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Introduction
One parameter new life time distribution having parameters λ  is 

defined by its pdf 
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We would name pdf (1.1) Ram Awadh distribution’ which is a 
mixture of two–component, exponential distribution having scale 
parameter λ and gamma distribution having shape parameter 6 and 

scale parameter λ , 
and their mixing proportions of 
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The corresponding cumulative distribution function (cdf) of (1.1) 
is given by
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The main objective of this paper is to propose a new life time 
distribution, which may be flexible than other distributions of one 
parameter proposed by different researchers. Ghitany et al.,1 reported 
in their paper that Lindley is superior to exponential distribution 
with reference to data relating to waiting time before service of the 
bank customers. One parameter lifetime distributions namely Pranav, 
Ishita, Akash, Shanker, Sujatha and Lindley distributions are proposed 
by Shukla,2 Shanker & Shukla,3 Shanker,4 Shanker,5 Shanker6 and 
Lindley7 respectively and applied on biological and engineering data. 
Statistical properties, estimation of parameter and application of these 
lifetime distributions have been discussed in the respective papers. 
It is observed the superiority of proposed distribution over above 
mentioned distributions, which can be seen in section–10.

In this paper, new one parameter life time distribution has been 
proposed and named Ram Awadh distribution. Its raw moments and 
central moments have been obtained and coefficients of variation, 
skewness, kurtosis and index of dispersion have been discussed. Its 
hazard rate function, mean residual life function, stochastic ordering, 
mean deviations, Bonferroni and Lorenz curves, order statistics , 
Renyi entropy measure and stress – strength have been discussed. 
Both the method of moments and the method of maximum likelihood 
have been discussed for estimating the parameter of Ram Awadh 
distribution. A simulation study of distribution has also been carried 
out. The goodness of fit of the proposed distribution has been presented 
and compared with other lifetime distributions of one parameter.

Graphs of the pdf and the cdf of Ram Awadh distributionn for 
varying values of parameter are presented in Figure 1&2. 

Figure 1 Pdf plots of Ram Awadh distribution for varying values of parameter 
λ .
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Figure 2 Cdf plots of Ram Awadh distribution for varying values of parameter 
λ .

Statistical constants
The r th moment about origin of Ram Awadh distribution can be 

obtained as
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Thus the first four moments about origin of Ram Awadh distribution 
are given by
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And central moments of Ram Awadh distribution are obtained as 
follows:
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The coefficient of variation ( ).C V , coefficient of skewness ( )1β

, coefficient of kurtosis ( )2β and index of dispersion ( )γ  of Ram 
Awadh distribution are calculated as
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The value of index of dispersion will be one at 1.044533λ = . To 
study the nature of C.V, 1β , 2β , and γ of Ram Awadh distribution, 
graphs of C.V, 1β , 2β , and γ of Ram Awadh distribution have been 
drawn for varying values of the parameter and presented in Figure 3. 

Figure 3 CV, CS, CK and Index of dispersion of Ram Awadh distribution.
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Reliability measures
There are two important reliability measures namely hazard rate 

function and mean residual life function. Let X be a continuous 
random variable with pdf ( )f x and cdf ( )F x . The hazard rate 
function and the mean residual life function of X are respectively 
defined as 

( ) ( ) ( )
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The corresponding ( )h x and ( )m x of Ram Awadh distribution 
(1.1) are as follows:
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It can be verified that ( ) ( )
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The graphs of ( )h x  and ( )m x  of Ram Awadh distribution for 
varying values of parameter are presented in Figure 4 & 5.

Figure 4 ( )h x Plots of Ram Awadh distribution for varying values of λ .

Figure 5 ( )m x  Plots of Ram Awadh distribution for varying values of λ .

Stochastic orderings
For judging the comparative behavior of continuous distribution, 

it is important tool.

 A random variable X is said to be smaller than a random variable 
Y in the 

Stochastic order ( )stX Y≤ if ( ) ( )X YF x F x≥ for all x

Hazard rate order ( )hrX Y≤ if ( ) ( )X Yh x h x≥  for all x

Mean residual life order ( )mrlX Y≤ if ( ) ( )X Ym x m x≤ for all x

Likelihood ratio order ( )lrX Y≤ if ( )
( )

X

Y

f x
f x

 decreases in x .

The following results due to Shaked & Shanthikumar8 are well 
known for establishing stochastic ordering of distributions.

lr hr mrlX Y X Y X Y≤ ⇒ ≤ ⇒ ≤

X Yst≤
⇓

The Ram Awadh distribution is ordered with respect to the 
strongest ‘likelihood ratio ordering’ as established in the following 
theorem:

Theorem: Let X  and Y ∼Ram Awadh distribution ( )1λ  and 
( )2λ  

respectively. If 1 2λ λ≥  then lrX Y≤ and hence hrX Y≤ , 
mrlX Y≤ and stX Y≤ .

Proof: We have
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Now 
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Mean deviations
The mean deviation about mean and median defined by
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Using pdf (1.1) and the mean of Ram Awadh distribution, it can 
be written as:
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Using expressions from (5.1), (5.2), (5.3), and (5.4), the mean 
deviation about mean, ( )1 Xδ  and the mean deviation about median, 

( )2 Xδ  of Ram Awadh distribution are obtained as
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Bonferroni and lorenz curves
It was given by Bonferron,9 and Bonferroni and Gini indices have 

applications not only in economics to study income and poverty, but it 
has also in many applications in different fields, such as demography, 
insurance and medicine. It can be defined as 
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respectively or equivalently 
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 The Bonferroni and Gini indices are thus defined as
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Using pdf of Ram Awadh distribution (1.1), it can be written 

( ) ( )

27 6 6 4 4 2

2 2

6

(q 1) 6 ( 5) 120 ( 5)

120 ( 3) 720( 1)
;

120

q

q

q q q q q e
q q q

x f x dx

λλ λ λ λ λ λ

λ λ λ
λ

λ λ

−

∞

 + + + + + + 
 
+ + + +  =

+∫  

						      (6.7)

Now using equation (6.7) in (6.1) and (6.2), 
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Now using equations (6.8) and (6.9) in (6.5) and (6.6), the 

Bonferroni and Gini indices of Ram Awadh distribution are thus given 
as
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Order statistics and renyi entropy measure
Order statistics

Let 1 2, ,..., nX X X  be a random sample of size n from Ram Awadh 
distribution (1.1). Let ( ) ( ) ( )1 2 ... nX X X< < < denote the corresponding 
order statistics. The pdf and the cdf of the k th order statistic, say 
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respectively, for 1,2,3,...,k n= .

Thus, the pdf and the cdf of k th order statistic of Ram Awadh 
distribution (1.1) are obtained as
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Entropy measure

Entropy of a random variable X is a measure of variation of 
uncertainty. A popular entropy measure is Renyi entropy.10 If X is a 

continuous random variable having probability density function ( ).f , 
then Renyi entropy is defined as
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Thus, the Renyi entropy for Ram Awadh (1.1) can be obtained as
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A simulation study
This process consists in generating N=10,000 pseudo–random 

samples of sizes 20, 40, 60, 80 and 100 from Ram Awadh distribution. 
Acceptance and rejection method has been used for this study. 
Average bias and mean square error of the MLEs of the parameter λ
are estimated using the following formulae 
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The following algorithm can be used to generate random sample 
from Ram Awadh distribution.

Algorithm

Rejection method: To simulate from the density Xf , it is assumed 
that envelope density h from which it can simulate, and that have 

some k < ∞ such that ( )sup
( )

X
x

f x k
h x

≤ Simulate X from h.

Generate Y~U(0,kh(X) , where 
6

6( 120)
k λ

λ
=

+
If ( )XY f x< then return X, otherwise go back to step 1.

The average bias (mean square error) of simulated estimate of 
parameter λ  for different values of n and λ  are presented in Table 1.

The graphs of estimated mean square error of the maximum 
likelihood estimate (MLE) for different values of parameter λ and n  
have been shown in Figure 6. 

Stress–strength reliability
It explains the life of a component which has random strength X
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that is subjected to a random stress Y . When the stress applied to it 
exceeds the strength, the component fails instantly and the component 
will function adequately till X Y> . Therefore, ( )R P Y X= < is a 
measure of component reliability.

 Let X and Y be independent strength and stress random variables 
having Ram Awadh (1.1) with parameter 1λ  and 2λ  respectively. 
Then the stress–strength reliability R can be obtained as

( ) ( ) ( )
0

| XR P Y X P Y X X x f x dx
∞

= < = < =∫

( ) ( )1 2
0

; ;f x F x dxλ λ
∞

= ∫
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2 2 1 2 1 2 1 2 1
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1 1 1 2 1 1 1 2
6 3 6 7 4 6 6

1 1 1 1 2 1 1 1 2
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Figure 6 Estimated mean squared error of the MLEs for different values of λ  and n

Table 1 Average bias (mean square error) of the simulated estimates of parameter λ

n Parameter λ
0.05 0.5 1 2

20 0.08744(0.152915) 0.08775(0.154001) 0.081133(0.13165) 0.07470(0.11161)

40 0.041025(0.067322) 0.040931 (0.06701) 0.036754(0.05403) 0.032039(0.04106)

60 0.027958(0.04690) 0.027833(0.046482) 0.025377 (0.03864) 0.022434(0.03019)

80 0.02082(0.034680) 0.020767(0.034504) 0.018765(0.028171) 0.016455(0.02166)

100 0.016428(0.026989) 0.016368(0.026792 0.014731(0.021702) 0.012791(0.01636)

Parameters estimation
Method of moments estimates (MOME) of parameters

Equating population mean of Ram Awadh distribution to the 
corresponding sample mean, 

MOME λ̂ of λ  is the solution of following non–linear equation
7 6120 ( 720) 0x xλ λ λ+ − + =  (10.1)

Maximum likelihood estimates (MLE) of parameters

Let ( )1 2 3, , , ... , nx x x x  be a random sample of size n  from Ram 
Awadh (1.1)). The likelihood function, L of Ram Awadh distribution 
is given by

( )
6

5
6

1120

n n
n x

i
i

L x e λλ λ
λ

−

=

 
= +  + 

∏
and so its natural log likelihood function is thus obtained as
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( )
6

5
6

1
ln ln ln

120

n

i
i

L n x n xλ λ λ
λ =

 
= + + −  + 

∑

The maximum likelihood estimates (MLEs) λ̂  of λ  to the 
solution of the following non–linear equation

5

6 5
ln 6 6 1 0

( 120) ( )
L n n n x

x
λ

λ λ λ λ
∂

= − + − =
∂ + +∑  (10.2)

 where x is the sample mean. Equation (10.2) can solve directly 
for parameter λ using Newton–Raphson method. Its parameter is 
estimated using R–software.

Illustrative example
Data set 1: This data is related with behavioral sciences, collected 
by N. Balakrishnan, Victor Leiva & Antonio Sanhueza,11 the detailed 
about the data are given in Balkrishnan et al.,12 The scale “General 
Rating of Affective Symptoms for Preschoolers (GRASP)” measures, 
which are

19(16)	  20(15)	  21(14) 	 22(9) 	 23(12) 24(10) 25(6) 26(9) 
27(8)	  28(5) 	 29(6) 	 30(4)	 31(3)	 32(4) 33 34 35(4) 
36(2)	  37(2) 	 39 42 44

Data set 2: This data set is the strength data of glass of the aircraft 
window reported by Fuller et al.,12

18.83	 20.8	 21.657	 23.03	 23.23	 24.05	 24.321	
25.5	 25.52	 25.8	 26.69	 26.77 	 26.78 	 27.05	
27.67	 29.9	 31.11	 33.2	 33.73	 33.76	 33.89	
34.76	 35.75	 35.91 	 36.98	 37.08 	 37.09	 39.58	
44.045	 45.29	 45.381 
Data Set 3: The following data represent the tensile strength, 
measured in GPa, of 69 carbon fibers tested under tension at gauge 
lengths of 20mm (Bader and Priest)13:

1.312	 1.314	 1.479	 1.552	 1.700	 1.803	 1.861	
1.865	 1.944	 1.958	 1.966	 1.997	 2.006	 2.021	
2.027	 2.055	 2.063	 2.098	 2.140	 2.179	 2.224	
2.240	 2.253	 2.270	 2.272	 2.274	 2.301	 2.301	
2.359	 2.382	 2.382	 2.426	 2.434	 2.435	 2.478	
2.490	 2.511	 2.514	 2.535	 2.554	 2.566	 2.570	
2.586	 2.629	 2.633	 2.642	 2.648	 2.684	 2.697	
2.726	 2.770	 2.773	 2.800	 2.809	 2.818	 2.821	
2.848	 2.880	 2.954	 3.012	 3.067	 3.084	 3.090	
3.096	 3.128	 3.233	 3.433	 3.585	 3.858	

For the above three data sets, Ram Awadh distribution has been 
fitted along with one parameter exponential, Lindley and Akash, 
Shanker, Sujatha, Ishita and Pranav distribution. The pdf and cdf 
of one parameter fitted distributions are presented in Table 2. The 
ML estimates, values of 2ln L− and K–S statistics of the fitted 
distributions are presented in Table 3. As we know that the best 
distribution corresponds to the lower values of 2ln L− and K–S.

Table 2 The p.d.f. and the c.d.f. of fitted distributions

Distribution pdf Cdf

Pranav

Akash
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Exponential
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Profile plot of parameter and fitted plot for dataset–1, 2 and 
3 are presented in Figures 7–9 respectively. From the graph, it is 

observed that Ram Awadh distribution is closer to observed dataset in 
comparison to other distributions of one parameter.

Figure 7 Profile of parameter and fitted probability plots for data set-1.
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Table 3 MLE’s, -2ln L, AIC, BIC, K-S Statistics of the fitted distributions of data-sets 1-3

Data set Model Parameter -2ln L AIC BIC K-S

Estimate Statistic

Data 1 RamAwadh 0.240358 899.93 901.93 904.53 0.308

Pranav 0.160222 945.03 947.03 948.94 0.362

Ishita 0.120083 980.02 982.02 984.62 0.399

Sujatha 0.117456 985.69 987.69 990.29 0.403

Akash 0.11961 981.28 983.28 986.18 0.4

Shanker 0.079746 1033.1 1035.1 1037.99 0.442

Lindley 0.077247 1041.64 1043.64 1046.54 0.448

Exponential 0.04006 1130.26 1132.26 1135.16 0.525

Data2 RamAwadh 0.194733 223.07 225.07 227.31 0.197

Pranav 0.129818 232.77 234.77 236.68 0.253

Ishita 0.097325 240.48 242.48 244.39 0.298

Sujatha 0.09561 241.5 243.5 245.41 0.302

Akash 0.097062 240.68 242.68 244.11 0.266

Shanker 0.064712 252.35 254.35 255.78 0.326

Lindley 0.062988 253.99 255.99 257.42 0.333

Exponential 0.032455 274.53 276.53 277.96 0.426

Data 3 RamAwadh 2.009849 188.77 190.77 193 0.261

Pranav 1.225138 217.12 219.12 221.03 0.303

Ishita 0.931571 223.14 225.14 227.05 0.33

Sujatha 0.936119 221.6 223.6 225.52 0.364

Akash 0.964726 224.28 226.28 228.51 0.348

Shanker 0.658029 233.01 235.01 237.24 0.355

Lindley 0.659 238.38 240.38 242.61 0.39

Exponential 0.407941 261.74 263.74 265.97 0.434

Figure 8 Profile of parameter and fitted probability plots for data set-2.

Figure 9 Profile of parameter and fitted probability plots for data set-3.
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Conclusion
 In this paper, a new one parameter lifetime distribution named 

Ram Awadh distribution has been proposed. Its mathematical 
properties including moments, measure of dispersion, hazard rate 
function, mean residual life function, stochastic ordering, mean 
deviations, order statistics, Bonferroni and Lorenz curves, and stress–
strength reliability have been discussed. Simulation study of Ram 
Awadh distribution has also been discussed. The method of moments 
and the method of maximum likelihood estimation have been derived 
for estimating the parameter. In the last, three numerical examples 
of real lifetime data sets have been illustrated to test the goodness of 
fit of the Ram Awadh distribution. Its fit was found satisfactory over 
exponential, Lindley, Sujatha, Ishita, Akash , Shanker and Pranav 
distribution.

Note: The paper is named Ram Awadh distribution in the name of 
my Father Shri Ram Awadh Shukla.
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