 2

  = 
  

ij ij ii jjr s s s  are simple correlations; the singular values 

( )σ G   are the canonical correlations 1 2 s[ , ,... ]=     and the multiple 
correlations are defined at 1.s=  Again note that these were derived 
historically and subsequently used under the independence model

 ( ) ( ){ }{ 1 ,  
µ∈ ⊗ Σ×Y N Inn k n . The question again arises as to whether 

exchangeable errors may have compromised correlative evidence 
in S   regarding Σ  Results to the contrary are the substance of the 
following.

Theorem 4: Given ( ) Y
 
in the exchangeable classes { }1 2 3, ,n n n=   

; consider effects on correlation analyses as prescribed under
 ( ) ( )* 1 ,   

µ= ⊗ Σ×Y N I nn k n .

i. Then for all ( )∈ Y , the entities { }ijr  and their properties are 
identical to those for ( )* Y ;

ii. In like manner, for all ( )∈ Y , properties of multiple and 
canonical correlations are identical to those for ( )* Y ;

iii. In short, conventional correlation analyses are preserved despite 
requiring that errors be exchangeable in  . 

Proof: The claims again rest on the fact that sample correlations are 
scale–invariant functions of Y and S . Conclusions (i), (ii) and (iii) 
now follow from Lemma 2.  

Factor analyses (FA’s)
Within the scope of psychometric, sociometric, and humanistic 

endeavors, the FA  paradigm postulates that 'Σ = Λ Λ + Ψ  such 

that elements of ( ){ ; }Λ × <s k s k  comprise the factor loadings, 

and ( ),...,1ψ ψΨ = Diag k  the unique variances. In particular, 
the diagonal elements of Σ  are 2{ ; 1,..., }ii i ih i kσ ψ= + =  where 

2 2 2 2{ ... ; 1,..., }i i1 i2 ish i kλ λ λ= + + + =  are the communalities. The analysis 

begins with , typically utilizing maximum likelihood 
estimation as in Chapter 13 of Rencher.12 An initial solution Λ̂   
eventually is rotated so as to achieve further desirable properties, 
since the loadings Λ  are non–unique.

For the case that ( ) ( ){ }{ 1 ,µ∈ ⊗ Σ×Y N In nn k , the normal–theory 
likelihood ratio for testing : '0 Σ = Λ Λ + ΨH  vs : '1 Σ ≠ Λ Λ + ΨH   is

                                                       
(4) 

and referred to upper critical values of the approximating 
distribution, namely, 2χv  with ( )2 2 = − − − v k s k s  as in expression 
(13.47) of Rencher.12 These were derived historically and used 
subsequently for the case that ( ) ( ){ }{ 1 ,µ∈ ⊗ Σ×Y N In nn k .

The extent to which the foregoing algorithm may be applied more 
generally, to encompass exchangeable errors, is examined in the 
following.

Theorem 5: Consider the statistic (4) for testing the FA  model 
in the classes 1 2 3

n n n{ , , }=    , as developed and prescribed for 

( ) ( )* 1 ,   
µ= ⊗ Σ×Y N I nn k n . Then

https://doi.org/10.15406/bbij.2023.12.00388
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i. For each distribution ( )∈ Y , properties of tests using (4) are 

identical to those under ( )* Y .

Proof: As the statistic (4) is scale–invariant, the conclusion again 
follows from Lemma 2. 

Conclusion

In retrospect, taking the conventional ( ) = ⊗ ΣV Y In  remains an 
enduring artefact of statistical practice. Exchangeable dependence, 
where ( ) = Ω ⊗ ΣV Y , is a radical departure, albeit on occasion as 
being itself fundamental to correct statistical practice. Foundations 
trace to Johnson3; extensions encompass matrices in n k×  and stochastic 
sequences in various domains. Representations for two–way arrays 
include (i) functions of iid  scalars as in Aldous DJ6 and the related 
studies14,15; and (ii) as limits of finite exchangeable sequences as in 
Ivanoff BG.16 Ivanoff BG16 for rectangular arrays. Marshall & Olkin17 
demonstrated that Schur–concave joint density functions on n  
are exchangeable; Shaked & Tong18 superimposed partial orderings 
on exchangeable arrays; and Seneta19 sought to approximate joint 
probabilities of equicorrelated vectors in n   in terms of marginal 
probabilities and the correlation parameter ρ  Functional limit 
theorems for row and column arrays were studied in Ivanoff BG.16 
Kallenberg20 examined ergodic properties of exchangeable arrays 
generated as multivariate samples from a stationary process. In 
reliability studies, an exchangeable array is considered in Spizzichino 
F, et al.21 as deriving from a hierarchical model having multivariate 
negative aging. In addition, a multivariate lognormal frailty model 
for exchangeable failure time data, having marginal Weibull lifetime 
distributions, is considered in Stefanescu C.22

Alternative to our studies is equation (1) of Arnold7 having 
the linear structure of our model   but differing in dispersion. 
Arnold’s approach differs in reducing his model to a canonical form. 
Nonetheless, Arnold’s assessment of µ̂  serves to confirm our findings 
in Lemma 3. On the other hand, our examination of Σ , its sample 
version S , and other second–moment properties, find no parallel in 
Arnold’s studies. In continuation of those studies, Roy & Fonseca23 
sought to extend equation (1), considered as a two–level array, to 
encompass three levels.

Antecedents to the present study include ( ),γ λΩ
 

in Table 1 
from Baldessari10 in lieu of 2

nσ I  in the Analysis of Variance; and 
characterized in24–26 as the class of all within-subject dispersion 
matrices preserving the validity of conventional F –tests in the 
analysis of repeated measurements. Moreover, structured matrices 
of an earlier vintage include the Euclidean distance matrices of 
Gower,27 namely

 
( ) '1 ' 1  λ λ λ= + + 

 D D n n , with D  diagonal, having 

applications to linear inference as found in Farebrother.28

In summary, our studies have sought to cover a diversity of topics 
in multivariate statistical inference from a further perspective, namely, 
that of exchangeable errors. But at the same time, to acknowledge 
and to pursue the prospects that requiring exchangeability may 
serve to compromised the meanings attributed to sample evidence. 
Specifically, references abound for the vast array of multivariate 
normal procedures described here as classical, including those 
amenable to selected exchangeable distributions as shown here. Of 
the many topics not covered, interested readers are encouraged to 
undertake further investigations using and adding to the analytical 
principles demonstrated here.
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