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Abbreviations: CA, cluster analysis; CFRM, common factor 
and residual model; ML, maximum likelihood; PCA, principal 
components analysis, IVPCA, instrumental variables principal 
component analysis

Introduction
Over the last decades, advanced technologies in computer and 

data science have achieved considerable progress in developing 
statistical or data mining techniques adapted to analyse structured 
or non-structured big data. Independently of the different domains 
covered by the concept of “big data”, nowadays it is quite common 
to have datasets where the number of variables is much larger than 
the number of observations. Several applications of high dimensional 
datasets were analysed in astronomy, chemometrics, climate, finance 
and genomic.1–3

In the present paper the focus will cover situations where the 
number of observations is pre‐defined, attending the concrete nature 
of the study, and the randomness concern the choice of variables from 
a universe of variables following a certain probabilistic model. Such 
challenge was firstly presented by Hotelling in the context of principal 
component analysis4 and later by Escoufier Y5 about the sampling 
of vectorial variables5 and by Gomes in the context of directional 
probabilistic models associated to an universe of standardized 
variables defined on the n‐dimensional sphere.6 Later Vigneau et al.7 

have proposed to cluster numerical variables about estimated latent 
variables, using a k-means type algorithm, obtained a classical factor 
model estimator in each cluster, being the first principal component 
of the cluster as a centroid. Such approach was extended to latent 
variables belonging to a space spanned by external variables, in 
the context of instrumental variables, in the context of instrumental 
variables principal component analysis (IVPCA) and multivariate 
partial least square (PLS) regression.

Recently Xavier B. gave a new contribution for clustering 
numerical and categorical variables under the hypothesis of a mixture 
of Von Mises Fisher distributions defined on the n-sphere.8

Our paper concerns a cluster analysis of a sample of standardized 
variables based on a similarity measure of variables j and k defined by

                      s( , ) | ( , ) |j kj k r x x=

Where ( , )j kr x x represents the Pearson linear correlation 
coefficient between variables j and k.

An exponential family of axial distribution defined on the n-spere 
is an obvious distribution to generate a “bundle of variables” with a 
given level of interrelation.

The selection of variables from identified sub-groups is, per se, 
an auspicious way to simplify the learning process of a large set of 
variables and implicitly leads to a natural dimension reduction, where 
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Abstract

A key step of any statistical multivariate analysis concerns the choice of variables in line 
with the main objectives of the study. Usually, the available procedures to face this problem 
are restricted to a-posteriori statistical analysis, using Bayesian approaches or stepwise 
selection procedures.

The main objective of the present paper is to revisit a framework where the a-priori choice 
of variables makes sense under specific conditions and to propose a factor analysis model 
particularly adapted to structured quantitative big data.

We have associated our complete sample of variables to a mixture of two bipolar Watson 

distributions defined on the n-sphere, ( ),i iW µ ξ , 1,2i = , where iµ  is a direction 

parameter and iξ  is a concentration parameter. The likelihood estimates of the direction 

parameter iµ  is just the first principal component associated of a PCA of cluster i. The 
identification of the mixture of Watson distribution was obtained by cluster analysis, 
namely a previous hierarchical cluster analysis followed by a k-means partition of the 
global sample of variables.

These multivariate data were explained by an alternative factor analysis model potentially 
delivering directly interpretable solutions without the need of rotations procedures.

The loadings of this factorial model were obtained by regression. The final results 
concerning communalities of the 16 variables showed that for a great part of them unit 
variance was quite well explained by the factorial model.

Keywords: big data, cluster analysis, common factor and residual model, principal 
component analysis, radioactivity effect, sampling variables, watson distribution
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the first principal component may reflect the “privileged direction” that 
summarizes sub-groups of variables. These procedures have several 
applications by reducing the redundancy of variables previously 
considered for a specific statistical multivariate study, for instance to 
eliminate certain explanatory variables in a multiple regression model 
where the multicollinearity problem is present.

In our approach, each sub-group of variables identified by cluster 
analysis, hierarchical cluster analysis followed by-k-means partition 
methods9 or EM algorithm10 is considered coming from an axial 
distribution on the sphere 1nS − , the Watson distribution which f.d.p. 
is defined by

( ) ( ){ }
1

2
1 1

1 , , exp
2 2

tnf x F uxξ ξ
−

  =   
  

, 1 1, , 0n nx S Sµ ξ− −∈ ∈ >

Where 1 1
1 , ,
2 2

nF ξ 
 
 

 is the confluent hypergeometric function 
defined by

                ( ) ( )
1 31
2 2

0

2 exp 1
1 1
2 2

n
n

t t t dt
n

τ
ξ

τ τ

−−

 
 
  −

−   
   
   

∫

Where ( )τ ⋅  is the Tau function,6 µ is a directional parameter, and 
 is the concentration parameter. So, each sample of variables bounded 

by a “double cone” is supposed a sample of a Watson distribution on 
the n-spere ( ),i iw µ ξ , i=1,…K.

Consequently, the global sample is a realization of a random 
vectorial variable having as distribution a mixture of Watson 
distributions. Additionally, a focused statistical analysis must be made 
concerning other isolated variables detecting if they are potential 
discordant variables under the hypothesis of such distributional 
mixture previously identified, evaluating the effective role of such 
variables in view of their nature and the study’s objectives.11

Our proposal is no longer related to the well-known problem of 
“choice of variables à posteriori” but with the choice of variables 
a priori supposing the goodness of fit to the proposed probabilistic 
model under the particular context of quantitative variables where the 
statistical standardization of data makes sense.12

From likelihood estimators of parameters , i=1,…,k we 
have proposed the formulation of an alternative factorial model.

                                     ( ) ( ) ( ) ( )

t

nxp nxk kxp nxp
X F A U= +

Where the columns of matrix F are the directional parameters iµ
, A  is the loading matrix and U  the residual matrix which include 
noise and variables generally weakly correlated with factors and so 
demanding further statistical analysis facing the previous objectives 
of a specific study.

The proposed model was applied in multiple contexts13,14 being an 
alternative factorial model called factorial model in common factors 
and residuals (FCFR). The performance of this model is illustrated 
in the present paper using the so-called Amiard Fish data under 
radioactivity.

Methods 
Study sample

The weapons testing program of several nations regardless of the 
type of blast, has increased the radioactivity of the seas.

The present study concerns the metabolism of radio strontium 

of fishes. Strontium, if radioactive, may influence the blood cell 
formation of many fishes. Over the last decades it has been clearly 
demonstrated that several fission products are potential hazards from 
a public health point of analysis. The classical data described here was 
delivered by Amiard laboratory, related to the Aquatic Ecotoxicology 
research developed during the last decades.15

The sample was divided into three aquariums under the same 
conditions of radioactivity. However, the three aquariums were 
subject to increase durations of contact with the radioactive pollutant:

1A  is the aquarium with fishes numbered 1 to 8.

2A  contains fishes numbered 9 to 17.

And 3A  contains fishes numbered 18 to 24. Fish 17 died during 
the experiment.

Each fish was referenced by 16 characteristics divided into two 
groups, the first nine measured at the end of the experiment

Group 1 – Radioactivity characteristics:

Variable 1 – eye radioactivity 

Variable 2 – gill radioactivity

Variable 3 – radioactivity of capping 

Variable 4 – fin radioactivity 

Variable 5 – liver radioactivity

Variable 6 – radioactivity of digestive tract

Variable 7 – kidneys radioactivity 

Variable 8 – scale radioactivity

Variable 9 – muscle radioactivity and

Group 2 – Size features:

Variable 10 – weight

Variable 11 – length

Variable 12 – standard length

Variable 13 – head width

Variable 14 – width

Variable 15 – muzzle width

Variable 16 – eye diameter 

Statistical analysis

The strong heterogeneity of empirical standard deviations 
of variables under study, from a minimum of 0.96 (variable 16) 
to a maximum of 259.09 (variable 6), would justify a previous 
identification of potential multivariate outliers using the minimum 
covariance determinant criteria. However, considering the main 
objectives of our study we have just standardized our data, giving the 
same weight to each variable.

Hence the variables will be represented on a sphere 22S  (23 active 
observations). A hierarchical cluster analysis of the sixteen variables 
followed by a k-means partition, identified two clusters of variables 
[6]: nine radioactivity variables (Group 1) and seven size variables 
(Group 2).

This means that we have associated our complete sample of 
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variables to a mixture of two Watson distributions.

In the context of sampling variables, the goodness of fit methods 
for the bipolar Watson distribution was applied to check if the clusters 
of variables obtained by the previous algorithms come from a Watson 
distribution. 

If x comes from a bipolar Watson distribution,
( ),nW µ ξ , then for large ξ  it was shown16 that  

( )
2 2

12 (1 ( ) )) nx x xτξ µ −−  . Simulation statistical research have 

shown that approximation to 2x  distribution it works for moderate 
values of ξ .6

The parameters ( ),i iµ ξ , i=1,2 were estimated by ML method: the 

estimate ˆiµ is just the first principal component of group i, (i=1,2) and 

îξ  is obtained from the equation ( ) i
i

i

wY
p

ξ =  17 were:

iw  is the highest eigenvalue of principal components of group i, 

i=1,2, ip  is the number of variables of group i and ( )Y ξ  is defined by

                             
( ) 1

1 , ,
2 2

d nY InF
d

ξ ξ
ξ

 =  
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So the factor matrix  can be written by [ ]1 2
ˆ ˆ ˆF u u=   where 1̂u  

and 2û  are not, in general, orthogonal vectors.

Our main objective is to construct an alternative factor analysis 
model tX F A U= +  where A  is the matrix of loading ( )2px  and 
U  is the residual matrix ( )nxp  which contains variables supposed 
not correlated with the factors.

The estimation of loadings was obtained by regression giving the 
coordinates of variables along the privileged direction generated by 
vectors ( )ˆi su .

Let be X  the standardized data set and considering the theoretical 
correlation matrix R  defined by

( ) [( )( )] ( ) ( )t t t t t t tR E XX E A F U F A U AE FF A E UU= = + + = +

So 

( )
( )

1 21 1 1 2

2 12 1 2 2

ˆ ˆ ˆ ˆ 1 ,ˆ ˆ( )
, 1ˆ ˆ ˆ ˆ

t t
t t

t t

r F Fu u u u
E FF FF

r F Fu u u u

   
= = =   

    
 

And the term ( )t tAE FF A  will be estimated by ˆ ˆ( )t tAE FF A  

The diagonal elements of this estimated term will give the 
communalities of our factor analysis model, and so the part of the unit 
variances of the original variables that were explained by the model.

The elements out of the diagonal of this matrix will give the linear 
correlation between variables reproduced by our model.

Finally, representing by R∗  the empirical correlation matrix, 
 * ˆ ˆ( ( ) ( )t t tE UU R AE FF A= −

Results
Identification of a mixture of Watson distribution ( ),W µ ξ

Previous hierarchical cluster analysis showed that it was quite 
realistic to consider just two groups of variables, so that from an 
arbitrary initial partition into two clusters of equal size, we have 
achieved a local optima solution using a variant k-means method 
“la méthode des nuées dynamiques” where the distance function is 

defined by 

      
1 1

1( , , ) F , , ( )
2 2

t tnD x Const Log x xµ ξ ξ ξ µ µ = + − 
 

A stable solution was obtained at the fourth interaction

Group1: radioactivity variables ( )1 9p =

Group2: size variables ( )2 7p =

The first principal component of standardized variables of group 
1 is the ML estimate of directional parameter 1µ  and the respective 

concentration parameter 1ξ  was estimated by ( ) 1

9
wY ξ =  where  

is highest eigenvalue of group 1’s PCA, 1 5.03w = , giving 1̂ 25.99ξ =

Hence the inertia explained by first principal component is 55.86%.

Similarly, 2µ̂  is the first principal component of 
PCA of group 2 and 2̂ξ  is the solution of equation  

( ) 2

7
wY ξ =  were  is highest eigenvalue of such PCA giving 

2̂ 69.98ξ = . The inertia explained by the first principal component 
is now equal to 84.16%

Representation of observations on the first principal 
plan

The factor matrix [ ]1 2ˆ ˆF u u=   allowed the representation of fishes 
on the first factorial plan (Table 1 & Figure1). The linear correlation 
coefficient between 1̂u  and 2û , 0.356r = − , explain the non-
orthogonality of factors.

Table 1 Factor scores

Observation Factor 1 Factor 2
1 0.186 -0.398
2 0.211 -0.286
3 0.22 -0.345
4 0.227 -0.383
5 0.185 0.26
6 0.208 0.199
7 0.243 0.189
8 0.15 0.273
9 0.064 0.078
10 -0.096 0.003
11 0.068 -0.004
12 -0.028 0.093
13 -0.057 -0.034
14 -0.022 0.266
15 0.094 -0.044
16 -0.044 -0.118
18 -0.364 0.114
19 -0.267 0.188
20 -0.494 0.268
21 0.022 -0.218
22 -0.238 -0.027
23 -0.352 -0.005
24 -0.003 -0.074
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Figure 1 Representation of fishes on first factorial plan.

Estimation of loadings and representation of variables 
on the first factorial plan

The loadings of our model (Table 2) were estimated by regression 
obtaining the coordinates of variables along the two privileged 
directions (Figure2) and the communalities, so the part of unit 
variance of each variable explained by the model.

Table 2 Loading matrix and communalities

Variables Factor 1 Factor 2 Communalities
1 -0.93 0.048 0.898
2 -0.958 -0.066 0.878
3 -0.947 -0.128 0.828
4 -0.942 -0.026 0.871
5 -0.609 0.197 0.495
6 -0.342 0.034 0.126
7 -0.345 -0.561 0.297
8 -0.828 0.093 0.748
9 -0.464 0.027 0.225
10 0.028 -0.977 0.975
11 -0.022 -0.947 0.912
12 0.017 -0.935 0.885
13 0.007 -0.955 0.918
14 0.012 -0.929 0.871
15 -0.215 -0.888 0.700
16 0.114 -0.779 0.682

Figure 2 Representation of variables on first principal plan.

From Table 3 we may conclude that, for group 1, all the variables 

except radioactivity of digestive tract, kidneys and muscle radioactivity, 
contribute to the first factor. The exam of the communalities show that 
these variables are not quite well explained by the model.

Table 3 Relative contributions of variables to factors

Variables
Relative 
contribution to 
factor 1

Relative 
contribution to 
factor 1

1                  0.178
2                  0.174
3                  0.162
4                  0.173

CLUSTER 1 5                  0.092
6                  0.025
7                  0.004
8                  0.147
9                  0.045
10                  0.165
11                  0.155
12                  0.150

CLUSTER 2 13                  0.156

14                  0.148
15                  0.112
16                  0.114

We emphasize the fact that the loading matrix reveals the “simple 
structure” underlying the Amiard data set, where two correlated 
factors really explain the behaviours of this data set. It means that this 
model is potentially competitive in such situations, providing directly 
interpretable solutions, avoiding rotation procedures.

It is quite interesting to check the performance of this 
model to explain the correlation between variables 
for each cluster

From 1 2 1 2
ˆ ˆˆ ˆ ˆ ˆ ˆ[ ][ ]t tR A u u u u A= 

Table 4 & Table 5 compare the original intra linear correlations 
and the correlations reproduced by the model.

Table 4 Initial linear correlation coefficients between variables of cluster 1 
and correlations reproduced by the model in bold

1 2 3 4 5 6 7 8

1

2
0.882

(0.882)

3
0.857

(0.849)

0.829

(0.851)

4
0.877

(0.882)

0.825

(0.874)

0.959

(0.845)

5
0.700

(0.651)

0.588

(0.623)

0.370

(0.590)

0.497

(0.629)

6
0.219

(0.336)

0.282

(0.329)

0.288

(0.315)

0.310

(0.329)

0.240

(0.246)

7
0.164

(0.116)

0.173

(0.170)

0.210

(0.195)

0.094

(0.150)

0.006

(0.003)

0.167

(0.035)

8
0.743

(0.819)

0.745

(0.799)

0.810

(0.766)

0.832

(0.801)

0.416

(0.600)

0.264

(0.307)

-0.001

(0.081)

9
0.378

(0.449)

0.522

(0.441)

0.149

(0.424)

0.239

(0.441)

0.590

(0.326)

-0.024

(0.168)

-0.136

(0.056)

0.386

(0.410)

Table 5 Original correlation coefficients between variables of cluster 2 and 
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correlations reproduced by the model in bold.

10 11 12 13 14 15

11
0.938

(0.943)

12
0.943

(0.929)

0.953

(0.899)

13
0.947

(0.946)

0.946

(0.915)

0.931

(0.901)

14
0.933

(0.921)

0.829

(0.891)

0.829

(0.878)

0.862

(0.894)

15
0.748

(0.797)

0.762

(0.772)

0.712

(0.761)

0.723

(0.777)

0.680

(0.756)

16
0.803

(0.811)

0.677

(0.784)

0.629

(0.772)

0.714

(0.785)

0.843

(0.765)

0.621

(0.644)

Interpretation of factor analysis outputs

The Variables {1,2,3,4,5,8} contribute 92.6% to the inertia 
associated to first factor. All these five variables are strongly 
negatively correlated with factor 1. In general terms, the factor 
explains the “radioactivity effect” on the fishes in direct relationship 

with the duration of such contamination. So, the fishes with smaller 
factor score, are the most contaminated and the fishes with larger 
score are the less radio contaminated (Figure1). Complementary, 
the “size variables” gave a similar contribution to factor 2 (Table 3) 
and all of them are strongly negatively correlated with such factor. 
So, the second factor discriminate the smallest fishes of aquarium 1 
{1,2,3,4} from the larger fishes {5,6,7,8}. The factorial representation 
(Figure 1) doesn’t suggest different levels of contamination in these 
two groups of fishes, except the effect on Variable 4 (fin radioactivity) 
where the smallest fishes compared to the largest ones, registered, 
on average, 20% more contamination. And except Variable 8 (scale 
radioactivity) where the registered variation, among these two sub-
groups was about 55%.

The fishes belonging to aquarium 2 (intermediate duration of 
radio contamination) presented a relatively homogenous behaviour in 
relation to first factor (Figure1). However, in this aquarium, fish 14 
present a clear isolated position, being the smallest fish of the global 
sample and become particularity affected at the live and digestive tract 
level (Table 6). 

Table 6 Amiard data set

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 10 65 65 107 7 76 16 142 1 132 214 197 54 47 18 11
2 9 43 39 67 29 113 10 99 2 122 220 198 49 44 16 10
3 6 47 71 95 11 192 9 121 2 129 220 198 49 45 17 11
4 7 70 40 66 8 310 10 90 2 133 225 199 52 48 15 11
5 8 59 67 100 14 289 4 244 1 57 168 149 37 37 9 9
6 8 46 55 112 17 115 8 153 1 59 178 160 38 35 11 9
7 7 47 36 87 16 100 4 162 1 59 176 156 40 36 11 9
8 11 79 46 95 20 106 10 141 4 47 176 165 39 31 10 8
9 13 80 64 155 42 192 9 169 3 72 182 164 40 39 12 10
10 21 150 115 146 49 229 9 233 5 79 200 179 45 38 12 9
11 12 91 84 138 22 590 9 220 2 80 185 163 43 41 12 11
12 14 120 76 125 21 309 9 617 5 72 175 158 40 39 13 10
13 14 142 86 135 34 523 9 211 10 75 189 169 42 39 18 10
14 23 92 80 132 49 459 9 197 2 52 164 147 36 35 12 9
15 13 85 64 124 20 318 9 191 4 86 195 175 41 39 16 10

16 14 106 67 110 31 115 9 248 6 87 210 170 46 40 17 10
18 32 224 260 314 36 107 13 461 3 72 181 164 41 36 13 9
19 22 162 218 318 25 884 5 590 2 63 175 160 38 35 12 9
20 31 195 208 350 73 109 5 809 11 49 170 154 39 33 12 8
21 15 127 119 197 23 99 7 157 2 107 204 185 47 45 15 11
22 22 160 256 282 12 102 11 690 3 83 190 176 42 44 14 9
23 24 162 231 308 51 1031 17 558 2 82 194 168 42 39 14 10
24 19 64 163 229 16 109 8 345 1 91 190 172 44 42 13 11

As it was expected, most of the fishes of aquarium 3 {18,19,20,22, 23} presented the highest degree of contamination (Figure 1). In contrast 

fish 21 and fish 24 suffered a quit smaller contamination considering 
that these fishes belong to group of the bigger fishes (Table 6, data 
set). In fact, our previous statistical analysis pointed out the fact that 
the two factors are negatively correlated.

Discussion and conclusion
The starting focus of a classical factor analysis is the correlation 

matrix which describes the interrelation between the variables under 
study. The classical factor analysis is defined by:                                                     
    

Where F is the matrix of the latent variables supposed non-
correlated and potentially enable to explain a great part of the 
correlation between the observed variables. In this model, the 
residual matrix V contains unknown non-correlated variables and 

https://doi.org/10.15406/bbij.2023.12.00377


Revisiting the partition of a set of numerical variables through a mixture of Watson distribution on the 
n-sphere and underlying factor analysis model 

20
Copyright:

©2023 Gomes

Citation: Gomes P. Revisiting the partition of a set of numerical variables through a mixture of Watson distribution on the n-sphere and underlying factor 
analysis model . Biom Biostat Int J. 2023;12(1):15‒21. DOI: 10.15406/bbij.2023.12.00377

also not correlated with the latent variables, representing the specific 
component of each one of the original variables. The loading matrix 
informs about the importance of latent factors in their relationship 
with the variables of the model.

Such hypothesis lead to the results 2tA A γΣ = +  where 
2 ( )tE VVγ =  being Σ  the variance and covariance matrix.

In practical terms if R is the empirical correlation matrix, the main 
objective of classical factor analysis model is to find the loadings A 
and the estimate of variance and covariance of residual terms in order 
to minimize the difference between R and .

Joreskog18 studied the relative performance of alternative 
approaches to such optimization problems, namely by the comparison 
of least square method where we have:

Min ∆  with 21 ( )
2

Tr R∆ = − Σ

, ,A Vφ

and generalized least squares where we have:

Min G  with 1 21 ( )
2 pG Tr I R− Σ= −

                                                  , ,A Vφ

Or by the maximum likelihood method where we have:

Min M  with 1 1( ) ( )M Tr R logdet R p− −= Σ − Σ −

                                                 , ,A Vφ

In the context of large sample sizes, the classical properties of 
ML estimators have shown the relative preference of this last choice, 
under the hypothesis of an approximately underlying multinormal 
distribution of observations. Implicitly, such factor analysis model 
uses a rational to justify a specific choice of the variables, in general 
quite connected with the objectives and the priorities of the statistical 
study.

In the present paper we have supposed that the statistical study 
doesn’t justify any sampling from individuals because they are 
previously quite well defined. So, the real problem concerns how 
to sample variables, namely where we have a very big number 
of variables. First of all, the treatment of quantitative structured 
multivariate data suggests a variable cluster analysis procedure just 
to try to downgrade the problem’s complexity. It means to identify 
sub-clusters of variables especially intercorrelated. The described 
framework leads us to the formulation of a probabilistic distribution 
model associated to each sub-cluster previously identified. In the 
context of a large number of variables from quantitative structured 
data, the usual heterogeneity of statistical descriptive indicators or 
units of measure, justified the previous standardization of data. So 
it was quite obvious to think about a probabilistic model defined 
on the sphere n-dimensional, 1nS − : The bipolar Watson distribution 

( )1 1W u ξ  with a direction parameter 1u  and a concentration parameter 

1ξ  seemed to be a natural model to explain the stochastic behaviour of 
each sub-cluster of variables. The fact that the ML estimate of 1u was 
the first principal component of PCA of sub-cluster i, gave the basis to 
propose a factorial model derived from the identification of a mixture 
of Watson distribution on the n-sphere.

The potential presence of some variables considered as statistical 
discordant in relation to any Watson component of the mixture, 
justifies a specific statistical analysis to investigate their incorporation 
in the model facing the main objective of the study. Or eventually 
asking for an adequate transformation if we are detecting a non-
linear correlation with some of the remaining variables. Sometimes 

it could be more adequate to consider such transformed variable 
as supplementary variables, so not included on the construction of 
factors, but afterword’s projected on the factorial plan if the linear 
correlation coefficients with each factor have some statistically 
significant meaning. The proposed model

tX F A U= +  where [ ]1 2ˆ ˆ;F u u=  is such that the factors are not 
necessarily orthogonal vectors, meaning that our approach is enables 
to deliver outputs directly interpretable without a specific rotation 
procedure.

We have no analytic results to calculate the convenient size of 
each sub-sample in order to stabilize the associate factor, depending 
on the value of the concentration parameter and on the dimension of 
n-spere. However, the simulation work already developed constitutes 
an interesting platform to face such problem in practical terms.6

Recent developments extending our research to qualitative 
variables7 clearly shows the renewed interest of this topic in the age 
of big data.

There is yet an interesting open problem regarding the joint 
sampling of individuals and variables in Hilbert spaces.
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