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Pearson product-moment correlation coefficient.1 It is a measure of the 
strength and direction of association between two variables measured 
on at least an interval scale. It can range from -1 to 1. However, 
maximum (or minimum) values of some simple correlations cannot 
reach unity (i.e., 1 or -1)

Correlation analysis is not always dealing with one-to-one 
correlation, i.e., the correlation between two variables. It can be 
partial correlation (adjusted one-to-one correlation). It can also be 
one-to-many, or multiple correlation.2 In statistics, the coefficient of 
multiple correlation is a measure of how well a given variable can be 
predicted using a linear function of a set of other variables. It is the 
correlation between the variable’s values and the best predictions that 
can be computed linearly from the predictive variables.

Relationship between simple and multiple 
correlation coefficients

The formula to compute the simple correlation coefficient between 
variables x  and y  is                                                                    
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 (df=n-2)  is used to conduct 

hypothesis test 0 : 0H ρ =  vs : 0.aH ρ ≠  The formula to compute the 

multiple correlation coefficient between y and 1 2, ...., kx x x  is
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is used to conduct hypothesis test 2
0 : 0H ρ =  vs 2: 0.aH ρ ≠

 
Multiple correlation coefficient between y and 1 2,x x  can be 
calculated using simple correlation coefficients

                         

2 2
1 2 1 2 1 2

2
1 2

2
.

1
yx yx yx yx x x

x x

r r r r r
r

r
+ −

=
−                       

 (3)

Generally, the multiple correlation coefficient between y  and 

1 2, , , kx x x can be calculated using simple correlation coefficients.3,4,5
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and 11R  is the cofactor of the ( )1,1 th element of matrix , ( )R det R

is the determinant of matrix R , 0 jr  is the correlation coefficient 

between y  and jx  ,   1,  2,  . . . ,  j k= , ijr  is the correlation 

coefficient between ix and jx , ,   1,  2,  . . . ,  i j k= . Let 1
  ijr− = ( ) ijr

, then we have
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Introduction
The purpose of this article is to provide a summary about statistical 

correlation analysis and relationship between simple, multiple and 
partial correlation coefficients.

Statistical correlation analysis and regression analysis are 
related, but different. Correlation analysis quantifies the strength 
of the linear relationship between two variables or between two 
sets of variables, most often two continuous variables, or between 
two sets of continuous variables, whereas regression analysis 
is used to determine the relationship in the form of an equation 
between two variables or two sets of variables. Unlike regression 
analysis, to do correlation analysis, we don’t have to distinguish 
cause and effect, or dependent and independent variables. 
Most often, the simple correlation coefficient is used. It is also called 
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Let ( ) 0 ,ijq i j k   be the dispersion matrix of 1 2, , , , ky x x x… and 
1( ) ( )ij

ijq q− = , then we have
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Relationship between simple, multiple and 
partial correlation coefficients

Multiple correlation coefficient can be also calculated using simple 
and partial correlation coefficients Kendall. 3 
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Formally, the partial correlation between x and y given 

1 2 , ....., nz z z is written as .xy zr , where z  is an n-dimensional vector, 

1 2{ , ....., }nz z z z= . Let N denote the number of observations, then
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where  xe and ye  are residuals resulting from the linear 
regression of x with z  and of y with z  respectively. 
Especially, if we have 1z  only, the partial correlation between x and 
y given 1z  is
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The partial correlation between x and y given 1 z  and 2z  is
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The formula (10) can be extended to more general case: the partial 
correlation between x  and y  given 1 2, , , kz z z…  Kendall.3 is
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The partial correlation can also be calculated using multiple 
correlation. For example, the partial correlation between x  and y  
given 1 2,z z is
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The partial correlation between x and y given 1z , 2z  and 3z  is
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Generally, the partial correlation between x  and y  given 

1 2 , ....., kz z z  is
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 Suppose we have  only, the t-statistic 1
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is used to conduct hypothesis test 0 . 1: 0xy zH ρ =  vs . 1
: 0a xy zH ρ ≠

, where n is sample size, υ is total number of variables employed 
in the analysis, here 3υ = since we have three variables ,x y and 1z .

Canonical correlation analysis
In addition, correlation analysis can be used to determine 

association between many variables and many variables (many-to-
many), the canonical correlation analysis (CCA),6 which includes 
deep CCA, sparse CCA, kernel CCA, generalized CCA, regularized 
CCA, nonlinear CCA. The canonical correlation analysis (CCA) is 
a standard tool of multivariate statistical analysis for discovery and 
quantification of associations between two sets of variables.

Polychoric and tetrachoric correlation
Correlation analysis is not always used to determine association 

between continuous or ordinary variables. It can also be used to 
determine the association between two categorical variables, or 
between one continuous variable and another categorical variable. 
The polychoric correlation is used to measure the association between 
ordered-category variables with an assumption of an underlying joint 
continuous distribution.7,8 A categorical variable is often a rough 
measurement of an underlying continuous variable. For instance, a 
dichotomous variable (adult or not) is observed as ‘Yes’ when age 
is 18 years or above, and as ‘No’ if age <  18 years. The underlying 
variable is age, which is continuous. Hence, it is reasonable to assume 
that a continuous variable underlies a categorical (dichotomous 
or polychotomous) observed variable. Therefore, we can conduct 
the estimation of the polychoric correlation coefficient via Markov 
chain Monte Carlo methods assuming the underlying distribution is 
multivariate normal. Especially, the polychoric correlation between 
two observed binary variables is also known as tetrachoric correlation.9 
Suppose we have a 2 2×  table with two binary variables, x  and y
, then

Tetrachoric correlation = 11 22 12 21cos( / (1 ( ) / / ))n n n nπ + × .

Point biserial correlation and biserial 
correlation

On the other hand, the point biserial correlation is used to determine 
an association between one continuous variable and another naturally 
binary variable.6 For example, the correlation between gender and 
salary is called point biserial correlation. The formula for the point 
biserial correlation coefficient is

                               1 0
pb

n

Q Qt pq
s
−

=                                (15)

where 1Q  is the mean of the positive or ‘Yes’ group, defined by the 
dichotomous variable, 0Q  is the mean of the negative or ‘No’ group, 
defined by the same dichotomous variable, ns  is the standard deviation 
for all, p  is the ‘Yes’ proportion and q  is the ‘No’ proportion.

Biserial correlation is very close to point biserial correlation, 
but one of associated variables is dichotomous ordinal and has 
an underlying continuity.11 For example, depression level can be 
measured on a continuous scale, such as PHQ-9, the nine-item 
depression scale of the patient health questionnaire, or the Hamilton 
rating scale for depression, but can be classified dichotomously as 
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high/low. The formula for biserial correlation coefficient between a 
dichotomous ordinal variable (W) and one continuous variable (M) is

                         1 0[( ) ( / )] /b mr pqΜ Μ Μ σ= − ×                   (16)

where 0M  is mean score of M  when 0W = , 1M  is the 

mean score of M  when 1W = , q  is proportion for 0W = , p  

is proportion for 1W = , mσ  is population standard deviation, 
M  is the height of the standard normal distribution at z , where 

( ) ( )' &  'P z z q P z z p< = > = .

If point-biserial correlation is known, you can also find biserial 
correlation with the following formula Sheskin D12
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We can have a natural extension of the model above if we have 
more than two ordered rating levels. We can assume that the joint 
distribution of the quantitative variable and a latent continuous 
variable underlying the ordinal variable is bivariate normal when we 
compute a polyserial correlation coefficient (standard error) between 
a quantitative variable and an ordinal variable. Either the maximum-
likelihood (ML) estimator or a quicker ‘two-step’ approximation can 
be used. For the ML estimator the estimates of the thresholds and the 
covariance matrix of the estimates are also available.

Conclusion
In this article we have discussed about Pearson product-moment 

correlation coefficient, simple, multiple, partial correlation, the 
relationship among them, the concepts and the formulas to compute 
each specific coefficient. Also, we have discussed the multivariate 
canonical correlation between many and many variables. In addition, 
we have discussed about tetrachoric or polychoric correlation 
between two observed binary variables or between two ordered-
multiple-category variables, as well as the polyserial correlation 
between a quantitative variable and an ordinal variable, point biserial 
correlation between one continuous variable and one naturally binary 

variable, and biserial correlation which is very close to point biserial 
correlation, but one of associated variables is dichotomous ordinal 
and has an underlying continuity. To extend the relationship between 
Pearson product-moment correlation coefficient, simple, multiple, 
partial correlation to the relationship for other kinds of correlation, 
such as polychoric, polyserial correlation, can be further study.
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