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Correlation analysis for different types of variables
and relationship between different correlation

coefficients

Introduction

The purpose of this article is to provide a summary about statistical
correlation analysis and relationship between simple, multiple and
partial correlation coefficients.

Statistical correlation analysis and regression analysis are
related, but different. Correlation analysis quantifies the strength
of the linear relationship between two variables or between two
sets of variables, most often two continuous variables, or between
two sets of continuous variables, whereas regression analysis
is used to determine the relationship in the form of an equation
between two variables or two sets of variables. Unlike regression
analysis, to do correlation analysis, we don’t have to distinguish
cause and effect, or dependent and independent variables.

Most often, the simple correlation coefficient is used. It is also called
Pearson product-moment correlation coefficient.! It is a measure of the

strength and direction of association between two variables measured
on at least an interval scale. It can range from -1 to 1. However,
maximum (or minimum) values of some simple correlations cannot
reach unity (i.e., 1 or -1)

Correlation analysis is not always dealing with one-to-one
correlation, i.e., the correlation between two variables. It can be
partial correlation (adjusted one-to-one correlation). It can also be
one-to-many, or multiple correlation.? In statistics, the coefficient of
multiple correlation is a measure of how well a given variable can be
predicted using a linear function of a set of other variables. It is the
correlation between the variable’s values and the best predictions that
can be computed linearly from the predictive variables.

Relationship between simple and multiple
correlation coefficients

The formula to compute the simple correlation coefficient between
variables x and y is
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hypothesis test H,: p=0 vs H,: p#0. The formula to compute the

The t-statistic n-2 is used to conduct

multiple correlation coefficient between y and x;,x,....,x; is
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is used to conduct hypothesis test H, (p? =0 vs H, cp? #0.

Multiple correlation coefficient between yand x;,x, can be
calculated using simple correlation coefficients
2 2
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Generally, the multiple correlation coefficient between y and

X, %,,++, X, can be calculated using simple correlation coefficients.?#3
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and R, is the cofactor of the (1,1) th element of matrix R,det(R)

is the determinant of matrix R, 5y, is the correlation coefficient
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between y and X, j o= 1,2 ...,k, 7y is the correlation
coefficient between x; and xp, b, ) =12, k. Let r! i = (r’j)
, then we have
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Let (g;)0<i, j<k be the dispersion matrix of y,x,x,,...,x; and
(7)™ =(¢") . then we have
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Relationship between simple, multiple and
partial correlation coefficients

Multiple correlation coefficient can be also calculated using simple
and partial correlation coefficients Kendall. 3
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the partial correlation between xand y given
where z is an n-dimensional vector,
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Formally,
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are residuals resulting from the linear
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where e and e,

regression of xwith z and of ywith 2z respectively.
Especially, if we have z, only, the partial correlation between x and
y given z; is
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The partial correlation between x and y given z; and z, is
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The formula (10) can be extended to more general case: the partial
correlation between x and y given z,z,,...,z, Kendall.’is
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The partial correlation can also be calculated using multiple
correlation. For example, the partial correlation between x and y
given z|,z, is
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The partial correlation between x and y givenz,, z, and z; is
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Generally, the partial correlation between x and y given
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Suppose we have =L only, the t-statistic

is used to conduct hypothesis test H: p,, . =

, where n is sample size, v is total number of variables employed
in the analysis, here v =3 since we have three variables x,y and z; .

Canonical correlation analysis

In addition, correlation analysis can be used to determine
association between many variables and many variables (many-to-
many), the canonical correlation analysis (CCA),® which includes
deep CCA, sparse CCA, kernel CCA, generalized CCA, regularized
CCA, nonlinear CCA. The canonical correlation analysis (CCA) is
a standard tool of multivariate statistical analysis for discovery and
quantification of associations between two sets of variables.

Polychoric and tetrachoric correlation

Correlation analysis is not always used to determine association
between continuous or ordinary variables. It can also be used to
determine the association between two categorical variables, or
between one continuous variable and another categorical variable.
The polychoric correlation is used to measure the association between
ordered-category variables with an assumption of an underlying joint
continuous distribution.”® A categorical variable is often a rough
measurement of an underlying continuous variable. For instance, a
dichotomous variable (adult or not) is observed as ‘Yes” when age
is 18 years or above, and as ‘No’ if age < 18 years. The underlying
variable is age, which is continuous. Hence, it is reasonable to assume
that a continuous variable underlies a categorical (dichotomous
or polychotomous) observed variable. Therefore, we can conduct
the estimation of the polychoric correlation coefficient via Markov
chain Monte Carlo methods assuming the underlying distribution is
multivariate normal. Especially, the polychoric correlation between
two observed binary variables is also known as tetrachoric correlation.’
Suppose we have a 2x2 table with two binary variables, x and y
, then

Tetrachoric correlation = cos(7r / (1+ /(1 X 1y,) / 1y, / 1y,))

Point Dbiserial
correlation

correlation and Dbiserial

On the other hand, the point biserial correlation is used to determine
an association between one continuous variable and another naturally
binary variable.® For example, the correlation between gender and
salary is called point biserial correlation. The formula for the point
biserial correlation coefficient is

_9-G
S Jrq

where (), is the mean of the positive or ‘Yes’ group, defined by the
dichotomous variable, Q, is the mean of the negative or ‘No’ group,
defined by the same dichotomous variable, s, is the standard deviation
for all, p isthe ‘Yes’ proportion and ¢ is the ‘“No’ proportion.

(15)

Biserial correlation is very close to point biserial correlation,
but one of associated variables is dichotomous ordinal and has
an underlying continuity." For example, depression level can be
measured on a continuous scale, such as PHQ-9, the nine-item
depression scale of the patient health questionnaire, or the Hamilton
rating scale for depression, but can be classified dichotomously as
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high/low. The formula for biserial correlation coefficient between a
dichotomous ordinal variable (W) and one continuous variable (M) is

1, =[(M, =My)x(pq/ M)]/ o, (16)
where M|, is mean score of M when W =0, M, is the
mean score of M when W =1, ¢q is proportion for W =0, p
is proportion for W =1, o,, is population standard deviation,
M is the height of the standard normal distribution at z , where
P(z'<z):q& P(z'>z):p.

If point-biserial correlation is known, you can also find biserial
correlation with the following formula Sheskin D'?
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We can have a natural extension of the model above if we have
more than two ordered rating levels. We can assume that the joint
distribution of the quantitative variable and a latent continuous
variable underlying the ordinal variable is bivariate normal when we
compute a polyserial correlation coefficient (standard error) between
a quantitative variable and an ordinal variable. Either the maximum-
likelihood (ML) estimator or a quicker ‘two-step’ approximation can
be used. For the ML estimator the estimates of the thresholds and the
covariance matrix of the estimates are also available.

Conclusion

In this article we have discussed about Pearson product-moment
correlation coefficient, simple, multiple, partial correlation, the
relationship among them, the concepts and the formulas to compute
each specific coefficient. Also, we have discussed the multivariate
canonical correlation between many and many variables. In addition,
we have discussed about tetrachoric or polychoric correlation
between two observed binary variables or between two ordered-
multiple-category variables, as well as the polyserial correlation
between a quantitative variable and an ordinal variable, point biserial
correlation between one continuous variable and one naturally binary
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variable, and biserial correlation which is very close to point biserial
correlation, but one of associated variables is dichotomous ordinal
and has an underlying continuity. To extend the relationship between
Pearson product-moment correlation coefficient, simple, multiple,
partial correlation to the relationship for other kinds of correlation,
such as polychoric, polyserial correlation, can be further study.
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