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Introduction
A phase II clinical trial is often conducted to find an appropriate 

dose-level and test toxicity for experimental cancer therapies in 
compare to some historical controls. This kind of trials usually requires 
small sample sizes due to ethical considerations, before proceeding to 
the subsequent phase of the trial for assessing the efficacy, outcomes 
and adverse effect in a larger group of subjects.1,2 At the same time, a 
single-arm design is often the most doable trial due to the feasibility 
under limited budget, patient pool and medical conditions that can 
be met. The number of written requests reported on 2021 of single-
arm trials issued by the Food and Drug Administration (FDA) of the 
United States is an essential volume.3

Statistically, the most simple and traditional single-arm phase II 
clinical trial design-the single-stage design, is specified as follows. 
Given the values of design parameters * *

0 1( ,1 , , )p pα β− , that is, 
statistical significance level, power of the test, null response rate, 
and treatment response rate, respectively, we want to find a pair 
of positive integers ,n a  to specify the sample size and rejection 
boundary (or critical value, for rejecting 0H ) of the phase II trial 
under some constraints, and usually we also have a upper bound of 
n  specified subjectively, such as    to reflect the small-sample 
characteristic of a phase II trial.4 Then, starting from 0 0n n≥ >  for a 
fixed 0n  (the minimal sample size needed), we can search over a grid 
the smallest integer  such that based on level *α , we reject 0H  if 
X a>  and otherwise fail to reject 0H , that is, *

01 ( ; )B a nα α= − ≤  
where 0 ( ; )B n⋅  is the CDF of 0( , )Bin n p . Then if the power 

11 1 B ( , ) 1a nβ β∗− = − ≥ −  where 1( ; )B n⋅  is the CDF of 1( , )Bin n p
, the pair ,an  is said to be the optimal design. If there is no a  meet 
these conditions simultaneously, we continue to 1n + . Thus, the 
optimal design minimizes the sample size among all designs satisfies 
the conditions. It is also easy to know that the optimal single-stage 
design under a parameter setting is unique.

In some scenario, two-stage designs are more likely to be 
considered. In a two-stage design, the phase II clinical trial is 
conducted via two stages sequentially, and whether to proceed to the 

second stage depends on the results from the first stage. A desired 
design under the specifications of some parameters is given by finding 
appropriate sample sizes and critical values of the response rate of 
both two stages. The two-stage design is more economical and ethical, 
which makes the trial stop earlier if there is no efficacy tested, and the 
data collected is more informative than that from a single-stage trial if 
we proceed to phase III.4 Similar to single-stage design, the two-stage 
design is a mathematically easy problem since it can be done over a 
finite grid once the parameters are specified. In this paper, the problem 
is stated and discussed under the design of a single-arm two-stage 
phase II clinical trial.

The remainder of the paper is organized as follows. Section 4 
reviewed the statistical setup of the single-arm two-stage phase II 
trials and described the scientific question of interest. We reviewed 
the classical optimal and minimax designs and discussed an issue we 
are concerned about involved in these two designs, and briefly stated 
our hunch. Section 5 introduced a numerical analysis to confirm our 
hunch. Section 6 concluded the paper.

Single-Arm two-stage Phase II clinical trials
Setup

Consider the test 0 0:H p p=  vs. 1 1:H p p= , where 0p  is the 
response rate of a historical therapy, 1p  is the response rate of the 
experimental therapy needs to be tested, and under our context, 

1 0p p δ= +  for some 0δ >  as a clinical meaningful difference. We 
conduct the test by two stages. Denote 1 2n n n= +  with jn  as the 
sample size of the test at stage ( 1,2)j j = . Denote  and 

 under , 0,1iH i = . 1X  and 2X  are independent.

We consider two types of stopping criteria when the phase II 
trial needs to be stopped after stage 1. First, we consider the futility 
(lower) stop only, which means we stop the trial after stage 1 only if 
we find the treatment is ineffective based on the result from stage 1, 
in other words, this happens when we find the positive response of 
stage 1 1 1x a<  for a critical value 1a  that requires us to reject the 

Biom Biostat Int J. 2022;11(5):178‒183. 178
©2022 Yi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and build upon your work non-commercially.

An analytical study of the critical values of response 
rate in single-arm phase II clinical trial designs

Volume 11 Issue 5 - 2022

Yi Liu,1 Sin-Ho Jung2 
1Department of Statistics, North Carolina State University, USA
2Department of Biostatistics and Bioinformatics, Duke 
University, USA

Correspondence: Sin-Ho Jung, Department of Biostatistics 
and Bioinformatics, Duke University, USA, Tel 919-260-3844, 
Email 

Received: November 07, 2022 | Published: December 30, 
2022

Abstract
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related to the sample sizes at different stages in a similar way for both optimal and minimax 
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of design.
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null hypothesis 0H  under specified design parameters. Second, we 
consider both futility and superiority (upper) stops. The superiority 
stop means we also stop the trial when 1 1x b<  for a critical value 1b  
that specifies the enough effectiveness of the treatment, i.e., because 
of the enough positive responses to the treatment, we can stop and 
claim the effectiveness of the treatment, and there is no need to 
conduct stage 2.

Specifically, the framework of finding specific designs of a single-
arm two-stage phase II clinical trial is specified as follows. Under 
futility stop with design parameters * *

0 1( ,1 , , )p pα β− : 

1. Calculate 0 1 1 1 2( , )P X a X X aα = > + > , 1 1 1 1 21 ( , )P X a X X aβ− = > + >  

2. Define probability of early termination (PET) under 0H
: 0 1 1( )P X a≤  and expected sample size (EN) under  0H : 

1 (1 )n PET n PET× + × −  

3. Among designs with α α∗≤  and *1 1β β− ≥ − : 

 - Optimal design ( )1 1, , ,a n a n  minimizes EN 

 - Minimax design ( )1 1, , ,a n a n  minmizes 1 2n n n= +  

 where iP  is the probability measure under ( )0,1iH i = . 

The significant level and power can be calculate by 
{ }1 1 1 2 1 1 1 2

1
11 1

( , ) ( ; ) 1 ( ; )n
x ai i iP X a X X a b x n B a x n
= +

> + > = − −∑  where 0i =  for 

α  and 1i =  for 1 β− , ( );ib n⋅  is the probability mass of ( ), iBin n p  
and ( );iB n⋅  is the corresponding CDF, 0,1i = . The algorithm 
of finding an optimal or minimax design is easy to implement via 
greedy searching over possible choices of 1 1( , , , )n n a a . Starting from 
a 0n n≥ , for [ ] [ ] [ ]1 1 1 11, 1 , 0, , 1,n n a n a a n∈ − ∈ ∈ + , the probabilities 
and EN aforementioned can be calculated, and so the corresponding 
designs can be found.

Under both futility and superiority stops with design parameters 
* *

0 1( ,1 , , )p pα β− : 

1. Calculate     0 1 1 0 1 1 1 1 2 1 1 1 1 1 1 1 1 21 ( ) ( , ), ( ) ( , )P X a P a X b X X a P X a P a X b X X aα β− = ≤ + < < + ≤ = ≤ + < < + ≤

2. Define probability of early termination under
1 1 1 1: ( ) ( ) ( )i i i iH PET p P X a P X b= ≤ + ≥ , and expected sample 

size (EN) under :iH  1EN( ) PET( ) (1 PET( ))i i ip n p n p= × + × − , 

0,1i = , and then 0 1
1EN [EN( ) EN( )]
2

p p= +  

3. Among designs with *α α≤  and *1 1β β− ≥ − : 

 - Optimal design 1 1( , , , )a n a n  minimizes EN 

 - Minimax design 1 1( , , , )a n a n  minmizes 1 2n n n= +  

A user-friendly software for finding optimal and minimax designs 
of two-stage phase II clinical trials can be found at http://www2.cscc.
unc.edu/impact7/CTDSystems.

What are we looking for?

Following the notations in Section 4.1, we are interested if there 
is any pattern(s) among the 1 1 1, , ,a b a n n  values we found from the 
desired designs given the constrains on level, power, etc. In fact, Jung4 

found a phenomenon that 0 1( )
2
na p p≈ + , 1 1 0a n p≈  and 1 1 1b n p≈  

by a few examples from the output of optimal and minimax trial 
designs, but has not investigated this in more details. We wanted to 
provide a formal analysis in the relationship of these numbers that 
an optimal or minimax design returns, given any specific setting of 

the design parameters, which we believe can provide some prior 
knowledge about what we can expect from a specific design, help us 
to understand more on the difference and similarity of minimax and 
optimal designs, and look at them from a new perspective.

First, we proved that under some regularity conditions and 
constraints by phase II clinical trials, and using large sample 

approximation, 1/21
0 1

1
( )a p O n

n
−= + , 1/21

1 1
1

( )b p O n
n

−= + , and 

1/2
1 0(1 ) ( )a p p O n

n
λ λ −= + − +  for some [0,1]λ ∈ , and λ  is a 

parameter that can be related at least to the response rates of control 
and treatment, i.e., 0p  and 1p . In other words, we may expect that 
the rejection criteria, i.e., the critical values 1a , 1b  and a  of the test 
are mainly determined by the response rates of control and treatment 
when the sample size is large. Details can be found in Appendix 7.1 
for single-stage design and 7.2 for two-stage designs. Second, we 
used an extensive numerical study in Section 5 to confirm our hunch 
when the sample size is finite and small, and based on results from 
optimal and minimax designs.

Numerical analysis
Setup

We investigated the patterns of 1 1 1, , , ,a b a n n  over a fine grid of 
parameters 0 1( , , ,1 )p p α β− . We set 0p  ranged from [0.05,0.7]  with 
a small increment 35 10−× , and 1 0p p δ= + , where 0.2,0.25δ = . 
We consider {0.05,0.1}α ∈  and 1 {0.8,0.85,0.9}β− ∈  for all of these 

0p  and 1p  values. We restricted the maximum of the total sample 
size n  by 55 to reflect the small-sample-size characteristic of phase II 
trials. Finally, we considered both optimal and minimax designs under 
two stop criteria, i.e., (1) with futility stop only; (2) with both futility 
and superiority stops.

Under a parameter setting, we searched the (minimax or 
optimal) design 1 1( , , , )a a n n  if the trial stops at futility stop of stage 
1, 1 1 1( , , , , )a b a n n  if the trial is allowed to stop at both futility and 
superiority stops of stage 1.

Based on the theoretical results in Appendix 7, we investigated: (1) 
under futility stop only, the trends of 1 1 0/a n p−  (and 1 1 0a n p− ) for 
stage 1, and 0 1/ ( ) / 2a n p p− +  (and 0 1( ) / 2a n p p− + ) for stage 2, 
i.e. we choose 1 / 2λ =  only in our numerical experiment (based on 
some previous experience and we would like to confirm how if 1 / 2  
is a good candidate for λ ); (2) under both futility and superiority 
stops, the trends of 1 1 0/a n p−  (and 1 1 0a n p− ) and 1 1 1/b n p−  (and 

1 1 1b n p− ) for stage 1, and 0 1/ ( ) / 2a n p p− +  (and 0 1( ) / 2a n p p− +
) for stage 2.

Results

For simplicity and because of the similarity of our findings in multiple 
cases, we only present the results under ( ,1 , ) (0.05,0.8,0.2)α β δ− =
, where 1 0p pδ = − , as a representative, under both stop criteria and 
both designs. The complete results under all parameters we considered 
can be found in Appendix 8.

Figures 1& 2 show that for different 0p , the trends of ratio 
differences we are interested, i.e., 1 1 0/a n p− , 1 1 1/b n p−  and 

( )0 1/ / 2a n p p+− . They indicate that overall, these differences 
are close to 0, and the difference is smaller on stage 2, i.e., 

( )0 1/ / 2a n p p+− , under both stopping criteria, which means 
( )10 / 2p p+  is a good approximation to /a n  over the 0p  we 
considered under this parameter setting. At the same time, we can 
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observe that, the other two differences are also close to 0, but the 
differences under optimal design are overall closer to 0 than those of 
minimax design. The results for all other cases in Figure 3 to Figure 
12 in Appendix 8.1 and 8.2 are similar to this case. We plotted all 
trends including differences in ratio and frequency. They also result 
in the same conclusion.

Figure 1Trends of 
1 1/a n  and /a n  under both optimal and minimax designs, 

when * *( ,1 , ) (0.05,0.8,0.2)α β δ− =  and there is futility stop only.

Figure 2 Trends of 1 1/a n , 1 1/b n  and /a n  under both optimal and minimax 
designs, when * *( ,1 , ) (0.05,0.8,0.2)α β δ− =  and there are both futility and 
superiority stops.

Figure 3 The trends of 1 1 0a n p−  over different choices of * *
1 0,1 , p pα β δ− = −

, under both optimal and minimax designs, when there is futility stop only.

Figure 4 The trends of ( )0 1 / 2n pa p− +  over different choices of 
* *

1 0,1 , p pα β δ− = − , under both optimal and minimax designs, when there 
is futility stop only.

Figure 5 The trends of 1 1 0/a n p−  (ratio) over different choices of 
* *

1 0,1 , p pα β δ− = − , under both optimal and minimax designs, when there 
is futility stop only.

Figure 6 The trends of ( )0 1 / 2n pa p− +  (ratio) over different choices of 
* *

1 0,1 , p pα β δ− = − , under both optimal and minimax designs, when there 
is futility stop only.

Figure 7 The trends of 1 1 0a n p−  over different choices of 
* *

1 0,1 , p pα β δ− = − , under both optimal and minimax designs, when 
there are both futility and superiority stops.

Figure 8 The trends of 1 1 1/b n p  over different choices of * *
1 0,1 , p pα β δ− = −

, under both optimal and minimax designs, when there are both futility and 
superiority stops.

Figure 9 The trends of ( )0 1 / 2n pa p− +  over different choices of 
* *

1 0,1 , p pα β δ− = − , under both optimal and minimax designs, when there 
are both futility and superiority stops.

Figure 10 The trends of 1 1 0/a n p−  (ratio) over different choices of 
* *

1 0,1 , p pα β δ− = − , under both optimal and minimax designs, when there 
are both futility and superiority stops.

Figure 11 The trends of 1 1 1/b n p−  over different choices of 
* *

1 0,1 , p pα β δ− = − , under both optimal and minimax designs, when there 
are both futility and superiority stops. 
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Figure 12 The trends of ( )0 1 / 2n pa p− +  (ratio) over different choices of 
* *

1 0,1 , p pα β δ− = − , under both optimal and minimax designs, when there 
are both futility and superiority stops.

Table 1 calculates the summary statistics of the trends in Figures 
1 &2 over different 0p  (in total, there are 131 0p ’s in each figure). 
We found from the mean that, these differences are very close to 0 on 
average, and thus the approximation we use is good. We found from 
the interquartile range (IQR) and standard deviation (SD) that they are 
larger for minimax design than optimal design for a same difference, 
thus the variation of the approximation on optimal design is smaller. 
Table 2 further provides all numerical results under this setting, i.e. 

* *( ,1 , ) (0.05,0.8,0.2)α β δ− = , including all design outputs, ratios 
and differences of interest. We present results over 0 [0.05,0.7]p ∈  
but with increment 25 10−×  compared to 35 10−×  for the figures in 
order to maintain the concision and information provided by the table.

Concluding remarks
In this paper, we focused on single-arm two-stage phase II clinical 

trials, which is widely needed in reality. We specifically take the trends 
of critical values for rejecting null hypothesis at both two stages in 
a phase II clinical trial into consideration. Using both theoretical 
derivations under large-sample and numerical studies under finite 
and small sample, we confirmed that the critical values can be 
approximated and dominated by the total sample sizes and response 
rates of different stages. We also found that, this approximation is 
more obvious in optimal design than that in minimax design under 
the same design parameter setting. Our finding indicates that although 
minimax design provides less total sample size needed for a phase II 
trial, the property of an optimal design is closer to what we expect 
under large sample, and overall the optimal designs have more stable 
patterns on their relationships among critical values, sample sizes of 
both stages and response rates under null and alternative hypotheses.

Appendix: technical proofs
The numerical study in Section 5 confirms our hunch in Section 4.2 

under finite (and actually small) sample. In this section, we provide 
some analytic proofs about the relationship between 1 1 1 0, , , , ,n a b n a p  
and 1p  when the total sample size n  is large, using normal 
approximation, based on some regular assumptions (specified later).

Large sample approximation of single-stage phase II 
trials

In a single-arm single-stage trial, given a large n
, we can find the approximate value of a  using large sample 
approximation. We assume that there exist ε  and 0δ >  such that 

0 1 00 1 1p p pε δ ε< ≤ < = + ≤ − < , which means the response rates 
satisfy the “positivity”, i.e., bounded away from 0 and 1. In reality, this 
means we assume that a treatment cannot be effective or ineffective 
to all subjects in the target population. Next, denote /X X n= , then 
under  ( 0,1)iH i = : 

 ( ) (0, )
d

i i in X p N p q− →  (7.1.1)

 as n →∞ , where 1i iq p= − , 0,1i = . Denote ( | )iP p p⋅ =  by 
( ), 0,1iP i⋅ = . Given * *( ,1 )α β− , n  and a  satisfy *

0 ( )P X aα = >  
and *

11 ( )P X aβ− = > . So, under a large sample, 

 0 * 0 01
/ /a n p z p q n

α−
= +  (7.1.2)

 and 

 1 * 1 11
/ /a n p z p q n

β−
= −  (7.1.3)

 where zγ  is the γ -quantile of the standard normal distribution. 
From (7.1.2) and (7.1.3), we know 

 1 0 0 * 0 0 1 * 1 11 1
/ /p p p z p q n p z p q n

α β
δ

− −
= + + = −

or 

 
* 0 0 * 1 11 1

1 0

z p q z p q
n

p p
α β− −

+
=

−

By plugging this in (7.1.2) or (7.1.3), we have 

 0 1(1 )a p p
n

λ λ= + −  (7.1.4)

 with 
* 1 11

* 0 0 * 1 11 1

$
z p q

z p q z p q
β

α β

λ −

− −

=
+

.

Note that both *1
z

α−
 and *1

z
β−

 are finite, and usually, in phase 

II clinical trials, we choose * *α β<  so that * *1 1
z z

α β− −
> . Hence, if 

0 0 1 1p q p q< , the weights in (7.1.4) are closer to 1 / 2 .

Large sample approximation of two-stage phase II 
trials

In the case of two-stage trials, we investigated in Section 5 by 
numerical studies under finite and small sample. Now, we provide 
an analytic proof assuming some regularity conditions about  under 
large sample. Following notations in Section 4.1, note that under 

 ( 0,1)iH i = : 

 ( ) (0, )
d

j j i i in X p N p q− → , (7.2.1)

 as jn →∞ , where 1 , / , 1,2i i j j jq p X X n j= − = = .

Under futility stop only

Under a large 1 2n n n= +  and assume 1 / (0,1)n n r→ ∈ , a 
constant, as n →∞ , the condition *

0 1 1 1 2( , )P X a X X a α> + > =  is 
equivalent to 

          * 1
1 10; 0;2 1/1 1 2 1

( )X Xa n

n aS x f x dx
n n

α
∞   

= −     
∫ ,

where 0; 1Xf  is the density of 1X , and 0; 2XS  is the survival 

function of 2X  under 0H . Note that 

 
1

1 2 1 1 01
10; 2

2 1 0 0 2

( / )1
/X

n n a n x pn aS x
n n p q n

−    − −
− = −Φ          

where Φ  is the CDF of a standard normal distribution. Let 

 
1

1 2 1 1 0
1 10; 1/1 1 0 0 2

( / ) ( )
/ Xa n

n n a n x p f x dx
p q n

τ
−∞  − −

= Φ  
 

∫ ,

Note that there exists an 0ε >  such that 0 1 1ε τ ε< ≤ ≤ − <  since 
the lower limit of the above integral 1 1/ 0a n > . 

Then, 

 *
0 1 1 1 10; 1/1 1
( ) ( )Xa n

P X a f x dx τ α
∞

> = = +∫  (7.2.2)
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 Therefore, by (7.2.1) and (7.2.2), we know 

 1
0 * 0 0 11

1
/a p z p q n

n τ α− −
= +  (7.2.3)

 where zγ  is the γ -quantile of the standard normal distribution. 
Thus, if we choose * 1α τ≤ −  (achievable usually since *α  should be 
small in practice), then *1

z
τ α− −

 is finite, and thus 1
0

1

a p
n

≈  as n →∞ .

Next, we show the relationship among 0,  ,  a n p  and 1p
. Let 1 2X X X= +  and by independence, ~ ( , )iX Bin n p  under 

 ( 0,1)iH i = . Thus, (7.1.1) holds for /X X n= . We know 
*

0 1 1( , )P X a X a α> > =  and *
1 1 1( , ) 1P X a X a β> > = − . 

One the one hand, *
1 1 1 1( ) 1 ( , )P X a P X a X aβ> = − + > ≤ , and let 

 
/1 1 1

1 1 1 1 1 1 11; 1;2 10
2 1

, ) ( ) (
a n

X X
n aP X a X a S x f x dx
n n

τ
  

= > ≤ = −     
∫

 

 
/1 1

1 11; 1;2 10
2

( )
a n

X X
aS f x dx
n

 
≤  

 
∫

On the other hand, *
0 0 1 1( ) ( , )P X a P X a X aα> = + > ≤  and let 

 
/1 1 1

0 0 1 1 1 1 10; 0;2 10
2 1

, ) ( ) (
a n

X X
n aP X a X a S x f x dx
n n

τ
  

= > ≤ = −     
∫

 
/1 1

1 10; 0;2 10
2

( )
a n

X X
aS f x dx
n

 
≤  

 
∫

 We note that there exist an 0ε >  such that ; 2
2

1 1i X
aS
n

ε
 

≤ − < 
 

 

for both 0,1i = , thus the right hand side of the above two probabilities 
are conservatively equal to 1 ε−  under large sample. Now, 

 0 * 0 0 1 * 1 11 10 1
/ / /a n p z p q n p z p q n

α τ β τ− − − +
= + = −

Thus, 

 1 0(1 )a p p
n

λ λ= + −  (7.2.4)

with 
* 0 01 0

* 0 0 * 1 11 10 1

z p q

z p q z p q
α τ

α τ β τ

λ − −

− − − +

=
+

. By choosing 

* *,1α β ε− < , we have *
0 1τ α< −  and *

1τ β< , so both *1 0
z

α τ− −
 

and *1 1
z

β τ− +
 are finite. Whether the weights in (7.2.4) are closer to 

1/2 is a more complicated problem here than that in Section 7.1.

Under both futility and superiority stops

Following the same notations and assumptions made in Section 
7.2.1, note that similar to the thoughts in Section 7.2.1, condition 

*
0 1 1 0 1 1 1 1 21 ( ) ( , )P X a P a X b X X aα− = ≤ + < < + ≤  is equivalent to 

 *
0 1 1 1 10; 1/1 1
( ) ( )Xa n

P X a f x dx τ α
∞

> = = +∫
where 

 
/1 1 1

1 1 10; 0;2 1/1 1 2 1
( )

b n
X Xa n

n aS x f x dx
n n

τ
  

= −     
∫

Thus, by choosing * 1α τ< − , we can similarly show that 

 1
0 * 0 0 11

1
/a p z p q n

n α τ− −
= +  (7.2.5)

 Thus, 1
0

1

a p
n

≈ .

Second, we note that

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( , ) ( , )P X a P a X b X a P X a X a P X a X a P a X b X a P X b X a P X a X a P X b P X b X a P X a X a≤ + < < ≤ = ≤ ≤ + ≤ > + < < ≤ = < ≤ + ≤ > = < − < > + ≤ > . 

Hence, the condition *
1 1 1 1 1 1 1 1 2( ) ( , )P X a P a X b X X aβ = ≤ + < < + ≤  is 

equivalent to *
1 1 1 1 1 1 1( ) ( , )P X b P a X b X a β< − < < > = , thus 

 *
1 1 1 1 11; 1/1 1
( ) ( ) 1Xb n

P X b f x dx β τ
∞

> = = − +∫
where 

 
/1 1 1

1 1 11; 1;2 1/1 1 2 1
( )

b n
X Xa n

n aS x f x dx
n n

τ
  

= −     
∫

Then, by choosing *β τ> , we know that 

 1
1 * 1 1 1(1 )

1
/b p n

n
z p q

β τ− +
= −  (7.2.6)

 Thus, 
1

1
1

b
n

p≈ .

Finally, denote 1 2X X X= + , and we have that 
*

1 1 1 1 1 1 1( ) ( , )P X a P a X b X aβ = ≤ + < < ≤ , 

and *
0 1 1 0 1 1 11 ( ) ( , )P X a P a X b X aα− = ≤ + < < ≤ . Let 

 1/1 1 1 2 1 1 0
0 0 1 1 1 1 10; 1/1 1 0 0 2

( / )( , ) ( )
/

b n
Xa n

n n a n x pP a X b X a f x dx
p q n

τ
− − −

= < < ≤ = Φ  
 

∫

and 

 
1/1 1 1 2 1 1 1

1 1 1 1 1 1 11; 1/1 1 1 1 2

( / )( , ) ( )
/

b n
Xa n

n n a n x pP a X b X a f x dx
p q n

τ
− − −

= < < ≤ = Φ  
 

∫

where Φ  is the CDF of the standard normal distribution, and thus 
choosing *

01α τ< −  and *
1β τ> , similar to the proof in Section 

7.2.1, we have 

 0 1(1 )a p p
n

λ λ= + −  (7.2.7)

 

where 
* 0 01 0

* 0 0 * 1 11 10 1

z p q

z p q z p q
α τ

α τ β τ

λ − −

− − − +

=
+

.

Appendix: complete results of the numerical 
study
Results under futility stop only

We provide figures of two types of trends. That is, trends in 
frequency (Figures 3 & 4) for investigating the trends of 1a  and a
, and trends in difference of ratio (Figures 5 & 6) for investigating the 
trends of 1 1/a n  and /a n .

Table 3– Table 8 present all numerical results, including the returns 
of designs, ratios, and differences of interest under all parameter 
settings in this numerical study. Specifically, we only present under 

[ ]0 0.05,0.7p ∈  with an increment 25 10−×  compared to 35 10−×  in 
the figures, for maintaining the information and concision provided by 
the tables simultaneously. Each table represents a case of ( ),1α β∗ ∗− .

Results under both futility and superiority stops

Same as Section 8.1, we provide figures of trends in frequency 
(Figure 7-Figure 9) for investigating the trends of 1a , 1b  and a , and 
trends in difference of ratio (Figure 10-Figure 12) for investigating the 
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trends of 1 1/a n , 1 1/b n  and /a n .

Table 9-Table 14 present all numerical results, including the returns 
of designs, ratios, and differences of interest under all parameter 
settings in this numerical study. Specifically, we only present under 

[ ]0 0.05,0.7p ∈  with an increment 25 10−×  compared to 35 10−×  in 
the figures, for maintaining the information and concision provided by 
the tables simultaneously. Each table represents a case of ,1α β∗ ∗− .
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