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Introduction
Solving estimation problems using a fully Bayesian approach 

for the one-parameter exponential family with conjugate priors for 
sequential designs was first investigated by Shapiro and Wardrop and 
developed for linear combinations of means thoroughly by Rekab et 
al. (2013) and many others.1,2 

For estimating the product of means of two independent Bernoulli 
populations with Beta priors which has an application in estimating 
the reliability of a series system, Rekab & Song3 have derived the 
first order lower bound for the Bayes Risk and proposed a sequential 
design that achieves it.

The first-order efficiency for any sequential procedure, ρ ,3 is
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In this article, we will derive a sharper lower bound for the Bayes 
Risk and propose a sequential design that will achieve it at least 
asymptotically. Such a design will be referred to as second order 
efficient design. 

The problem of estimating system reliability is the same as 
estimating the product of means of independent Bernoulli populations. 
We use independent Beta priors for the means and propose a sequential 
design that is second order efficient, it converges faster to the optimal 

ratio than the first order designs. Second order sequential designs are 
sought and show the optimality of the fully sequential design through 
an application of reliability estimation using Monte Carlo simulation. 

Second-order efficiency
The density function of one-parameter exponential family
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where ( )i iη η θ=  is real-valued function, ϕ  is a continuously 
differentiable, real-valued function, ∧  is a non-degenerate sigma-
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− < < < , is a non-empty 
open interval, 1,2=i . Using the square error loss, and by adopting 
the Bayesian approach, the conjugate prior ( )iπ θ  and the posterior 
density ( )1 2,i X Xπ θ |  are both the one-parameter exponential family. 
The prior density as derived by Diaconis & Ylvisaker.4
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Consider the problem of allocating a fixed total number of 
observations from the independent populations, where 1 2= +T M M , 

iM  is the sample size of component , 1,2=i i .

The Bayes Risk for estimating the product of two means 
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(2.4)

where T  is the sigma algebra generated by a total of T 
observations.

To ease the notation, let ( ) ( )2; , 1," .' 2ψΕ ηψη   = = =   i i i iD C E  i

Next, we derive the second order lower bound for the Bayes Risk.

Theorem 2.1: For any sequential procedure,  that satisfies the 
following conditions:

 ∞→iM  in probability, as  ∞→T ,
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Proof: The first two terms establish the first order lower bound for the 
Bayes Risk, whereas the third term establishes the second order lower 
bound for the Bayes Risk.
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Reliability estimation of series system with 
two independent components

Consider a series system with two independent components with 
unknown system reliability. The problem is to determine the optimal 
number units to be tested from each component. Each tested unit can be 
considered a Bernoulli trial. That is, suppose { } ( )1, , ~ θ= …

ii i iM iX X X Ber  

and ( ),θ ∼i i iBeta a b , where i0 1, 1,2.θ≤ ≤ =i

Then the Bayes Risk incurred after T units have been tested is:
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as the second-order lower bound of Bayes Risk.

We also need to rely on the optimal ratio indicated in Theorem 
2.1, that is
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We proceed with the test as follows:

Step 1: Collect one sample case ( 1 1 1= =m n ) from each component, 
1  and 2 .

Step 2: We collect  sample cases from component, 1  where 2≥ , 

If
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m m , where 1+m are the 
cumulative sample cases from component 1 ;

Otherwise, 1 1+ = +
 

n n , where 1+n is the cumulative sample 
cases from component 2 .

Step 3: We stop the iteration in step 2 when 1 1+ += +
 

T m n , which is 
the fixed total sample size.

It should be noted that 1
2

=C  when both components have equal 

prior. The following example through Monte Carlo simulation with 
5000 iterations shows that the expected number of units to be tested 
from each component is approximately 

2
T  which agrees with (3.2) 

(Table 1).

Next, we establish the rate of convergence of ( ) ( )∆ = − sR p R p . 

Let the speed be defined as , 0 2·β ∆ β≤ <T . It is clear that 0·∆ →T
. See Table 2. It is also clear that ·β ∆T is bounded as  ∞→T , where  

 
( ),θ ∼i i iBeta a b

 
(Figure 1).6–17

Table 1 Fully sequential sampling design with uniform priors

T 50 70 100 200 400 600 800 1000 3000

  1E m 26 36 51 101 200 301 400 498 1504

  2E m 24 34 49 99 200 299 400 502 1496

Table 2 C  as .  tβΤ ∆ ∞< → , where 
 

( ) ( ),0 2,sR p R p   C∆ β= − ≤ < ∈

T 50 70 100 200 400 600 800 1000 3000

T
 
∆ 0.02 0.019 0.026 0.029 0.033 0.025 0.034 0.031 0.032

∆1.5T . 0.138 0.159 0.262 0.415 0.662 0.619 0.955 0.969 1.776

∆2T . 0.976 1.329 2.62 5.863 13.231 15.169 27.001 30.627 97.281

Conclusion
The proposed sequential design enables the experimenter to 

determine the optimal allocation of units to be tested from each 
component when component is functional independently. Rekab5 used 
a classical approach to estimate the reliability of a series system, and 
proposed a sequential design that was shown to be first-order optimal, 
that is 0·∆ →T . The fully Bayesian approach enables us to investigate 

a design with a converge rate of the order of , where 0 2β β− ≤ <T . 

Data availability
The data used to support the findings of this study have been 

produced by Monte Carlo simulation from Bernoulli trials with 5000 
replications.
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Figure 1 ( ) ( )sR p R p  ∆ = −
 
is bounded by T β−  as ∞→T , where 

0 2.β≤ <  

Acknowledgements
None.

Conflicts of interest
Authors declare that there are no conflicts of interest.

References
1.	 Benkamra ZT. Bayesian sequential estimation of the reliability of 

a parallel–series system. Applied Mathematics and Computation. 
2013;209(23):10842–10852.

2.	 Song XRK. Second Order Optimality of Sequential Designs with 
Application in Software Reliability Estimation. Biom Biostat Int J. 
2015;2(4):00037.

3.	 Rekab K, Song X. Asymptotic Efficiency in Sequential Designs for 
Estimating Product of k Means in the Exponential Family Case. Journal 
of Applied Mathematics and Statistics. 2017;4(1):50–69.

4.	 Diaconis P, Ylvisaker D. Conjugate priors for exponential families. The 
Annals of Statistics. 1979;7(2):269–281.

5.	 Rekab K. A Sampling Scheme for Estimating the Reliability of a Series 
System. IEEE Transactions on Reliability. 1993;287–290.

6.	 Ash RB. Real Analysis and Probability. Birnbaum, editors. USA: 
Academic Press; 1972.

7.	 Billingsley P. Probability and Measure. USA: John Wiley & Sons; 2012.

8.	 Billinton R, Allan RN. Reliability Evaluation of Engineering Systems, 
Concepts and Techniques. New York: Springer; 1992.

9.	 Hard Wick JA. Optimal Few–Stage Designs. Journal of Statistical 
Planning and Inference. 2002;104:121–145.

10.	 Littlewood B, Wright D. Some conservative stopping rules for the 
operational testing of safety critical software. IEEE Transactions on 
Software Engineering. 1997;23(11):673–683.

11.	 Poore JH, Mills HD, Mutchler D. Planning and certifying software 
system reliability. IEEE Software. 1193;10(1):88–99.

12.	 Rekab K. Asymptotic Optimality of Experimental Designs in Estimating 
a Product of Means. Journal of Applied Mathematics and Stochastic 
Analysis. 1990;3(1):15–25.

13.	 Rekab K. A nearly optimal 2–stage procedure. Communications in 
Statistics–Theory and Methods. 1992;21(1):197–201.

14.	 Rekab K. A two–stage sequential allocation scheme for estimating 
the product of several means. Stochastic Analysis and Applications. 
2000;18(2):289–298.

15.	 Rekab K, Li Y. Bayesian Estimation of the Product of Two Proportions. 
Stochastic Analysis and Applications. 1994;12(3):369–377.

16.	 Rekab K, Song X. Asymptotic Optimality of Three Stage Design for 
Estimating Product of Means with Applications in Reliability Estimation 
and Risk Assessment. Journal of Advances in Applied & Computational 
Mathematics. 2016;3:8–19.

17.	 Woodroofe M. APO Rules are Asymptotically non–Deficient for Estimation 
with Squared Error Loss. Zeitschrift für Wahrscheinlichkeitstheorie und 
Verwandte Gebiete. 1981;58(3):331–341.

https://doi.org/10.15406/bbij.2019.08.00275
https://arxiv.org/abs/1204.0549
https://arxiv.org/abs/1204.0549
https://arxiv.org/abs/1204.0549
https://medcraveonline.com/BBIJ/BBIJ-02-00037
https://medcraveonline.com/BBIJ/BBIJ-02-00037
https://medcraveonline.com/BBIJ/BBIJ-02-00037
https://arxiv.org/pdf/1301.5047.pdf
https://arxiv.org/pdf/1301.5047.pdf
https://arxiv.org/pdf/1301.5047.pdf
https://statweb.stanford.edu/~cgates/PERSI/papers/conjprior.pdf
https://statweb.stanford.edu/~cgates/PERSI/papers/conjprior.pdf
https://ieeexplore.ieee.org/document/229502
https://ieeexplore.ieee.org/document/229502
https://www.colorado.edu/amath/sites/default/files/attached-files/billingsley.pdf
https://ieeexplore.ieee.org/document/637384
https://ieeexplore.ieee.org/document/637384
https://ieeexplore.ieee.org/document/637384
http://ieeexplore.ieee.org/document/207234/
http://ieeexplore.ieee.org/document/207234/
https://www.tandfonline.com/doi/abs/10.1080/07362999408809357
https://www.tandfonline.com/doi/abs/10.1080/07362999408809357
https://link.springer.com/article/10.1007/BF00542639
https://link.springer.com/article/10.1007/BF00542639
https://link.springer.com/article/10.1007/BF00542639

