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Abstract

In Generalized Linear Models, likelihood equations are intractable and do not have 
explicit solutions; thus, they must be solved by using Newton-type algorithms. Solving 
these equations by iterations, however, can be problematic: the iterations might 
converge to wrong values or the iterations might not converge at all. In this study, we 
derive the modified maximum likelihood estimators for Poisson regression model and 
study their properties. We also search the robustness of these estimators when there 
are outliers in the covariates.

Keywords: Count data; Poisson regression; Modified maximum likelihood; Newton-
type algorithms; Dixon’s outlier model

Introduction
Poisson regression is widely used for modeling count data, 

especially when there is no over- or under- dispersion [1]. Since 
the likelihood equations from this model are intractable, solving 
these equations requires using iterative methods, such as Newton 
Raphson or Fisher scoring. However, using iterative methods to 
find maximum likelihood estimators (MLEs) can generally be 
problematic and time should be spent to investigate the stability 
of such solutions [2-4]. Specifically the following difficulties 
can arise: the iterations might converge to wrong values if 
the likelihood equations have multiple roots, or the iterations 
might not converge at all. See [5] and [6] for a discussion about 
situations where one encounters these difficulties in solving 
MLEs. The common software, Stata for example, is known to 
be very sensitive to numerical iterations. Researchers have 
reported problems in getting Poisson regression estimates with 
the “poisson” command, which encounters problems in locating 
the maximum and does not converge [7]. Note that in Poisson 
regression modeling, additional problems might occur. The most 
common problem is the over- or under- dispersion in data, in 
which case using a more flexible model such as negative binomial 
regression is more appropriate. The second problem is analogous 
to the complete separation or quasi-complete separation problem 
in binary regression: the MLEs may not exist for certain data 
configurations, see [7,8]. In this study we do not consider either of 
these problems and focus only on the case where it is appropriate 
to model the data with Poisson regression.

Unlike the maximum likelihood (ML) technique, modified 
maximum likelihood (MML) methodology produces explicit 
estimates. MML achieves explicit estimates by linearizing 
intractable functions within the likelihood equations using the 
ordered statistics [9]. Asymptotically, MML estimators (MMLEs) 
are known to be unbiased and have minimum variances, i.e. they 
are fully efficient. For small sample sizes MMLEs have negligible 

bias and their variances are only marginally bigger than the 
minimum variance bounds, i.e. they are highly efficient [10-15].

 In the GLM setting, Tiku and Vaughan [3] used the MML 
methodology to extend the techniques of traditional logistic 
regression to non-logistic density functions. Oral and Gunay 
[16] and Oral [17] later extended the work in [3] to the binary 
regression model with one stochastic covariate. Oral [18] derived 
the MMLEs in general GLMs which use canonical link when there 
is only one risk factor. In this study, we derive the explicit MMLEs 
of Poisson regression model, generalize the derivations to more 
than one covariate, and study their robustness properties via 
simulations.

Methods
The Univariate Poisson regression model is given by 

( )i i i i
E Y X x µ= =

 exp( )
i

z=  	 (1)

where
i i

z xα β= + , for1 i n≤ ≤ , and the outcome Y has the 
probability distribution

exp( )
( ) , 0,1,2,...

!

yi
i

y i ii
f y y

y
µ µ−

= =
	

(2)

Note that in equation (2), Y is presumed to increase with X so 
that β is a priori greater than zero. For the model given in (1)-(2), 
the log-likelihood function of the random sample ( , )

i i
y x  can be 

written as

1 1
ln ( )

n n

i
i i

L y z g zi i
= =

∑ ∑∝ − ,	  (3)

where ( ) exp( )i ig z z= . The likelihood equations for estimating 
α and β do not have explicit solutions because of the nonlinear 
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function ( )ig z , 1 i n≤ ≤ . To obtain the MMLEs, we first express 
the likelihood equations in terms of the ordered variates 

(1) (2) ( )... nz z z≤ ≤ ≤ . The likelihood equations can be re-written as

{ }[ ] ( )
1

ln ( ) 0
n

i i
i

L y g z
α =

∂
= − =∑

∂
 	 (4)

and

{ }( ) [ ] ( )
1

ln ( ) 0
n

i i i
i

L x y g z
β =

∂
= − =∑

∂
 	 (5)

Where ( )ix
 

is the concomitant of ( )ix  (1 )i n≤ ≤  and 

( ) ( )( ) exp( )i ig z z= . Linearizing the intractable function ( )ig z  by 
using the first two terms of its Taylor series expansion around the 
population quantiles ( ) ( )( )i it E z=  (1 i n≤ ≤ ), we find 

( ) ( )( )i i i ig z a b z≅ + ,	  (6)

where { }( ) ( )exp( ) 1i i ia t t= −  and ( )exp( )i ib t=  for 1 i n≤ ≤ . In order 
to calculate ( ) ( )( )i it E z=  values, we define a dummy random 
variable U with the probability density function 

( ) exp( ), 0f u u u= <  	 (7)

and re-write the model (1) as

( )( )i i i i iE Y X x F zµ= = = , 	 (8)

where ( ) exp( )F u u= , 0u< . Thus, the ( )it  values can be 
obtained from the equation

( )( )( ) ln 1it i n= + , 	 (9)

For 1 i n≤ ≤ ; asymptotically ( ) ( ) 0.i iz t− ≅ Alternatively, when n is 
large one can utilize the standard normal distribution

( )( )1
( ) 1it i n−=Φ + . 	 (10)

Incorporating (6) into (4)-(5) and solving the resulting 
modified likelihood equations yield the explicit MMLEs below:
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The MMLEs derived above are asymptotically equivalent 
to their corresponding MLEs, giving them the same attractive 
asymptotic properties; however, one can refine the estimates 
by re-calculating ia  and ib values by replacing the theoretical 
population quantiles with their estimated values ( ) ( )

ˆˆi it xα β= +
(1 )i n≤ ≤ . This process might be repeated until a desired 
convergence is met. The stabilization generally is reached within 
a few iterations.

Asymptotic variances and Co-variances

Vaughan and Tiku [15] proved rigorously that the MMLEs are 
asymptotically unbiased and their variances and co-variances are 
exactly the same as those of the MLEs. In the present situation, 
therefore, the asymptotic variances and the covariance of α̂  and 
β̂  are given by ( )1 ,α β−I , where I is the Fisher Information matrix 

consisting of the elements ( )2 2*ln ,E L α− ∂ ∂ ( )2 *lnE L α β− ∂ ∂ ∂

, and ( )2 2*lnE L β− ∂ ∂ . From the modified likelihood equations 
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the Fisher Information matrix can be easily obtained as 
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V = I , 	 (13)

where exp( )i iQ z= . V is estimated by replacing iQ  with 
its estimate ˆ ˆexp( )i iQ z= , ˆˆˆi iz xα β= +  ( 1 i n≤ ≤ ). Since iz  values 
converge to it  values as n tends to infinity, ia  and ib  values are 
treated as constant coefficients for large n, see also [3]. Hence, the 
asymptotic variances can be estimated by

2
2 2

1 1 1 1

ˆ ˆ ˆ ˆˆVar( )
n n n n
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.		   (15)

Hypothesis Testing

Testing the null hypothesis 0: 0H β=  is of great practical 
importance in Poisson regression modelling. The likelihood 
ratio statistic for testing 0H  is 0 12( )LR L L=− − , where 0L  and 

1L  denote the maximized log-modified likelihood functions 
under the null and alternative hypotheses, respectively. The null 
distribution of LR is asymptotically a chi-square with 1 degree of 
freedom. Large values of LR lead the rejection of 0H . Alternatively, 
the Wald statistic W (the ratio of β̂  to its standard error) might 
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be used. Since β̂  is asymptotically equivalent to the MLE, the null 
distribution of W is asymptotically normal N(0,1). Large values of 
W lead to the rejection of 0H .

Numerical Example

To compare ML and MML estimates numerically, we analyzed 
the data given on page 82 of Agresti [19]. The data is from a study 
of nesting horseshoe crabs where the response Y is the number of 
satellites that each female crab has, and the corresponding values 
of the covariate X is the carapace width of 173 crabs. The study 
investigates the relationship between Y and X. We calculated the 
MMLEs from equations (10)-(12) and their approximate standard 
errors from (14)-(15). The FORTRAN code written to carry out 
the calculations can be obtained from the author. Our results are 
completely consistent with those given in [19], which is expected; 
see Table 1. 

Table 1: MLEs and MMLEs along with their standard errors for horseshoe 
crab data.

Coefficient Estimate SE W LR

ML α -3.3048 0.5422

β 0.164 0.02 8.2 64.9

Coefficient Estimate SE W LR

MML α -3.3047 0.5423

β 0.164 0.0199 8.241 64.91

Remark: In solving (10)-(12), Oral [18] proposed to calculate 
the initial  values from the least squares estimators (LSEs), which 

is a different approach than using equation (9) (Approach 1) or 
equation (10) (Approach 2). Since ( ) ( )( )i it E xα β= + , )(it  values 
can be approximated by ( ) ( )i it xα β= + 

 , where

y xα β= −   and ( ) ( )2

1 1

n n
i i i

i i
x x y x xβ

= =
= − −∑ ∑

are the LSEs; see also [3] and [20]. When using this approach 
(say, Approach 3), the ( )it  values need to be revised after the 
first iteration with their estimated values ( ) ( )

ˆˆi it xα β= + (1 )i n≤ ≤  
as described above. Estimating population quantiles from the 
LSEs changes neither the derivations/solutions (10)-(12) nor 
the results. However, the total revision number needed for 
stabilization under different approaches is not the same, see 
also [3] page 889. To compare the performance of these three 
approaches, we conducted a simulation study where we calculated 
the bias values and variances of the resulting MLEs as well as 
the coverage probabilities. We also provided average revision 
numbers needed for stabilization from each approach. We set α  
to zero and considered various values for β  and sample size n. 
Our results from 10,000 Monte Carlo runs are given in Table 2.  

As can be seen from Table 2, all approaches provide same 
biases and variances after stabilization, which is expected. The 
resulting coverage probabilities from all approaches are close to 
0.95, and as sample size increases, both bias values and variances 
decrease, also as expected. For a given ( , )α β  value, it can be 
seen that the fastest stabilization is achieved by Approach 2 (i.e. 
equation (10)). Thus, although all three approaches yield the 
same results, we suggest to calculate initial ( )it  values (1 )i n≤ ≤  
from equation (10) because the stabilization from this approach 
is the fastest one.

Table 2: Bias values, variances, convergence probabilities and average revision numbers using three different approaches to calculate ( )it  values 
(1 )i n≤ ≤ .

β 0.1 0.5 1.0

n α̂ β̂ α̂ β̂ α̂ β̂

30

Approach 1 Bias 0.0355 0.0006 0.0341 0.0067 0.0278 0.0078

Variance 0.0373 0.0389 0.0403 0.0369 0.0451 0.0328

Coverage prob. 0.9521 0.9537 0.9522 0.9541 0.9525 0.9488

No of revisions 4.67 3.45 6.10

Approach 2 Bias 0.0355 0.0006 0.0341 0.0067 0.0279 0.0079

Variance 0.0373 0.0388 0.0403 0.0369 0.0451 0.0328

Coverage prob. 0.9521 0.9537 0.9522 0.9541 0.9525 0.9488

No of revisions 2.65 2.00 1.81

Approach 3 Bias 0.0355 0.0006 0.0341 0.0067 0.0278 0.0079

Variance 0.0372 0.0389 0.0402 0.0368 0.0451 0.0328

Coverage prob. 0.9521 0.9537 0.9523 0.9540 0.9525 0.9488

No of revisions 2.98 3.04 4.63

http://dx.doi.org/10.15406/bbij.2017.06.00154


Modified Maximum Likelihood Estimation in Poisson Regression 4/6
Copyright:

©2017 Oral

Citation: Oral E (2017) Modified Maximum Likelihood Estimation in Poisson Regression. Biom Biostat Int J 6(1): 00154. 
DOI: 10.15406/bbij.2017.06.00154

100

Approach 1 Bias 0.0098 0.0007 0.0079 0.0002 0.0081 0.0017

Variance 0.0104 0.0104 0.0113 0.0094 0.0126 0.0074

Coverage prob. 0.9504 0.9518 0.9470 0.9494 0.9538 0.9495

No of revisions 4.78 3.24 6.59

Approach 2 Bias 0.0098 0.0007 0.0079 0.0001 0.0081 0.0016

Variance 0.0103 0.0104 0.0114 0.0095 0.0126 0.0073

Coverage prob. 0.9504 0.9518 0.9470 0.9494 0.9538 0.9496

No of revisions 2.91 2.01 1.32

Approach 3 Bias 0.0098 0.0007 0.0078 0.0002 0.0082 0.0017

Variance 0.0104 0.0104 0.0113 0.0094 0.0126 0.0073

Coverage prob. 0.9505 0.9518 0.9470 0.9494 0.9539 0.9495

No of revisions 2.99 3.00 4.69

250

Approach 1 Bias 0.0041 0.0002 0.0041 0.0000 0.0013 0.0007

Variance 0.0041 0.0040 0.0044 0.0036 0.0049 0.0026

Coverage prob. 0.9506 0.9452 0.9500 0.9479 0.9507 0.9513

No of revisions 4.78 3.11 6.87

Approach 2 Bias 0.0041 0.0002 0.0040 0.0000 0.0012 0.0007

Variance 0.0040 0.0041 0.0044 0.0036 0.0049 0.0026

Coverage prob. 0.9506 0.9452 0.9500 0.9479 0.9507 0.9513

No of revisions 2.90 2.00 1.12

Approach 3 Bias 0.0041 0.0002 0.0041 0.0001 0.0013 0.0007

Variance 0.0041 0.0041 0.0044 0.0036 0.0049 0.0026

Coverage prob. 0.9506 0.9452 0.9500 0.9479 0.9507 0.9513

No of revisions 2.99 3.00 4.76

Generalization to Multivariable Case

Now consider k ( 2)k≥  covariates and assume all of them take 
positive values without loss of generality. The Poisson regression 
model with k covariates can be written as

( )1 2( , ,..., )i i i ik iE Y x x x F z=  	 (16)

where ( ) exp( )i iF z z=  and

0
1

k
i j ij

j
z xβ β

=
= + ∑ , 	 (17)

for 1 .i n≤ ≤ , 1 j k≤ ≤ . Following the same lines of [3], in order to 
rank the z-values we can assume that all covariates are equally 
effective in increasing the response Y, i.e. we initially take jβ ’s 
all equal, and order the z-values that would correspond to the 
ordered x-values, where 1 2 ...i i i ikx x x x= + + + (1 )i n≤ ≤ . In other 
words, the ordered z-values become

* *
( ) 0 1 1 ...i i k ikz x xβ β β= + + + , 	 (18)

where the vector * * *
1 21 . .i i ikx x x    is the ith row of the 

matrix

* * *
11 12 1
* * *
21 22 2

*

* * *
1 2

1 ...

1 ...

. . . ... .

. . . ... .

1 ...

k

k

n n nk

x x x

x x x
X

x x x

 
 
 
 = 
 
 
  

,		   (19)

which is constructed by arranging the rows of the X matrix

11 12 1

21 22 2

1 2

1 ...
1 ...
. . . ... .
. . . ... .
1 ...

k

k

n n nk

x x x
x x x

X

x x x

 
 
 
 =
 
 
  

,

so as to correspond to the ordered ( )ix  value (1 )i n≤ ≤ . The 
MMLEs can be obtained along the same lines as in the Univariate 
case:

( ) 1* * *ˆ T TX M X X
−

Γ= ∆  		 (20)

where [ ]1 2 . . T
nδ δ δ=∆  , iδ  is given by (11) and M is the 

nxn diagonal matrix
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The asymptotic variance-covariance matrix V of the 
estimators can be derived from the Fisher information matrix 

( )1
0 1, ,..., kβ β β−V = I  as given below

1
1
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1 1 1

2
1

...

...
... ... ... ...

...

i i i i ki

i i i i i ki i

i ki i ki i i ki

Q Q x Q x
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 		  (21)

where exp( )i iQ z= . V is estimated by replacing iQ  by 

ˆ ˆexp( )i iQ z= , * *
( ) 0 1 1

ˆ ˆ ˆˆ ...i i k ikz x xβ β β= + + +  (1 )i n≤ ≤ .

Robustness

Measures of influence considered in linear regression models, 
such as high leverage values, are analogous in the GLM framework. 
Large leverage values typically mean that there are outliers in 
covariates. When outliers present in the data, inferences based on 
MLEs becomes unreliable. In fact, it has been showed that MLEs 

are not robust in GLMs [21]. In Poisson regression setting, if there 
are outliers in the continuous covariates, the estimates can be 
influenced. Thus, we also studied the robustness properties of 
the derived MMLEs under several outlier models. We considered 
the Univariate model given by (1) for simplicity. We assumed that 

0α=  and performed a Monte-Carlo study for different values 
of β , where (n-r) of the observations 1 2, ,..., nX X X  (we don’t 
know which) come from the Standard Normal Distribution with 

1σ =  and the remaining r observations come from the Normal 
distribution with a scale cσ  where c is a positive constant. We 
calculated the value of r from the equation [ ]0.1 0.5r n= +  (Dixon’s 
outlier model). The outlier models considered are:

a.	 (n-r) come from N(0,1) and r come from N(0,1) (No outlier 
situation),

b.	 (n-r) come from N(0,1) and r come from N(0,1.5),

c.	 (n-r) come from N(0,1) and r come from N(0,2),

d.	 (n-r) come from N(0,1) and r come from N(0,4).

Note that the model (a) above does not involve outliers and 
is given for the sake of comparisons. In order to be able to make 
direct comparisons, after generating the X values we divided them 
by the standard deviation of the distribution for each model. After 
generating the X values, we calculated i iz xα β= + and exp( )i izµ =  
for 1 i n≤ ≤  to generate iY  values from Poisson distribution with 
mean iµ  (1 i n≤ ≤ ). The values obtained from 5000 runs are given 
in (Table 3). 

Table 3: Empirical biases and variances from Dixon’s outlier models.

Model (a): No outlier Model (b)

β n Bias( α̂ ) Bias( β̂ ) Var( α̂ ) Var( β̂ ) Bias( α̂ ) Bias( β̂ ) Var( α̂ ) Var( β̂ )

0.1 30 0.0326 0.0075 0.0371 0.0385 0.0330 0.0021 0.0377 0.0388
50 0.0195 0.0004 0.0214 0.0219 0.0211 0.0033 0.0214 0.0218
100 0.0082 0.0039 0.0103 0.0102 0.0094 0.0008 0.0103 0.0104

0.2 30 0.0316 0.0020 0.0377 0.0388 0.0302 0.0034 0.0388 0.0386
50 0.0202 0.0029 0.0217 0.0215 0.0200 0.0007 0.0219 0.0212
100 0.0108 0.0000 0.0104 0.0102 0.0115 0.0002 0.0108 0.0103

0.4 30 0.0323 0.0033 0.0391 0.0376 0.0346 0.0012 0.0407 0.0385
50 0.0207 0.0005 0.0224 0.0209 0.0165 0.0004 0.0230 0.0209
100 0.0086 0.0004 0.0109 0.0097 0.0089 0.0009 0.0113 0.0099

Model (c) Model (d)

β n Bias( α̂ ) Bias( β̂ ) Var( α̂ ) Var( β̂ ) Bias( α̂ ) Bias( β̂ ) Var( α̂ ) Var( β̂ )

0.1 30 0.02827 0.0003 0.0381 0.0413 0.0385 0.0026 0.0372 0.0477
50 0.0192 0.0013 0.0220 0.0220 0.0211 0.0004 0.0213 0.0246
100 0.0095 0.0001 0.0105 0.0104 0.0099 0.0002 0.0108 0.0107

0.2 30 0.0362 0.0036 0.0396 0.0419 0.0350 0.0080 0.0375 0.0467
50 0.0163 0.0014 0.0208 0.0211 0.0189 0.0057 0.0221 0.0242
100 0.0111 0.0010 0.0106 0.0105 0.0109 0.0013 0.0099 0.0103

0.4 30 0.0313 0.0015 0.0396 0.0370 0.0314 0.0017 0.0379 0.0461
50 0.0178 0.0030 0.0226 0.0207 0.0166 0.0001 0.0218 0.0223
100 0.0079 0.0003 0.0110 0.0093 0.0074 0.0039 0.0111 0.0088
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As can be seen from the table, the biases in the estimates are 
negligible for all models. The variances ˆVar( )β  (hence the Wald 
statistics W) are almost the same for a given n for the models 
(a), (b), (c) and (d), which means that the MMLEs are robust to 
outliers in the covariate. Note that the MML methodology achieves 
robustness through the ( )it  ( 1 i n≤ ≤ ) values.

Conclusion
Poisson regression serves as a useful technique to model count 

data. The MLEs in Poisson regression are obtained via Newton-
type algorithms; however these algorithms might not converge or 
converge to inaccurate values. In this study we derived the explicit 
MMLEs for Poisson regression. We also considered the case where 
there are outliers in the (continuous) covariate, which generally 
is the case in real life applications, and searched the properties 
of the derived MMLEs under several data violations. Although the 
scope of the simulations reported here is limited, we can conclude 
that MML methodology provides robust estimation in Poisson 
regression. 
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