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Introduction
In modelling data related to reliability, one of the most sought 

out distribution is the Lindley distribution. Lindley distribution was 
studied by Lindley,1 with an advantage of having a single parameter, 
with an increasing hazard rate function (hrf). The Lindley distribution 
is a linear combination of the Gamma (2, β ) and exponential ( β ) 
distribution.

Let Z  be a random variable following the Lindley distribution 
with parameter β . The probability density function (pdf) of the 
Lindley distribution is defined by Lindley1 as follows

                                          ,    0 z > ,
The distribution function (df) of the Lindley distribution is also 

defined as follows

                                          ,   0 z > ,
Ghitany2 discussed the application of the Lindley distribution with 

a real-world dataset, after which the distribution became popular. 
Many generalizations of the Lindley distribution were developed. 
We redirect the readers to Tomy3 and Chesneau4 to get a better 
understanding of the different generalizations and applications of the 
Lindley distribution.

Among which the modified Lindley (ML) distribution developed 
by Chesneau5 is of prime importance. Suppose Y is a random variable 
following the ML distribution with parameter , then the pdf of ML 
distribution is defined as follows
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The df of the ML distribution are also defined as follows, 

                                                       , 0     y > ,

The mean and variance of ML distribution is given as follows, 

Figure 1 Illustrates the plots of the ML distribution with various values of 
the parameter 

Observations –

The shapes of the pdf plots are unimodal, and are decreasing in 
nature.

In this paper, we discuss the different methods to estimate the 
unknown single parameter β of the ML distribution. A simulation 
study is also conducted to compare the efficiency of different 
estimators. 

The structure of the paper is as follows. Section 2 discusses the 
different methods of estimating β . In Section 3, we compare the 
efficiency of the estimates produced by the different methods of 
estimation. Section 4 shows the application of different estimation 
methods over a real-world dataset.

Inferential aspects

In this section, we concentrate on the estimation of parameter β , 
with an assumption that β  is unknown. Here, we consider estimating 
the parameter of the ML distribution using the methods, which include 
Maximum Likelihood (ML), Method of Moment (MOM) estimation, 
least squares (LS) and Weighted Least squares (WLS) estimation, and 
Cram´er-von Mises (CVM) estimation.

ML estimation

Consider (y1, y2, ..., yn) to be a random sample from the ML 
distribution with parameter β , with pdf defined in Equation (1). The 
log-likelihood (LL) function is given by

The ML estimate of β , β


 is defined as
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The ML estimate of β  can be obtained by taking the derivative of 
LL( β ) and equating it to zero, which is as follows:

            
As there doesn’t exist any explicit form of β , numerical methods 

are used to get the estimate of β .

MOM estimation

Let (y1, y2, ..., yn) represent n independent ML distribution 
observations. Chesneau5 showed that the unique MoM estimate of the 
pdf defined in Equation, β , of β  is given by
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LS and WLS estimation

Swain6 devised the method of least squares. The difference between 
both the vector of uniformized order statistics and the associated 
vector of expected values is reduced using this approach. Let (y1, 
y2, ..., yn) represent a random sample from the ML distribution with 
parameters. Also, let y(1), y(2), … y(n) be the order values of y1,y2,...,yn in 
ascending order.

              
The LS estimate of β  is defined by

                                                                   .

After partially differentiating with regard to unknown parameter 
β , one can construct a nonlinear equation using the df of the ML 
distribution. The Monte Carlo simulation can be used to find the 
solution to this nonlinear equation.

The WLS function is given as follows:

where  

The WLS estimate of β is defined by

                                                                         
As a result, the WLS estimate of can be derived using a process 

similar to the LS estimate.

CVM estimation

The CVM approach is identical to the two methods earlier 
described. The CVM function is described as follows:

             
The CVM estimate of β is defined by

                                                                .

As a result, the CVM estimate of follows the same approach as the 
WL or LS estimations.

Simulation study

We conduct a simulation analysis in this part to assess the 
efficiency of the ML model parameter estimates reported in Section 
3. We employed the Monte Carlo technique in R software, as well 
as Newton’s method and the BFGS (Broyden-Fletcher-Goldfarb-
Shanno) algorithm, developed by Broyden7, Fletcher8, Goldfarb9, & 
Shanno10. 

The bias and Mean Square Error (MSE) were examined in the 
study, 

Bias 
                            

and

where, for each sample size n, is the parameter’s estimate at the 
jth iteration using a specific estimation method. R software, version 
4.0.5, was used for all calculations.

Tables 1–3 show the biases and mean square error (MSE) of the 
proposed model’s parameters based on N = 5000 replicates. To further 
analyse the nature of the estimates, various sample sizes (n = 50, 
100, 200, and 500) and values of the parameters, β = (0.5,1,1.5) are 
employed.

Table 1 Bias and MSE for β  = 0.5

n Estimate Bias MSE

                  
β̂

50 ML 0.017219 0.004665
MOM 0.017282 0.004002
OLS 0.016243 0.004623
WLS -0.5 0.25
CVM 0.016524 0.003894

100 ML 0.013654 0.00199
MOM 0.013417 0.002018
OLS 0.013752 0.00229
WLS -0.5 0.25
CVM 0.013256 0.002306

200 ML 0.011259 0.000995
MOM 0.012063 0.001168
OLS 0.011815 0.001161

WLS -0.5 0.25

CVM 0.010682 0.000978

500 ML 0.010423 0.000425

MOM 0.011379 0.000505

OLS 0.011279 0.000503

WLS -0.5 0.25

CVM 0.010103 0.000422

Table 2 Bias and MSE for β  = 1

n Estimate Bias MSE

                     
β̂

50 ML 0.03443951 0.0156625
MOM 0.03748674 0.0162677
OLS 0.02567615 0.01804344
WLS -1 1
CVM 0.02774687 0.0181966

100 ML 0.02801196 0.008132881
MOM 0.0302575 0.00823406
OLS 0.02086761 0.008980337
WLS -1 1
CVM 0.02191171 0.009037173

200 ML 0.02473895 0.003989069
MOM 0.02688922 0.004123211
OLS 0.01902113 0.004393245
WLS -1 1
CVM 0.0195463 0.004416063

500 ML 0.0234787 0.001838779
MOM 0.02486852 0.001912136
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Table 3 Bias and MSE for β  = 1.5

n Estimate Bias MSE

                       
β̂

50 ML 0.1781775 0.07687606
MOM 0.1962871 0.09591677
OLS 0.1927908 0.09444386
WLS -1.5 2.25
CVM 0.17634 0.07521178

100 ML 0.1664498 0.04858995
MOM 0.16478 0.04814568
OLS 0.1813909 0.05871948
WLS -1.5 2.25
CVM 0.02191171 0.009037173

200 ML 0.1617356 0.03610189
MOM 0.1784734 0.04441311
OLS 0.1775813 0.04408753
WLS -1.5 2.25
CVM 0. 02113903 0.003554184

500 ML 0.1588387 0.02905477
MOM 0.1753744 0.03550387
OLS 0.1750164 0.03537724
WLS -1.5 2.25
CVM 0.0155954 0.00281068

Some observations from Tables 1-3, 

1. The estimators of all the parameters are positively biased, except 
for the WLS estimator.

2. The biases of all the estimators tend to zero for large values of 
the sample size n.

3. WLS has the largest MSE among the considered four estimators.

4. The CVM estimator has the least bias among all the other 
estimators.

Real data analysis

We use a well-known real data set to demonstrate the ML model’s 
use in real-life circumstances. To accomplish this, we compare the 
estimates obtained through the different estimation methods of the ML 
model. Standard performance validation criteria such the goodness-
of-fit testing statistic such as the Kolmogorov Smirnov (K-S), also 
denoted by Dn, are used to discover the best model. 

                

The p-values for the KS test statistic are also taken into account. 
The best method of estimation has the smallest KS, as well as the 
highest p-values. We refer the readers to Kenneth and Anderson11 for 
definitions and more insights on these attributes. The data set includes 
30 measurements of precipitation in March in Minneapolis, with inch 
as the unit of measurement. Hinkley12 has provided this data set. 

Table 4 contains the parameter estimates obtained using various 
estimation methods for the ML distribution in order to complete the 
comparison of the estimation methods of the ML distribution.

Table 4 β̂  of different estimation methods for ML distribution with K-S 
statistic and p-value

Methods K-S p-value

MOM 0.685563 0.167852 0.366565
OLS 0.613856 0.129532 0.69541
WLS 0.616286 0.130844 0.683348
CVM 0.604734 0.124597 0.740227
MLE 0.6644 0.1567 0.4532

We use the essential metrics to compare the four estimation 
approaches for the weighted Lindley distribution: 

• The K-S test with the highest p-value (which considers the greatest 
difference between the theoretical and empirical distributions)

Table 4 demonstrates that the CVM approach meets the above-
mentioned criteria, namely, the highest p-values for the K–S test. As 
a result, we can conclude that the CVM estimation approach is the 
best appropriate among the five estimate methods for the presented 
data set.

Conclusion
In this study, we compared the estimate of the parameters of the 

weighted Lindley distribution using four well-known estimation 
methods: maximum likelihood, method of moments, least-squares, 
weighted least-squares, and Cram`er-von Mises, utilising extensive 
simulation trials. In comparison to the maximum likelihood method, 
simulations reveal that Cram`er-von Mises is a very competing 
method. This is backed up by the use of a real-world climatic data set.
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