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Introduction
The outbreak of the COVID-19 pandemic has brought numerous 

challenges to the healthcare system worldwide. A timely and 
comprehensive detection of carriers is a crucial strategy employed by 
many countries to control the virus’s spread to a relatively successful 
degree. However, the virus and antibody’s medical test is both time-
consuming and expensive, and the cost grows proportionally with 
population size. Alternative methods that rely on the demographic 
information and self-reported symptoms are thus promising to serve 
as a preliminary screen model to predict individual-level risks in 
COVID-positivity. Statistical analyses of such data not only provide 
risk evaluation about individual virus infection, but also are conducive 
for refined medical testing procedures. 

Since the inception of the disease, the most frequently used 
prediction model in the analysis of COVID data is the logistic 
regression model).1-4 In a systematic review study, Waynants et al.4 
reported 107 studies describing 145 prediction models for diagnosis 
and prognosis of COVID-19, with 4 models predicting risk of hospital 
admission for COVID-19 pneumonia in the general population, 91 
diagnostic models for detecting COVID-19 patients with suspected 
infection, and 50 prognostic models for predicting mortality risk, 
progression to severe disease, or length of hospital stay. A majority 
of these studies focused on the significance of the predictors in their 
relationship with the outcome variable (i.e., positive or negative 
cases) using the logistic regression model. The most frequently 
reported predictors of the presence of COVID-19 included age, body 
temperature, signs and symptoms, sex, blood pressure, and creatinine. 
Marin et al.,3 similarly, summarized factors predictive of increased 
disease severity and/or mortality as the following: age > 55 years, 
multiple pre-existing comorbidities, hypoxia, specific computed 
tomography findings indicative of extensive lung involvement, 
diverse laboratory test abnormalities, and biomarkers of end-organ 
dysfunction. C index estimates, i.e., summaries of discrimination 

quantifying the extent to which predicted risks discriminate between 
participants with and without the outcome for these models, ranged 
from 0.73 to 0.81 in prediction models for the general population, 
from 0.65 to 0.99 in diagnostic models, and from 0.85 to 0.99 in 
prognostic models, respectively.

In addition to traditional logistic regression, several studies 
include procedures for variable selection. Jehi et al.2 developed the 
least absolute shrinkage and selection operator logistic regression 
algorithm to retain variables that contribute to the model prediction. 
The model focused on predicting the likelihood of a positive nasal 
or oropharyngeal COVID-19 test, using a prospective registry of 
all patients tested for COVID-19 in the Cleveland Clinic. Results 
of the study suggested that male, African American, older patients, 
and those with known COVID-19 exposure were at higher risk of 
being positive for COVID-19. In comparison, risk was reduced in 
patients who had pneumococcal poly-saccharide or influenza vaccine 
or who were on melatonin, paroxetine, or carvedilol. C-statistic was 
0.863 in the development cohort and 0.840 in the validation cohort, 
which indicates similar prediction accuracy as the traditional logistic 
regression reported in Marin et al.3 Similarly, Sun et al.5 developed 
four multivariate logistic regression models predicting positive 
COVID-19 cases using variables selected through stepwise use of 
Akaike’s information criterion (AIC; Akaike,6), while Bhargava 
et al.1 incorporated the forward likelihood ratio algorithm to build 
multivariate logistic regression models. Results of the Sun et al.5 study 
suggested that positive cases were more likely to be older people with 
comorbidities, those that had contact with a known COVID-19 case 
or had recently traveled to China. Further, these cases were more 
likely to have an elevated body temperature at clinical presentation 
and radiological findings suggestive of pneumonia as well as lower 
blood counts of white blood cells, platelets, neutrophils, lymphocytes, 
eosinophils, and basophils. The predictive performance of the final 
models was assessed using receiver operating characteristic (ROC) 
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Abstract

This study explored predictions of COVID test results using statistical classification 
methods based on available COVID-related data such as demographic and symptom 
information. The performances of logistic regression, machine learning models, and latent 
class analysis in the predictions of extreme imbalanced COVID data were compared. One 
technical challenge of using statistical classification methods was tackled in the extreme 
imbalance sample sizes of the COVID data. The oversampling method was applied on 
the training dataset to mitigate the impact of such data structure on the training process. 
Further, the adjusted pooled sampling method based on the statistical classification results 
was proposed to facilitate the efficiency of COVID testing. Results indicate that some 
machine learning models (e.g., support vector machine) had better performance than 
traditional logistic regression model and latent class analysis under extreme imbalance data 
condition. Further, the oversampling method increased the sensitivity of various statistical 
classification methods when different cut-off values were applied. The adjusted pooled 
sampling was shown to be more efficient than the traditional pooled sampling method. 
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curves and the corresponding area under the curve (AUC) values. 
All models had satisfactory prediction results with AUCs of 0.91, 
0.88, 0.88 and 0.65 for the four models, respectively. Bhargava et 
al.1 reported similar results in a study designed to identify predictors 
for severe COVID-19 infection. The four significant predictors 
for severity of COVID-19 infection included presence of pre-
existing renal disease, need for supplemental oxygen at the time of 
hospitalization, elevated creatinine and C-reactive protein (CRP) on 
admission laboratory findings. 

In addition to the prevalent use of multivariate logistic regression 
models on the COVID-19 data, machine learning algorithms have 
been used to build prediction models for efficient diagnosis purposes.4 
Kumar et al.,7 for example, used random forest and XGBoost 
predictive classifiers on chest X-ray images and found prediction 
accuracies as 0.973 and 0.977, respectively. Similarly, Hassanien et 
al.8 used support vector machine to detect COVID cases using the 
lung X-ray images and found accuracies higher than 0.950. These 
studies show the potential of machine learning methods in the early 
detection of COVID-19.

One technical issue in the analysis of COVID data is the extreme 
imbalance of the outcome variable (i.e., positive vs. negative cases). 
COVID data is a typical type of “rare events data” in that the binary 
outcome variables contain far more negative cases than positive cases.9 
The large discrepancy between positive and negative cases suggests 
that the predictive model should not only be evaluated based on total 
classification accuracy because a model that classifies all individuals 
into negative cases can yield a high accuracy as well. The model 
diagnostic and comparison should also consider sensitivity, computed 
as the proportion of correct detection of all positive cases, to be the 
primary evaluation criterion. Further, the impact of the imbalance in 
sample sizes in the COVID prediction model also calls for statistical 
adjustment that takes into account the rare events. For example, Kumar 
et al.7 used the resampling method to balance the positive and negative 
data points. However, few studies have compared the performances of 
classifiers using the extreme imbalanced dataset and balanced dataset.

In addition to prediction accuracy, another important issue to 
consider is the efficiency of COVID tests. Regular pooled sampling is 
conducted by testing multiple nasopharyngeal swabs simultaneously11 
to improve the testing efficiency. If the pooled test result is negative, 
then individuals in the pool are considered as negative cases. If the 
pooled test result is positive, then each individual in the pool needs 
to be tested again. The benefit of pooled testing is to reduce the time 
and financial cost of COVID testing. However, there is little guidance 
on how the pools should be formed. The current study proposes the 
adjusted pooled sampling that uses the statistical models as preliminary 
screening techniques utilized in combination with pooled sampling 
to improve the efficiency of the COVID-19 diagnosis. Specifically, 
the pools are formed based on the statistical prediction results. 
Individuals who are predicted to be positive are tested individually, 
while those who are predicted to be negative are put in the same pools. 
Given the satisfactory prediction accuracy of the statistical methods, 
it is expected that adjusted pooled sampling can further improve the 
testing efficiency.

In the current study, both the extreme imbalance issue and the 
pooled sampling issue are considered. Specifically, this study compares 
the prediction accuracy of different classification methods including 
logistic regression, machine learning techniques (i.e., decision tree, 
random forest, gradient boosting, support vector machine), and latent 
class analysis using empirical dataset with extreme imbalance and 
when the extreme imbalance is treated using resampling method. 

Latent class analysis has not been used in any previous studies but is 
considered in the current study due to its advantages for latent group 
classification purposes. Further, this study evaluated the performance 
of the adjusted pooled sampling under both the extreme imbalance 
scenario and when the extreme imbalance is treated. In summary, the 
purpose of the current study is twofold: 1) to evaluate the performances 
of the statistical methods in predicting positive COVID cases; 2) to 
examine whether the adjusted pooled sampling method can improve 
the efficiency of COVID testing. 

Models and approaches for classification and 
prediction

The data analysis methods used in the current study include logistic 
regression, latent class analysis, and machine learning methods 
including classification and regression tree (CART), gradient boosting 
(GB), random forest (RF), and support vector machine (SVM). These 
methods are introduced as follows.

Logistic regression

Logistic regression model is the most frequently used method in 
the studies related to the COVID prediction models. It is included in 
the current study as a baseline method to be compared with. Let be 
the observed diagnosed category for person j (j = 1, ..., J) and 1jY =  
indicates probable cases while 0jY =  indicates confirmed cases. In 
the logistic regression model, the probability of being diagnosed as a 
probable case is expressed as:
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where β denote a 1p× vector of regression coefficients and X 
denote an n p×  design matrix of predictors where n is the number 
of observations and p is the number of predictors (including the 
intercept). There are several assumptions for the logistic regression 
model. First, it requires the dependent variable is dichotomous and 
sample size is large, which is the case in the current study. Second, 
it assumes that the observations are identically and independently 
distributed. Thus, the likelihood function of the logistic regression 
model is given by:
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The regression coefficients are estimated using the maximum 
likelihood estimator. Third, the logit of the probability being diagnosed 
as probable cases (i.e., ( 1)jYπ = )  is linearly related to the predictors 
X. That is, 
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Lastly, the logistic regression model assumes there is no 
multicollinearity issue among the predictors. That is, the predictors are 
not highly correlated with each other. However, the multicollinearity 
issue is not an issue if the goal is prediction, which is the case in 
the current study. The estimated regression coefficients β



are further 
used in the logistic regression model to predict new observations. 
Therefore, all predictors were used in the logistic regression model. 

Latent class analysis

The latent class analysis11 is finite mixture modeling when the 
observed data are categorical. The finite mixture model has had a 
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long history in modeling the heterogeneous population. Everitt12 
summarizes two common scenarios when finite mixture models can 
help explain two types of research design: 1) the population comprises 
well-defined subpopulations, use the mixture model to classify 
individuals into the unknown classes; and 2) there are suspected 
subpopulations and use the mixture model for exploratory purposes. 
This work fits the former purpose of classifying the individuals into 
pre-defined subpopulations of “negative cases” versus “positive 
cases”. LCA relies on several assumptions: 1) the data are generated 
from a mixture of underlying probability distributions, and the 
population is heterogeneous; 2) LCA assumes local independence 
that within each class, the endorsement of the observed variables is 
assumed to be mutually independent of each other.13

An unconditional LCA is a measurement model which specifies the 
relation between the measured indicators and the latent classification 
variable. For an individual in latent class k (k =1, 2, …, K), the 
probability of obtaining response pattern u for the jth (j = 1, 2, …, J) 
indicator under the local independence assumption is given by

( ) 11Pr( | ) Pr Pr( 1| ),K J
j jkU u c k c k u c k==

= = = = ∏ = =∑             (4)

where c is the latent class variable. Using the Bayes rule, the 
posterior probability of belonging to latent class k can be computed 
in the form
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Ideally, for well-separated latent classes, all individuals have a 
very high model-based posterior probability of being classified into 
one latent class and a very low probability into the other(s). 

Machine learning techniques

Four machine learning techniques are used in the current study 
including classification and regression tree (CART), gradient boosting 
(GB), random forest (RF), and support vector machine (SVM). CART, 
GB, and RF are tree-based methods that are fairly robust to noisy 
data, while SVM can handle classification issues with non-linear 
boundaries.14 CART has been shown to be an effective method with 
simple interpretability.15 In the current 2-class classification problem, 
CART divides the predictor space into m distinct and non-overlapping 
regions and the prediction of the classes equals the most common 
classes of the observations in each region. The goal is to minimize the 
classification error rate, which is simply the proportion of the training 
observations in that region that do not belong to the most commonly 
occurring class:

                                           ( )ˆ1 maxk ikE p= − ,                                   (6)

where ˆ ikp indicates the proportion of training observations in the 
ith region that are from the kth class (k = 1 or 2 in the current study). 
The Gini index16 is used to indicate the quality of a split in the current 
study, which is defined by 
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which measures the total variance across k classes. A small value of 
G indicates that high purity of a region which predominantly consists 
of observations from a single class.

However, the tree structure may be easily affected by small changes 
in the dataset.17 That is, the CART method suffers from high variance 

in the predictions on the validation set. Therefore, RF and GB that use 
ensemble methods are used as comparisons to the CART method. The 
idea behind the ensemble methods is that many training datasets are 
taken from the population and the average prediction results are taken 
to decrease the variance in the prediction. For RF, m predictors are 
sampled from the full set of p predictors and one predictor from the 
m predictors is used for each split (usually m p≈ ). For GB, trees 
are growing sequentially and each tree is fit on the modified version 
of the original data set. See Natekin and Knoll18 for a comprehensive 
introduction to the GB. In these ways, the trees are less correlated 
and taking the averages of the results can yield less variance in the 
prediction. SVM is also adopted given its popularity and flexibility. 
The current study uses the radial kernel to accommodate the nonlinear 
boundary between the classes. The prediction of the SVM with the 
radial kernel is given by:
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The sign of ( )f x indicates the classification decision of the test 
observation x,   are the support vectors and  indicates non-zero 
weights for all support vectors and otherwise zero. In the radial kernel 

( ),i iK x x ′ , γ  is a positive constant and ( )2

1
p

ij i jj x x ′=
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the distance between a training observation and a test observation in 
terms of the Euclidean distance. Therefore, larger distances lead to 
smaller radial kernel values; only nearby training observations play a 
role in the prediction of class labels of a test observation. 

Methods
Data 

The dataset used in the current study is simulated based on one real 
dataset provided by the Centers for Disease Control and Prevention19 
as the real data cannot be shared with any party due to confidentiality. 
The original dataset contains 5,760,066 subjects and 31 variables. For 
the classification purpose, 25 variables are retained for the analysis. 
The outcome variable “current_status” indicates the binary status of 
the subjects (1 = laboratory-confirmed case; 0 = probable cases). The 
other variables are used as predictors, including race, gender, age 
group, and survey items, as presented in Table A1 in Appendix A. 
Complete cases of these 25 variables are retained for the simulation 
purpose, yielding a sample of 184,567 cases. The proportion of the 
probable cases is 0.05 in the complete sample, which remains the 
same as that in the original dataset. This proportion of 0.05 mimics the 
proportion of positive cases in the realistic COVID diagnosis scenario. 
Therefore, the prediction goal is to detect the probable cases in the 
current study in lieu of the positive cases. The simulated dataset was 
generated as follows. Frist, unique response patterns were obtained 
from the CDC complete dataset for negative and positive groups, 
respectively. Second, the new dataset was simulated by sampling the 
existing response patterns from all survey items proportionally from 
the CDC complete dataset. Finally, a simulated sample was generated 
(n = 50,696). The simulated sample was further randomly partitioned 
into a training sample (70%, n = 35,426) and a test sample (30%, 
n = 15,270). It is recommended that the size of the training sample 
be about 2 to 3 times of the size of the test sample to increase the 
accuracy in prediction.20

The development of the classifiers using the above-mentioned 
machine learning methods consists of two steps: 1) train the model 
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and determine the tuning parameters using the training data set; 2) 
evaluate the accuracy of the classifier using the test data set. For the 
CART technique, the cost-complexity parameter was tuned to find 
the optimal tree depth using R package rpart. The GB method was 
conducted using R package gbm. The tuning parameters included the 
number of boosting stages, the number of trees, the depth of trees, the 
learning rate and the minimum number of observations in the tree’s 
terminal nodes. The RF was tuned in terms of the number of predictors 
sampled for splitting at each node using the R package randomForest. 
A radial basis function kernel SVM was carried out in the current 
study. Its tuning parameter included the parameter  in the Equation 9 
and the cost value C, which determine the complexity of the decision 
boundary. After the parameters were tuned, the classifiers were trained 
using the training dataset. The 10-fold-validation was conducted for 
CART, GB, RF and SVM in the tuning process to determine the 
optimal parameter values. Lastly, the trained models were fit on the 
test dataset to evaluate the classification accuracy. Training and test 
datasets are scaled for SVM.

Imbalanced classes

An important technical issue in the current study is the extreme 
imbalanced classes: the dataset has approximately 95% confirmed 
cases while only 5% probable cases. Such extreme imbalanced 
classes will affect the prediction accuracy using the classification 
methods introduced above.9,21 Therefore, the current study further 
uses a sampling technique called synthetic minority oversampling 
technique21 for balancing the dataset to improve the prediction 
accuracy. Specifically, the minority class is over-sampled by randomly 
introducing synthetic examples from the nearest neighbors. In the 
current study, the minority class (i.e., the probable cases) are over-
sampled to match the number of the confirmed cases in the training 
dataset. This newly generated balanced dataset is used as the new 
training dataset to train the classifiers. Then, the predictions are made 
on the original imbalanced validation dataset. It is expected that the 
test error rates would decrease after the balanced training dataset is 
used.

Evaluation criteria

The accuracy of the statistical classification methods is evaluated 
using five outcome measures, namely, overall accuracy, balanced 
accuracy, sensitivity, specificity, and Kappa. The calculations of these 
measures are presented as follows:
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Specifically, sensitivity evaluates the performance of the classifier 
in predicting positive cases; specificity evaluates the performance of 
the classifier in predicting negative cases; balanced accuracy examines 
the average accuracy of the classifier in predicting both positive and 
negative cases; overall accuracy measures the proportion of all correct 
predictions made by the classifier; and Kappa statistic is a general 
measure of concordance between predicted and true categories. In 
its formula, oP is the observed proportion of agreement, eP is the 
proportion of agreement expected by chance. Larger values of these 
five outcome measures indicate better classification decisions.

Adjusted pooled sampling

The current study proposes a novel pooled sampling method, i.e., 
the adjusted pooled sampling, based on the prediction results yielded 
from the statistical classification methods. The specific procedure 
of the proposed method is described as follows. First, the predicted 
positive cases will be tested individually based on the assumption 
that statistical prediction would help identify true positive cases. The 
predicted negative cases, however, are randomly pooled into small 
groups and tested as a group. Further, if positive groups are identified, 
then each subject in that group will be tested individually. The total 
number of tests needed using this adjusted pooled sampling method 
will be compared with the traditionally pooled sampling which pools 
the sample into groups directly without the information of statistical 
predictions. All the analyses were conducted in the software program 
RStudio.22

Results
The result section is organized as follows. First, the tuning results 

for the machine learning methods are reported. Second, classification 
accuracies across methods when extreme imbalanced training dataset 
was used are presented. Third, classification accuracies when extreme 
imbalanced training dataset was treated by the SMOTE oversampling 
procedure are presented. Lastly, the adjusted pooled sampling method 
based on each statistical method is demonstrated.

The parameter tuning results of the machine learning methods 
are summarized in Table 1. The models were trained based on these 
parameters using the original imbalanced training dataset and the 
oversampled balanced dataset, respectively. Then, the trained models 
were fit on the same test dataset to obtain the classification accuracy. 

Table 1 Model tuning results for machine learning methods

Method Tuning parameter Original training dataset 
(n = 35,426) 

Balanced training dataset 
(n = 66,990 )

CART Cost-complexity parameter 0.008 0.010

GB Number of trees 250 75

Depth of trees 10 10

Learning rate 0.001 0.001

Minimum number of observations in terminal 
nodes

10
5
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Method Tuning parameter Original training dataset 
(n = 35,426) 

Balanced training dataset 
(n = 66,990 )

RF Number of predictors sampled for splitting 7 11

SVM Cost value C 100 10

4 4

Table Continued...

To calculate the evaluation criteria for the classification accuracy 
for all methods, a specific cut-off value is necessary. Although 0.5 
is a traditionally used cut-off value in classification problems, a 
more extreme cut-off value may be more appropriate in the current 
scenario with imbalanced data. The influence of the cut-off values 
on the performance of all methods using both the imbalanced and 
oversampled balanced training data set is presented in Figure 1. When 
the original imbalanced training data was used, for all statistical 
classification methods, sensitivity (i.e., the correct classification rate 
of the minority class) dropped dramatically when the cut-off value 
was larger than 0.05. Overall accuracy and specificity had the opposite 
trend to the sensitivity. Specifically, overall accuracy and specificity 
increased when the cut-off value was larger 0.05. This is expected 
since about 5% of the cases in the training data set are considered 

as positive cases. When oversampled balanced training dataset was 
used, sensitivity improved when larger cut-off values were used for all 
methods except for LCA. This indicates that oversampling approach 
improved the prediction accuracy of positive cases to some extent. In 
addition, the oversampling approach yielded better balanced accuracy 
(i.e., the average of sensitivity and specificity) and Kappa values 
especially when larger cut-off values are used. The highest Kappa 
value was less than 0.3, which indicates the overall predictions of all 
methods were not satisfactory. However, in the scenario of COVID-19 
diagnosis, sensitivity is of the most interest because it indicates how 
well the statistical method can identify positive cases (the minority 
class). Therefore, a cut-off value of 0.05 was considered as optimal in 
both the original imbalanced condition and the oversampled balanced 
condition. 

Figure 1 Evaluation criteria under different cut off values for the statistical classification methods.

 The prediction results based on the original imbalanced data 
using the optimal cut-off values (i.e., 0.05) are presented in Table 2. 
The machine learning methods including CART, RF, GB and SVM 
achieved better sensitivity compared to traditional logistic regression 
and latent class analysis. Specifically, CART yielded the highest 
sensitivity value of 1.000, which indicates that CART has the greatest 
potential in predicting positive cases in the COVID-19 diagnosis 

scenario with the extreme imbalanced data structure. In addition, 
SVM performed the best in terms of balanced accuracy, overall 
accuracy, specificity and Kappa with a satisfactory sensitivity value 
of 0.827. The performance of GB, logistic regression, and RF was also 
acceptable with balanced accuracy, overall accuracy, specificity larger 
than 0.6. Latent class analysis, however, did not perform well in the 
extreme imbalanced condition with a small sensitivity value of 0.031.
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Table 2 Prediction outcome evaluation of the statistical classification methods

Method Cut-off Value Overall Accuracy Sensitivity Specificity Balanced Accuracy Kappa

LR 0.05 0.647 0.767 0.640 0.704 0.102

LCA 0.05 0.731 0.031 0.770 0.400 -0.079

CART 0.05 0.052 1.000 0.000 0.500 0.000

GB 0.05 0.622 0.846 0.610 0.728 0.106

RF 0.05 0.729 0.824 0.723 0.774 0.167

SVM 0.05 0.804 0.827 0.803 0.815 0.241

Note: CART; classification and regression tree, GB; gradient boosting, LCA; latent class analysis, LR; logistic regression, RF; random forest, SVM; support vector 
machine

Largest values in each column are bold face

The prediction results based on the oversampled balanced training 
data using the optimal cut-off values (i.e., 0.05) are presented in Table 
3. A noticeable change is that the sensitivity values of all methods 
became larger than 0.900 after the training dataset was oversampled 
to yield a balanced data structure except for LCA. Specifically, 
CART, GB and SVM all yielded a perfect sensitivity. LCA, however, 

yielded the same sensitivity of 0.031 as that in the original imbalanced 
condition. This indicates that the oversampling method improves the 
performance of statistical classification methods (except for LCA) in 
terms of detecting the minority group dramatically. As a compromise, 
specificity values for these methods also dropped compared to that in 
the original imbalance training data condition. 

Table 3 Prediction outcome evaluation of the statistical classification methods after using SMOTE

Method Cut-off Value Overall Accuracy Sensitivity Specificity Balanced Accuracy Kappa

LR 0.05 0.081 0.996 0.031 0.513 0.003

LCA 0.05 0.731 0.031 0.770 0.400 -0.079

CART 0.05 0.052 1.000 0.000 0.500 0.000

GB 0.05 0.052 1.000 0.000 0.500 0.000

RF 0.05 0.549 0.918 0.528 0.723 0.089

SVM 0.05 0.052 1.000 0.000 0.500 0.000

Note: CART; classification and regression tree, GB; gradient boosting, LCA; latent class analysis, LR; logistic regression, RF; random forest, SVM; support vector 
machine

Largest values in each column are bold face

The results of adjusted pooled sampling are shown in Figure 
2. Note that the results are based on cut-off values that yielded the 
smallest number of required tests for all methods. Specific cut-off 
value information can be found in Table A2 in the Appendix. Six 
group sizes (5, 10, 15, 20, 50, 100) were manipulated in the current 
study. In reality, group sizes usually range from 4 to 30 (e.g., Lohse 
et al., 2020). The current study also investigated relative large group 
sizes 50 and 100 to further generalize the results. Several observations 
are made based on Figure 2. First, adjusted pooled sampling method 
yielded better results than the traditional pooled sampling for all 
methods except LCA, as shown in Figure 2 that all bars are lower than 

the dashed lines. Adjusted pooled sampling based on LCA, however, 
was similar to the traditional methods no matter whether oversampling 
was used. Second, GB, RF, LR and SVM, yielded better adjusted 
pooled sampling results given a certain group size. Third, for CART, 
GB, and LR, adjusted pooled sampling method using oversampled 
balanced training dataset yielded better results than the method using 
original imbalanced training dataset, while for SVM, the opposite is 
true. For RF, adjusted pooled sampling method using oversampled 
balanced training dataset only yielded better results than the method 
using original imbalanced training dataset when group size was large 
(i.e., 100).
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Figure 2 Number of tests required by the adjusted pooled sampling method.

Note: Dashed lines indicate number of tests required by the traditional pooled sampling method. 
CART; classification and regression tree, GB; gradient boosting, LCA; latent class analysis, LR; logistic regression, RF; random forest, SVM; support vector machine.

Conclusions and discussion
The current study demonstrates th  e applications of statistical 

classification methods, including logistic regression, latent class 
analysis, and machine learning methods, on COVID data with 
extreme imbalance of the outcome variable (confirmed vs. probable 
cases). The proportion of probable cases is approximately 0.05, 
which mimics the proportion of confirmed cases in the pandemic. 
Traditionally, logistic regression is used to conduct classifications 
on the COVID data.1 However, latent class models and machine 
learning methods have not been investigated on COVID data yet. The 
machine learning methods used in the current study include decision 
tree, random forest, gradient boosting, and support vector machine. 
In addition, the current study adopted the oversampling method from 
the machine learning community to deal with the extreme imbalance 
scenario. Specifically, a balanced training dataset was generated using 
the oversampling technique SMOTE to train the machine learning 
models. Then, the trained models were fit using the same imbalanced 
test dataset.  Furthermore, the current study proposes the adjusted 
pooled sampling method which utilizes information obtained from 
the statistical classification methods to facilitate the COVID testing 
efficiency.

To illustrate the statistical classification methods, a simulated 
dataset based on the real dataset obtained from the Centers for 
Disease Control and Prevention was used. The results indicated that 1) 
machine learning methods outperformed the logistic regression model 
and latent class analysis in terms of sensitivity, i.e., the accuracy of 
detecting the minority group, under the extreme imbalance data 

scenario; 2) the choice of cut-off value is related to the proportion of 
the two groups in the outcome variable. For example, in the extreme 
imbalance scenario, a cut-off value of 0.05 yielded the highest 
sensitivity for logistic regression, CART, GB, RF and SVM rather 
than the traditional cut-off value 0.5; 3) after the extreme imbalance 
was treated in the training dataset, the sensitivity increased for LR, 
CART, RF, and SVM; 4) adjusted pooled sampling method based on 
prediction results from the statistical methods (e.g., SVM) requires 
less number of COVID tests than traditional pooled sampling method. 

The current study is a demonstration of the statistical classification 
methods on COVID-19 data. Despite the promising results, several 
limitations exist in the current study. First, the dataset used in the 
current study includes the outcome variable of confirmed cases vs. 
probable cases rather than positive cases vs. negative cases in the 
real scenario. However, the proportions of the confirmed cases and 
probable cases in the dataset are similar to those of positive cases 
and negative cases in real COVID-19 diagnostic settings. Second, 
the adjusted pooled sampling share the same limitation with the 
regular pooled sampling. Although pool sizes larger than 10 yielded 
better testing efficiency, large pool sizes may dilute the specimen 
and lead to higher false negative rates. Future studies are needed to 
examine whether the proposed method has better performance when 
the prevalence is low and larger pools can be formed. Lastly, the 
performance of the statistical classification methods demonstrated 
in the current study is based on the COVID context. However, the 
method can be generalized to any scenario where extreme imbalance 
of the dataset exists. 
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