MedCrave

Step into the Wonld of Research

i@

Biometrics & Biostatistics International Journal

Research Article

a Open Access

‘ N CrossMark‘

Using the ROC curve to measure association and
evaluate Prediction accuracy for a binary outcome

Abstract

This review article addresses the ROC curve and its advantage over the odds ratio
to measure the association between a continuous variable and a binary outcome. A
simple parametric model under the normality assumption and the method of Box-Cox
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transformation for non-normal data are discussed. Applications of the binormal model
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are illustrated by a comprehensive data analysis tutorial. Finally, a summary and

recommendations are given as to the usage of the binormal ROC curve.
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Introduction

Logistic regression and its corresponding odds ratio(s) (OR)
are the most popular measure of association between a continuous
or categorical variable with a binary outcome in epidemiology. For
example, in epidemeology, we would be interested in the association
between health status and life style measures. For a significantly
associated predictor of a binary outcome, we can estimate the
probability of a random observation being in one category and classify
the observation into two groups based on the value of the predictor.
For example, it is believed that arsenic exposure is associated with
blackfoot disease. Such exposure can be continuous, i.e., the level
of chronic arsenic exposure through drinking water, or binary, i.e.,
exposed versus non-exposed. However, using logistic regression
and the odds ratio sometimes produces results that are puzzling and
misleading: Kraemer and Pepe et al.,'? provided very good discussions
about the paradoxical situations about the odds ratio, especially in the
presence of strongly associated predictors.

The odds ratio is the ratio between the odds of an outcome event
of interest in one category of the predictor variable versus the odds
of the same event in the other category of the predictor. For example,
the odds ratio of arsenic exposure for blackfoot disease is defined
as the ratio between the odds of getting the blackfoot disease in the
exposed group versus the odds in the non-exposed group. Commonly,
a variable associated with a binary outcome is interpreted as a rule for
classification or prediction of the binary outcome. In order to predict
or classify subjects into two categories, a cut-oft point/threshold is
needed if the predictor is continuous. Similarly, if the predictor is
categorical with more than two levels, then a grouping of neighboring
categories is needed. For example, in the field of medical diagnostics,
some continuous biomarkers that are associated with the disease
outcome are used to identify the sub-clinical diseased individuals. In
medical diagnostics, it is common to assume that the diseased subject
generally has a larger biomarker value than the healthy subject. In
practice, sometimes a transformation of the biomarker values is
necessary in order to meet such assumption. For example, HIV
patients generally have lower CD4 cell counts, so we can transform
the biomarker values as the reciprocal of the CD4 cell counts. An
individual receives a positive diagnosis if his/her biomarker value
of the diagnostic test is greater than the threshold; otherwise the
diagnosis is considered “negative”. Generally, physicians determine
the true disease status by the long-established reference standard,

which is sometimes called the “gold standard”. Finally, for evaluation
of the prediction accuracy of a biomarker/diagnostic test for the true
disease status, a two-by-two association table is formed as in Table 1.

In practice, the diseased and the healthy population distributions
generally overlap, which means there exist diagnostic errors. The
false negative (FN) is “those who have disease and are diagnosed
as negative” and the false positive (FP) is “those who do not have
disease and are diagnosed as positive”. The corresponding correct
cases are the true positive (TP) and the true negative (TN), which
are “those who have disease and are diagnosed as positive” and
“those who do not have disease and are diagnosed as negative”,
respectively. The proportion of true positives among the diseased
population is commonly referred as the sensitivity and the proportion
of true negatives among the healthy population as the specificity. The
sensitivity and specificity characterize the diagnostic accuracy under
the diseased and the healthy populations, respectively. Mathematically,
the sensitivity and specificity are

p P
Specificity =5 g

. P
Specificity = TNEP

The odds ratio in medical diagnostic setting is referred as the
diagnostic odds ratio (DOR), which is defined as the ratio of the odds
of a positive result of a diagnostic test in the diseased population
relative to that in the non-diseased population.® Equivalently, the DOR
is the ratio of the odds of the disease among the test positives versus
that in the test negatives:

TP/FN _TP/FP _ sensitivity specificity

DOR = FpiTN = FNTTN ~ (1=sensitivity )(1-specificity)

Generally, an odds ratio of 1 indicates no association between
the predictor and the outcome. Therefore, a DOR=1 means that the
diagnostic test does not discriminate better than random chance
between the diseased patients and those without the disease. The DOR
rises steeply when one of the pair (sensitivity, specificity) becomes
nearly perfect, while the other one of the pair may stay unsatisfactory.

sensitivity = 0.99 and specificity =0.5 ,
the total

For when
DOR =99 .
sensitivity + specificity =1.49 which indicates a moderate predictor

for diagnosis. Furthermore, a large value of the DOR sometimes

example,

However, correct classification rate is
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Using the ROC curve to measure association and evaluate Prediction accuracy for a binary outcome

have very wide confidence intervals. Additionally, for a continuous
predictor, in order to make a prediction or a classification for a
binary outcome, a cut-off point or threshold value is needed which
is usually estimated by some optimization criteria. Bohning et al.,*
found that determining an optimal cut-off value via maximizing the
DOR might lead to optimal cut-off estimates on the boundary of the
parameter range, which clearly is not an “optimal” cut-off value to
use for classification. In summary, a predictor with a large DOR does
not necessarily yield good prediction. Therefore, we need alternative
approaches for evaluating associations. In this paper, we recommend
the use of the Receiver Operating Characteristic (ROC) curve.

Table | Contingency table of reference standard versus diagnostic test result

Reference standard

Diseased Healthy
Diagnostic Positive TP FP
test result Negative FN TN

TP:True Positive; TN: True Negative; FP: False Positive; FN: False Negative

In the following, we introduce the basics of the ROC curve and
its summary indices in section 2. Section 3 present a parametric
approach for making inference for the ROC analysis using binormal
model under the assumption of binormality (i.e., both the diseased and
healthy populations are normally distributed). In section 4, we discuss
the use of the Box-Cox transformation for non-normally distributed
data. Section 5 illustrates the binormal ROC analysis using a real data
set. Finally we give a summary and discussion in section 6.

Basics about the ROC curve

For a continuous predictor, at each of the pre-specified threshold
values, paired values of sensitivity and specificity can be computed.
The Receiver Operating Characteristic (ROC) curve is a graph plotting
the pair of (1— specificity, sensitivity) for all possible threshold values.
Therefore, this graph demonstrates a trade-off phenomena between
sensitivity and specificity. The ROC curve is an important and popular
tool for the evaluation of the diagnostic tests. It can be used to
demonstrate associations between a continuous variable for a binary
outcome, as well as help to evaluate the accuracy of the prediction
and classification based on a continuous variable. Extensive statistical
research has been done in this field and there are several excellent
reviews of statistical methods involving ROC curves.*?®

In theory, the ROC curve of a perfect diagnostic test would be
the one connecting points (0,0), (0,1) and (1,1). The point (0,1) is
sometimes referred as the perfection point. Some practitioners may
compare different diagnostic tests for the same disease based on
visual inspection of the estimated ROC curves that do not overlap.
The optimal test is the one with the ROC curve bending most towards
the perfection point. However, this is not applicable for situations
when the fitted ROC curves cross each other, which frequently occurs
in practice. Furthermore, even if the fitted ROC curves do not overlap,
due to sampling variability, such visual inspection of the estimated
ROC curves is still not a valid approach to make formal comparisons
between tests. Therefore, there is a need for some type of formal index
to summarize the ROC curve. Among all summary measures of the
ROC curve, the area under the ROC curve (AUC) is very popular.

The AUC can be calculated by the integration of the ROC
curve with respect to the false positive rate over [0,1]. The AUC is
an overall summary of the ROC curve across all thresholds which
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is invariant to the prevalence of the disease and the choice of the
diagnostic threshold. Under the assumption that a larger biomarker
value indicates greater likelihood of the disease, Bamber and Donald®
showed that the AUC equals the probability of the marker value D
of a randomly selected subject from the diseased population being
greater than the marker value H of a randomly selected subject from
the healthy population. This is denoted as AUC = Pr(D >H ) . The

AUC is more useful for evaluating a diagnostic test at early stages,

for which the primary purpose is to pick up candidate tests with
discriminating potentials. However, as a single index, the AUC lacks
details about the trade-off between sensitivity and specificity, hence it
cannot measure and balance the respective cost of the false positives
and the false negatives. For different types of disease, the clinical-
meaningful range of the sensitivity and specificity would vary.

Therefore, the partial area under the ROC curve ( pA UC) , which is

obtained by integrating the ROC curve over a predetermined range
of the false positive rate, would be more appropriate than the 4UC
for this purpose. Alternatively, sensitivity at a predetermined false
positive rate can be used for specific applications.

For the purpose of making a diagnosis, a diagnostic threshold for
the test is required. As the AUC is a global summary measure across
all possible thresholds, separate computation after the A UC evaluation
is needed to derive the optimal cut-off point for making diagnosis.
Furthermore, the global measure 4 UC lacks direct link to the sensitivity
and specificity, hence it is rather abstract for clinicians to understand
and compute. For selecting an “optimal” diagnostic cut-off point,

there exist a variety of approaches.!®!' Among them, the Youden index
J , defined as max, {sensitivily(c)+speciﬁcily(c)—1} , 1s very popular

since it ties nicely into the ROC framework and it has a closed-form
solution under normality.'> The cut-off point determined via the Youden
index maximizes the overall correct classification rate (i.e., sum of
sensitivity and specificity) and assigns equal weight to the sensitivity
and the specificity. The Youden index has a clinical interpretation as
a direct measure of the maximum diagnostic accuracy that a marker
can achieve. Another advantage of the Youden index over the AUC
is that it can detect differences other than in location while the AUC
can only detect location differences between the diseased and healthy
samples.”® Graphically, the Youden index is the maximum vertical
distance between the ROC curve and the chance line. It measures the
difference of the diagnostic accuracy of a marker and that determined
by random chance. In order to give varying weights for sensitivity

and specificity, the weighted Youden index was proposed'*!* and is
expressed as maxc{W*sensitivity(c)+(1—W)*speciﬁcity(c)—1} with
predetermined weights W and 1-W .

Binormal model for ROC analysis

For the ROC analysis, sometimes, parametric assumptions are
made on the distributions of the marker measurements for both
healthy and diseased groups. The binormality assumption is the
most popular as it utilizes many properties of the normal distribution
and hence is the most straightforward for applications in practice.
When the two discriminating populations are normally distributed
or can be simultaneously transformed to normal after some
monotonic transformation, the corresponding ROC curve satisfies
the binormality assumption and is thus called the binormal ROC
curve.'®!® Hanley!" listed some primary justifications of applying the
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binormal model for fitting the ROC curves. These includes “Gaussian
distribution is natural for many situations”, “Other distributions can
be approximated by Gaussian”, “The ROC curve is invariant under
monotonic transformation of marker values” and “Mathematical
convenience based on nice properties of normality.” The binormal
ROC model provides a basis for parametric estimation and inference
about the ROC curve and its summary indices. The binormal model
generally fits well for continuous marker values. It is also robust for
rating data on an ordinal scale assuming a continuous latent variable
under large sample assumption.!® This article focuses on the binormal
model fitted explicitly on the continuous biomarker values.

For making inference about the ROC curve using the binormal
model, Linnet*® developed a parametric approach based on maximum
likelihood estimation for sensitivity given a fixed value of specificity
or false positive rate. The confidence interval about sensitivity at a
single value of specificity or false positive rate can also be considered
as the pointwise confidence interval for the ROC curve. For making
inference about the whole or partial ROC curve and maintaining the
type I error within the range of specificity, the simultaneous confidence
band needs to be estimated. Ma and Hall*! proposed a parametric
confidence band of the ROC curve by applying the binormal model
and extending the Working and Hotelling” confidence band for a
regression line. Demidenko® proposed an ellipse-envelope confidence
band under binormality for the ROC curve. Yin and Tian* proposed a
generalized inference confidence band for the ROC Curve.

For the Youden index and its associated optimal cut-point, some
researchers examined different estimation and inference methods
under binormal assumption. For example, Fluss et al.,”> compared
parametric methods with and without the Box-Cox transformation;
Schisterman and Perkins'? proposed asymptotic confidence intervals
based on bi-normal and bi-gamma models; Lai and Tian? applied the
generalized inference method. For making inference about the AUC
using the binormal model, Wieand et al.,” applied the delta method
based asymptotic results to construct a test of difference between two
AUCs in a paired design. Molodianovitch et al.,® applied the Box-
Cox transformation for non-normal data and then applied the method
of Wieand et al.,”” on the transformed data. Tian? and Li et al.,*
applied the generalized pivotal quantity approach to obtain the exact
confidence intervals for single AUC and paired 4UC respectively.
Recently, the parametric joint inference under binormality for two or
more ROC summary indices were proposed. For example, Yin and
Tian* proposed joint confidence region estimation of the AUC and the
Youden index based on the asymptotic delta method and generalized
inference approach. Yin and Tian®' and Bantis et al.,*> used similar
approaches for joint inference about sensitivity and specificity at the
optimal threshold value associated with the Youden index.

Under binormality

Let Y ~ Normal(,ul,crlz) and Y, ~ Normal(,uz,azz) denote
diagnostic marker measurements for the diseased and the healthy
populations respectively. The cumulative distribution function (cdf)
for the two populations is denoted as Fy, (¢) = (D% for i=1,2
. Assume that y, and y, are independent. Without loss of generality,

assume that g4 > 4, . Zou and Hall'® stated that the ROC curve is
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completely determined by the parameters o and 3 which are defined as

a:ﬂl_ﬂZ andﬂ:ﬂ (1)
(op) (o))

Under binormality, given the false positive rate ( p) , the ROC
curve can be expressed as

a+ ! (p)]

ROC(,) =1~ F (K (1-p)) = cp[ 5

Sensitivity and specificity at any known threshold c¢ are expressed

as
B(c)= @[MJandpz(c) = Q[MJ
oy o, )
where @() denotes the standard normal cumulative distribution
function.

The optimal cut-point ¢, associated with Youden index can be

obtained by maximizing J = d{ T H J -0 [ T H \J with respect
o, o,

to c. Hence the optimal cut-point ¢, is achieved at the intersection
of the two normal density functions of the healthy and the diseased
groups which gives largest separation of the two populations. Denote
the optimal threshold value associated with the Youden index as ¢,
and it is obtained by

cargmax{pl (c) +p, (c) - 1} 3)

= = argmax {Fy2 (c) + Fy, (c)}

4

Youden index (J ) is
J=Fy, (¢) = Fy (c,)

and the sensitivity (P1) and specificity (P2) at the optimal threshold
co selected by the Youden index are

R(co)=1=Fy (co);Pr(ey) = Fy (o)
Schisterman and Perkins'! presented the Youden index (J ) and the
optimal cut-off value (co) as functions of ,'s and o;'s (i=1,2)
. Based on two binormal parameters in (1), we can derive the Youden

index as a function of a and . When o, # o, (i.e. f#1), co can be
expressed as

yz(,b’z—l)—a0'2+ﬂ0'2 /a2+(ﬁ2—1)1n(ﬁz)
cp = >
£ -1

and hence j is calculated to be

J:(D[ﬂl_co]+¢)[co_ﬂ2]_l
0 0

aff - Ja* +(p*—1)Ing?
)

p-1

“)

)
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. a-p 1a2+(ﬂ2—1)1nﬂ2

p-1

When variances for the healthy and the diseased groups are the

Mt

same and equal to o2, ie. f=1, then TN == and J can be

obtained correspondingly as

J=2d| P ool X
20 2

The optimal cut-off point associated with the Youden index
is the only optimal estimation with a closed-form solution under
binormality. Therefore, among all cut-off point selection criteria, the
one based on the Youden index is the most straightforward approach
for clinicians to apply directly.

The AUC is calculated by integration of the ROC curve function
with respect to false positive rate (p) from 0 to 1:

AUC=[}1-F, (FY;1 (1- p))dp

Under normality, AUC can be expressed as a function of o and f:

(04
-0 N ()

Since all the aforementioned ROC indices have closed-form
solutions, which are functions of normal means and variances,
substituting the sample means and variances of the observed data into
corresponding expressions, e.g., (4), (5) and (6), provides the large-
sample estimates of these ROC indices. For making inferences about
these ROC indices, we must derive the large-sample variances of
these estimates. This can be achieved by applying the large-sample
delta method. However, there are times such as when making a joint
inference about several ROC indices, when it is challenging and
labor intensive to derive a closed-form solution for the asymptotic
variance matrix by the large sample delta method. In such situations,
some alternative simulation based methods can be applied, such as the
parametric bootstrapping or the generalized inference approach based
on simulated generalized pivots.’>** After obtaining the point estimate
and the variance estimate of corresponding ROC indices of interest,
it is straightforward to derive the confidence interval or region and
the test statistics for hypothesis testing using standard z-test type of
approach for univariate case and chi-square-test type of approach for
multivariate case. There may be times when the obtained confidence
interval or region is not bounded by the meaningful range of the ROC
index. When this happens, it is recommended to apply a logit or a
arcsin-square-root transformation for both univariate and multivariate
inference problems. Alternatively, if the parametric bootstrapping or
the generalized inference approach is applied, the lower and upper
limits of the confidence intervals can be estimated by the quantiles of
the simulated bootstrap samples or generalized pivots.

AUC = K
ol +0o;

The Box-Cox transformation for cases without
binormality

When normality is not satisfied, it is a standard practice to use
the Box-Cox transformation to approximate normality in diagnostics
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due to the fact that the ROC curve is invariant under monotonic
transformations. This type of approach is very popular and has been
shown to perform very well for a wide variety of situations in ROC
studies.?$>>183537 For review of Box-Cox transformation in general,
see Sakia.*

For the j’h(jzl,...‘,n,-) subject in the i group (i=1,2) with each
group having #, observations, let

i

UL
i 1%
l B
R
log(Yij);ﬂ.:O (7
L (l)i.i.d )
where it is assumed that Y;"/ ~ N (,ui,o;). Based on the

observations from the healthy and the diseased group, the log-
likelihood function can be simplified as follows:

2
A
2 nj 1 5 (Yl]( )_'uij
X —Elog(zﬂfn )—TJr(ﬂ‘l)logYﬁ
L i

’ ®)

The maximum likelihood estimate (MLE) of A can be obtained by
maximizing the function in (8). As the same transformation is used for
both the diseased and the healthy populations, we are required to take
the same transformation for both groups to approximate binormality.
After applying the Box-Cox transformation, the binormal-model
based inference approaches can be readily applied for the transformed
data.

There are some alternative versions of Box-Cox transformation.
For example, only positive Y values are allowed in the Box-Cox
transformation equation in (7). In order to address such a limitation,
it is suggested to apply the shifted power transformation [36] with
the form

A
(4 +4)" -1

Yij(ﬂv/lz): T
log (¥, +4,),

where 4, is the Box-Cox transformation parameter and 4, is a

A #0 &y =0

fixed value such that min(Y,.j) > —4, . This adjustment is the same as

moving the whole data distribution towards right by a value of 4, .

y;
It is important to note that the range of (Yy)( )is restricted

according to whether 4 is positive or negative. This implies that the
transformed values do not cover the entire real line, which provides
only approximate normality for the Box-Cox transformed data set.

For non-normal data, researchers generally apply the Box-Cox
transformation first to approximate binormality for the original data
and then the binormal model is applied based on the transformed
approximately normal data. Therefore, the parameter A is assumed to
be fixed when applying the binormal model and the delta method.
Bantis et al.,”> discussed that as X is a parameter in the likelihood
function, the information matrix should include it in addition to the
normal means and variances, resulting in an information matrix of
the normal parameters that is no longer diagonal. It has been shown
to perform well for univariate inference problems in the ROC analysis
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context. However, it does not perform satisfactorily under multivariate
situations'! due to the lack of consideration of the variability of A,
when the Box-Cox transformation completely separates from the
estimation process under binormality using the delta method.

In order to take into account the variability of 1, Bantis et al.,*
proposed to apply the standard asymptotic delta method incorporating
Ain the information matrix of normal means and variances in
order to calculate the variance of the corresponding ROC index/
indices. Alternatively, they proposed to generate bootstrap samples
parametrically under binormality to allow A to vary for each bootstrap
sample, and then use the transformed samples to calculate the bootstrap
variance matrix. They demonstrated significant improvements through
a simulation study in terms of the coverage probability of the proposed
confidence region of sensitivity and specificity at the optimal cut-off
point associated with Youden index when taking the variability of A
into account. Even though empirically, the performance of Box-Cox
transformation under univariate case is satisfactory and not as sensitive
as the multivariate case, the process assuming fixed A is theoretically
not sound. Therefore, we recommend future researchers to take into
account of the variability of A when calculating the variances of the
ROC indices for both univariate and multivariate scenarios in ROC
analysis.

Data example of binormal ROC analysis

Duchenne muscular dystrophy (DMD) is a recessive X-linked
form of a genetic disorder. It is characterized by progressive muscular
degeneration and weakness. It is caused by the mutation in the gene
for dystrohin, which is a protein found in the muscle. Because of the
way the disease is inherited, the female carriers are unaware of this

Copyright:
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mutation until they have an affected son. Percy et al.,*” presented data
of four different DMD markers, namely serum creatine kinase (CK),
hemopexin (HPX), pyruvate kinase (PK) and lactate dehydrogenase
(LD). Complete data is available on 66 female carriers with affected
sons and 127 female controls. For illustrative purposes, markers CK
and HPX are used in this section.

Figures 1 and 2 presents Q-Q plots of markers CK and HPX,
respectively, for the control and carrier groups. It can be seen that
marker HPX is normally distributed for both groups, while marker
CK is not. The Box-Cox transformation is applied for marker CK and
the estimate of the Box-Cox parameter A is obtained by maximizing
the log-likelihood function of the data set as in (8), which is estimated
to be —0.345. Figure 3 give the Q-Q plots of the Box-Cox transformed
CK marker values, and we can see that both diseased and healthy
groups are normally distributed. The binormal model is applied on
the Box-Cox transformed CK values and the original HPX values.
Both the binormal and the non-parametric empirical ROC curves
are estimated and the corresponding Working Hotelling® type of
confidence band is plotted with the empirical and the binormal ROC
curves (see Figures 4 and 5). The reason for the confidence band being
narrow is due to the relatively large sample sizes of this data set. We
will use the Box-Cox transformed CK marker values for illustrating
the univariate inferences in the ROC context and HPX marker for the
multivariate inferences.

Table 2 gives the contingency table for marker CK at the cut-off
point associated with the Youden index, which can be calculated from
(4) using the binormal model. For table 3, the optimal cut-off point for
the diagnosis based on marker CK is determined by maximizing the

DOR or equivalently, the logarithm of DOR, i.e.,

oo, (08t o 4 o o 2 |t of 22t o 222

For this data set, the DOR does not reach its maximum within the
observed range of cut-off point, so we select a point on the boundary.
The maximum CK value of 2.6535 is chosen to be the optimal cut-off
point. This situation is not rare, as Bohning et al.,* concluded that the
DOR criteria for optimizing the cut-off point can “easily lead to cut-
off point on the boundary of the parameter range”.

Table 4 summarizes the point and interval estimates for the AUC,
the Youden index (J ) and the diagnostic odds ratios (DOR) at the
optimal cut-off point corresponding to the maximum Youden index

(c j) and the maximum DOR(COR) for marker CK. When the cut-

off point selected corresponds to the maximum DOR, the estimate
for the DOR is infinity and therefore, no valid confidence interval
can be calculated. Even at the optimal cut-off point with the Youden
index, the DOR estimate still has a relatively wide confidence interval.
However, both ROC indices, i.e., the AUC and the Youden index
always yield bounded confidence intervals within the range of [0,1].

Table 2 Contingency table of marker CK at the optimal cut-off point with the
Youden index (c; =2.1837)

Diseased Healthy
Diagnostic >2.1837 47 17
test result! <2.1837 19 110

1:The diagnosis is based on the Box-Cox transformed marker value

In Figure 7, the joint confidence region of the sensitivity and the
specificity at the optimal cut-off point associated with the Youden
index are plotted for marker HPX, along with the rectangular region
formed by respective confidence intervals of the sensitivity and the
specificity after the Bonferroni correction. The Bonferroni-corrected
method is commonly used for adjusting multiple testing in practice
due to its straightforward application. However, it is known to give
conservative results. Similarly, Figure 8 gives the joint confidence
region of the AUC and the Youden index for marker HPX along with
the rectangular Bonferroni region. From Figure 8, since the correlation
between the AUC and the Youden index is very high, the advantages
of the joint confidence region are significant.

Table 3 Contingency table of marker CK at the optimal cut-off point with the
maximum DOR (¢, = 2.6535)

Diseased Healthy
Diagnostic > 265352 0 0
test result' <2.6535 66 127

I:The diagnosis is based on the Box-Cox transformed marker value.

2:Since the DOR does not reach its maximum within the observed range of
cut-off point (as shown in Figure 6), the maximum CK value (2.6535) is thus
chosen to be the optimal cut-off point.
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Figure 3 Q-Q plots of the Box-Cox transformed values of marker CK. After 95% Cl. (0.8157,0.9284)(0.5132,0.7093) (7.65,33.48) -

Box-Cox transformation, the values from both the diseased and the healthy
groups are normally distributed. I:The cut-off estimate is for the Box-Cox transformed CK values.
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Figure 6 Logarithm of the DOR values across all possible values of the cut-off
point for marker CK of the data set.

HPX
«
o
~
o
©
Z o 7
E
8
& @
o
<
o
—— JointCR
o | = = Bonferroni
o
T T T T T
06 07 0.8 09 1.0

Sensitivity

Figure 7 The 95% joint confidence region of the sensitivity and the specificity
at the optimal cut-off point associated with the Youden index for marker HPX.
Since both the sensitivity and the specificity are given at the same cut-off
point which is estimated by all samples from the two populations. Therefore,
the sensitivity and the specificity at the optimal cut-off point are correlated
(the sample correlation is —0.26 for this data set). Meanwhile, the rectangular
region formed by respective individual confidence intervals adjusted by the
Bonferroni correction is also plotted to compare with the joint elliptical
region. The joint confidence region is estimated by the generalized inference
approach, which automatically account for the correlation structure through
simulations. The joint confidence region is given by the elliptical equation

(x~0.7590)’ Lo 0.6179)°
0.12982 0.0956>

with major axis being in the direction

of vector i(l,—1.7237)T and with point (0.7590,0.6179) as the origin. The
individual confidence intervals are calculated by the lower and upper 0.05/4
percentiles of the simulated generalized pivotal quantities. The 97.5% adjusted
confidence interval for sensitivity is (0.6418,0.8370), and that for specificity is

(0.4957,0.7188).
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Figure 8 The 95% joint confidence region of the AUC and the Youden index
and the rectangular region formed by respective individual confidence intervals
adjusted by the Bonferroni correction for marker HPX.The joint confidence
region is estimated by the large sample delta method, for which the variance
matrix of AUC and Youden index is calculated analytically. The joint confidence

(x-0.7523)" (y-0.3802)’
region is given by the elliptical equation + =

0.1840° 0.0146
with major axis being in the direction of vector i(l,l .5975)T and with point

(0.7523,0.3802) as the origin. The adjusted individual confidence intervals are

calculated by the standard z-test at the confidence level of 97.5%, and it is
(0.6747,0.8300) for the AUC and (0.2571,0.5033) for the Youden index. Since
the AUC and Youden index are highly correlated, the rectangular region formed
by Bonferroni approach is very conservative (as its area is much larger than
that of the ellipse) and has less likelihood to successfully reject the multivariate
outliers (e.g., point (0.7,0.45) in red).

Summary and discussion

Logistic regression and its corresponding odds ratio are the most
popular measures of association between a continuous or categorical
variable with a binary outcome in epidemiology, but it often produces
results that are puzzling and misleading. A predictor with a large DOR
does not necessarily yield a good prediction. Also, the DOR is not
a proper measure of prediction accuracy for a strongly associated
variable since the DOR will be very large and even close to infinity
with wild confidence intervals. Henceforth, we need alternative
approaches for evaluating strong association. In this paper, we
recommend the use of the Receiver Operating Characteristic (ROC)
curve. The most straightforward parametric approach to estimate the
ROC curve and make inference about the ROC curve and its related
summary indices is the binormal model.

The classical binormal model with two parameters has some
limitations. Specifically, it does not fit well for “degenerate” data set.
Metz and Pan*’ suggested that the fitted ROC curve by the classical
binormal model always lie partly below the diagonal line, and such
phenomena is especially obvious for degenerate data. The sensitivity
is not a monotonic increasing function with respect to the false
positive rate, as is supposed to be by the ROC theory. Therefore,
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for such degenerate data, the binormal ROC curve is not “proper”.
Alternative parametric models were proposed when the conventional
binormal model is no longer appropriate, including the “proper”
binormal model*' and the “proper” bigamma model.*! Particularly,
the “proper” binormal model contains three parameters by making
diagnostic decisions based upon some monotonic transformations
of the likelihood ratio of the bi-normally distributed random marker
values. Unlike the two-parameter classical binormal model, the ROC-
related indices may not have closed-form solutions expressed by
the three parameters, which can be an interesting problem for future
research.

When normality is not satisfied for either the diseased or the healthy
population, it is a common practice to use Box-Cox transformation to
achieve binormality in diagnostic studies. This is achieved due to the
fact that ROC curve is invariant under monotonic transformations. An
issue about the application of the binormal model in the ROC context
is that it is not a very robust approach under violations of binormality
assumption.*? Sometimes it is impossible to approximate normality
well enough for both populations under a common transformation
with the same A. In such situation, the non-parametric bootstrap
methods based on empirical estimates or kernel-smoothed estimates
of'the ROC curves or its summary indices has been shown to perform
very well and are easily applied. For example, see Faraggi and Reiser®
and Fluss et al.,” for single indices, Yin and Tian'® and Bantis et al.,*
for joint inference.

If multiple variables are believed to associate with the binary
outcome of interest collectively but not individually, it is recommended
to combine the variables to a composite score or function. In the
context of the ROC analysis, researchers have proposed combining
the multiple predictors by maximizing the ROC indices, such as the
AUC or the Youden index.**"!! After a composite score is obtained,
the binormal model discussed here is readily applied for the composite
score to make inference about the prediction accuracy when all
variables are combined.

Acknowledgement

None.

Conflict of interest

None.

References

1. Kraemer HC. Reconsidering the odds ratio as a measure of 2x2
association in a population. Stat Med. 2004;23(2):257-270.

2. Pepe MS, Janes H, Longton G, et al. Limitations of the odds ratio in
gauging the performance of a diagnostic, prognostic, or screening
marker. Am J Epidemiol. 2004;159(9):882—890.

3. Glas AS, Lijmer JG, Prins MH, et al. The diagnostic odds ratio: a single
indicator of test performance. J Clin Epidemiol. 2003; 56(11):1129—-1135.

4. Bohning D, Holling H, Patilea V. A limitation of the diagnostic-odds ratio
in determining an optimal cut-off value for a continuous diagnostic test.
Stat Methods Med Res. 2011;20(5):541-550.

5. Shapiro DE. Zhou XH, McClish DK, et al. Statistical methods in
diagnostic medicine, Wiley-Interscience; 2009:569.

6. Zhou XH, McClish DK, Obuchowski NA. Statistical methods in
diagnostic medicine, Wiley-Interscience; 2009:569.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Copyright:

©2017Yinetal. 102

Pepe MS. The statistical evaluation of medical tests for classification and
prediction.Oxford University Press, USA; 2004.

Zou KH, Liu A, Bandos A, et al. Statistical evaluation of diagnostic
performance: topics in ROC analysis. CRC Press, USA; 2010:245.

Bamber D. The area above the ordinal dominance graph and the
area below the receiver operating characteristic graph. Journal of
Mathematical Psychology. 1975;12(4):387-415.

Perkins NJ, Schisterman EF. The inconsistency of optimal cutpoints
obtained using two criteria based on the receiver operating characteristic
curve. Am J Epidemiol. 2006;163(7):670-675.

. Zou KH, Yu CR, Liu K, et al. Optimal thresholds by maximizing or

minimizing various metrics via roc-type analysis. Academic radiology.
2013;20(7):807— 815.

Schisterman EF, Perkins N. Confidence intervals for the youden index
and corresponding optimal cut-point. Communications in Statistics
Simulation and Computation R [1. 2007;36(3):549-563.

. Yin J, Tian L. Joint confidence region estimation for area under roc curve

and youden index. Stat Med. 2014;33(6):985-1000.

Gail MH, Green SB. A generalization of the one-sided two-sample
kolmogorov-smirnov statistic for evaluating diagnostic tests. Biometrics.
1976;32(3):561-570.

. Rucker G, Schumacher M. Summary roc curve based on a weighted

youden index for selecting an optimal cutpoint in meta- analysis of
diagnostic accuracy. Stat Med. 2010;29(30):3069-3078.

Dorfman DD, Alf E. Maximum-likelihood estimation of parameters of
signal-detection theory and determination of confidence intervals? rating-
method data. Journal of mathematical psychology. 1969;6(3):487-496.

Hanley JA. The robustness of the “binormal” assumptions used in fitting
roc curves. Medical Decision Making. 1988;8(3):197-203.

Zou KH, Hall W. Two transformation models for estimating an roc
curve derived from continuous data. Journal of Applied Statistics.
2000;27(5):621-631.

Hanley JA. The robustness of the” binormal”” assumptions used in fitting
roc curves. Med Decis Making. 1988;8(3):197-203.

Linnet K. Comparison of quantitative diagnostic tests: type i error,
power, and sample size. Stat Med. 1987;6(2):147-158.

Ma G, Hall W. Confidence bands for receiver operating characteristic
curves. Med Decis Making. 1933;13(3):191-197.

Working H, Hotelling H. Applications of the theory of error to the
interpretation of trends. Journal of the American Statistical Association.
1929;24(165A):73-85.

Demidenko E. Confidence intervals and bands for the binormal roc curve
revisited. J Appl Stat. 2012;39(1):67-79.

Yin J, Tian L. Generalized inference confidence band for binormal roc
curve. Statistics in Biopharmaceutical Research (just-accepted). 2015:1—
34.

Fluss R, Faraggi D, Reiser B (2005) Estimation of the youden index and
its associated cutoff point. Biom J 47(4): 458-472.

Lai CY, Tian L, Schisterman EF. Exact confidence interval estimation for
the youden index and its corresponding optimal cut-point. Comput Stat
Data Anal. 2012;56(5):1103-1114.

Wieand S, Gail MH, James BR, et al. A family of nonparametric
statistics for comparing diagnostic markers with paired or unpaired data.
Biometrika. 1989;76(3):585-592.

Molodianovitch K, Faraggi D, Reiser B. Comparing the areas under two

Citation: Yin J,Vogel RL. Using the ROC curve to measure association and evaluate Prediction accuracy for a binary outcome. Biom Biostat Int J.

2017;5(3):95-103. DOI: 10.15406/bbij.2017.05.001 34


https://doi.org/10.15406/bbij.2017.05.00134
http://onlinelibrary.wiley.com/doi/10.1002/sim.1714/full
http://onlinelibrary.wiley.com/doi/10.1002/sim.1714/full
https://www.ncbi.nlm.nih.gov/pubmed/15105181
https://www.ncbi.nlm.nih.gov/pubmed/15105181
https://www.ncbi.nlm.nih.gov/pubmed/15105181
https://www.ncbi.nlm.nih.gov/pubmed/14615004
https://www.ncbi.nlm.nih.gov/pubmed/14615004
https://www.ncbi.nlm.nih.gov/pubmed/20639268
https://www.ncbi.nlm.nih.gov/pubmed/20639268
https://www.ncbi.nlm.nih.gov/pubmed/20639268
https://www.crcpress.com/Statistical-Evaluation-of-Diagnostic-Performance-Topics-in-ROC-Analysis/Zou-Liu-Bandos-Ohno-Machado-Rockette/p/book/9781439812228
https://www.crcpress.com/Statistical-Evaluation-of-Diagnostic-Performance-Topics-in-ROC-Analysis/Zou-Liu-Bandos-Ohno-Machado-Rockette/p/book/9781439812228
http://www.sciencedirect.com/science/article/pii/0022249675900012
http://www.sciencedirect.com/science/article/pii/0022249675900012
http://www.sciencedirect.com/science/article/pii/0022249675900012
https://www.ncbi.nlm.nih.gov/pubmed/16410346
https://www.ncbi.nlm.nih.gov/pubmed/16410346
https://www.ncbi.nlm.nih.gov/pubmed/16410346
https://www.ncbi.nlm.nih.gov/pubmed/23582776
https://www.ncbi.nlm.nih.gov/pubmed/23582776
https://www.ncbi.nlm.nih.gov/pubmed/23582776
https://www.tandfonline.com/doi/abs/10.1080/03610910701212181
https://www.tandfonline.com/doi/abs/10.1080/03610910701212181
https://www.tandfonline.com/doi/abs/10.1080/03610910701212181
https://www.ncbi.nlm.nih.gov/pubmed/24123069
https://www.ncbi.nlm.nih.gov/pubmed/24123069
https://www.ncbi.nlm.nih.gov/pubmed/963171
https://www.ncbi.nlm.nih.gov/pubmed/963171
https://www.ncbi.nlm.nih.gov/pubmed/963171
https://www.ncbi.nlm.nih.gov/pubmed/21170902
https://www.ncbi.nlm.nih.gov/pubmed/21170902
https://www.ncbi.nlm.nih.gov/pubmed/21170902
http://www.sciencedirect.com/science/article/pii/0022249669900194
http://www.sciencedirect.com/science/article/pii/0022249669900194
http://www.sciencedirect.com/science/article/pii/0022249669900194
https://www.ncbi.nlm.nih.gov/pubmed/3398748
https://www.ncbi.nlm.nih.gov/pubmed/3398748
http://www.tandfonline.com/doi/abs/10.1080/02664760050076443
http://www.tandfonline.com/doi/abs/10.1080/02664760050076443
http://www.tandfonline.com/doi/abs/10.1080/02664760050076443
https://www.ncbi.nlm.nih.gov/pubmed/3398748
https://www.ncbi.nlm.nih.gov/pubmed/3398748
https://www.ncbi.nlm.nih.gov/pubmed/3589244
https://www.ncbi.nlm.nih.gov/pubmed/3589244
https://www.ncbi.nlm.nih.gov/pubmed/8412547
https://www.ncbi.nlm.nih.gov/pubmed/8412547
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1929.10506274
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1929.10506274
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1929.10506274
https://www.ncbi.nlm.nih.gov/pubmed/22523442
https://www.ncbi.nlm.nih.gov/pubmed/22523442
http://amstat.tandfonline.com/doi/abs/10.1080/19466315.2015.1093957?journalCode=usbr20
http://amstat.tandfonline.com/doi/abs/10.1080/19466315.2015.1093957?journalCode=usbr20
http://amstat.tandfonline.com/doi/abs/10.1080/19466315.2015.1093957?journalCode=usbr20
https://www.ncbi.nlm.nih.gov/pubmed/16161804
https://www.ncbi.nlm.nih.gov/pubmed/16161804
https://www.ncbi.nlm.nih.gov/pubmed/27099407
https://www.ncbi.nlm.nih.gov/pubmed/27099407
https://www.ncbi.nlm.nih.gov/pubmed/27099407
https://academic.oup.com/biomet/article-abstract/76/3/585/298253/A-family-of-nonparametric-statistics-for-comparing
https://academic.oup.com/biomet/article-abstract/76/3/585/298253/A-family-of-nonparametric-statistics-for-comparing
https://academic.oup.com/biomet/article-abstract/76/3/585/298253/A-family-of-nonparametric-statistics-for-comparing
https://www.ncbi.nlm.nih.gov/pubmed/17094340

Using the ROC curve to measure association and evaluate Prediction accuracy for a binary outcome

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

correlated roc curves: Parametric and non-parametric approaches. Biom
J.2006;48(5):745-757.

Tian L. Confidence intervals for p(yl >y2) with normal outcomes in
linear models. Stat Med. 2008;27(21):4221-4237.

Li CR, Liao CT, Liu JP. On the exact interval estimation for the difference
in paired areas under the roc curves. Stat Med. 2008; 27(2):224-242.

Yin J, Tian L. Joint inference about sensitivity and specificity at the
optimal cut-off point associated with youden index. Computational
Statistics & Data Analysis. 2014;77:1-13.

Bantis LE, Nakas CT, Reiser B. Construction of confidence regions in the
roc space after the estimation of the optimal youden index-based cut-off
point. Biometrics. 2014;70(1):212-223.

Tsui KW, Weerahandi S. Generalized p-values in significance testing
of hypotheses in the presence of nuisance parameters. Journal of the
American Statistical Association. 1989;84(406):602—607.

Weerahandi S. Generalized confidence intervals. J Am Stat Assoc.
1993;88(423):899-905.

Faraggi D, Reiser B. Estimation of the area under the roc curve. Stat
Med. 2002;21(20):3093-3106.

Schisterman EF, Faraggi D, Reiser B, et al. Roc analysis for markers with
mass at zero. Statistics in medicine. 2006;25(4):623—638.

Schisterman EF, Reiser B, Faraggi D. Roc analysis for markers with
mass at zero. Statistics in medicine. 2006;25(4):623-638.

Sakia R. The box-cox transformation technique: a review. The statistician.
1992;169-178.

39.

40.

41.

42.

43.

44,

45.

46.

47.

Copyright:

©2017Yinetal. 103

Percy ME, Andrews DF, Thompson MW. Duchenne muscular dystrophy
carrier detection using logistic discrimination: serum creatine kinase,
hemopexin, pyruvate kinase, and lactate dehydrogenase in combination.
American journal of medical genetics.1982;13(1): 27-38.

Metz CE, Pan X. Proper binormal roc curves: theory and maximum-
likelihood estimation. J Math Psychol. 1999;43(1):1-33.

Dorfman DD, Berbaum KS, Metz CE, et al. Proper receiver operating
characteristic analysis: the bigamma model. Acad Radiol. 1997;4(2):138—
149.

WALSH SJ. Limitations to the robustness of binormal roc curves: effects
of model misspecification and location of decision thresholds on bias,
precision, size and power. Stat Med. 1997;16(6):669-679.

Kang L, Liu A, Tian L. Linear combination methods to improve
diagnostic/prognostic accuracy on future observations. Stat Methods
Med Res. 2013;22(4):1359-1380.

Liu C, Liu A, Halabi S. A min-max combination of biomarkers to
improve diagnostic accuracy. Stat Med. 2011;30(16):2005-2014.

Pepe MS, Thompson ML. Combining diagnostic test results to increase
accuracy. Biostatistics. 2000;1(2):123-140.

SuJQ, Liu JS. Linear combinations of multiple diagnostic markers. J Am
Stat Assoc. 1993;88(424):1350-1355.

Yin J, Tian L. Optimal linear combinations of multiple diagnostic
biomarkers based on youden index. Stat Med. 2014;33(8):14.

Citation: Yin J,Vogel RL. Using the ROC curve to measure association and evaluate Prediction accuracy for a binary outcome. Biom Biostat Int J.
2017;5(3):95-103. DOI: 10.15406/bbij.2017.05.00 134


https://doi.org/10.15406/bbij.2017.05.00134
https://www.ncbi.nlm.nih.gov/pubmed/17094340
https://www.ncbi.nlm.nih.gov/pubmed/17094340
https://www.ncbi.nlm.nih.gov/pubmed/18407578
https://www.ncbi.nlm.nih.gov/pubmed/18407578
http://onlinelibrary.wiley.com/doi/10.1002/sim.2760/abstract
http://onlinelibrary.wiley.com/doi/10.1002/sim.2760/abstract
http://www.sciencedirect.com/science/article/pii/S0167947314000450
http://www.sciencedirect.com/science/article/pii/S0167947314000450
http://www.sciencedirect.com/science/article/pii/S0167947314000450
https://www.ncbi.nlm.nih.gov/pubmed/24261514
https://www.ncbi.nlm.nih.gov/pubmed/24261514
https://www.ncbi.nlm.nih.gov/pubmed/24261514
https://www.jstor.org/stable/2289949?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/2289949?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/2289949?seq=1#page_scan_tab_contents
http://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476355
http://www.tandfonline.com/doi/abs/10.1080/01621459.1993.10476355
https://www.ncbi.nlm.nih.gov/pubmed/12369084
https://www.ncbi.nlm.nih.gov/pubmed/12369084
https://www.ncbi.nlm.nih.gov/pubmed/16345033
https://www.ncbi.nlm.nih.gov/pubmed/16345033
https://www.ncbi.nlm.nih.gov/pubmed/7137219
https://www.ncbi.nlm.nih.gov/pubmed/7137219
https://www.ncbi.nlm.nih.gov/pubmed/7137219
https://www.ncbi.nlm.nih.gov/pubmed/7137219
https://www.ncbi.nlm.nih.gov/pubmed/10069933
https://www.ncbi.nlm.nih.gov/pubmed/10069933
https://www.ncbi.nlm.nih.gov/pubmed/9061087
https://www.ncbi.nlm.nih.gov/pubmed/9061087
https://www.ncbi.nlm.nih.gov/pubmed/9061087
https://www.ncbi.nlm.nih.gov/pubmed/9131755
https://www.ncbi.nlm.nih.gov/pubmed/9131755
https://www.ncbi.nlm.nih.gov/pubmed/9131755
https://www.ncbi.nlm.nih.gov/pubmed/23592714
https://www.ncbi.nlm.nih.gov/pubmed/23592714
https://www.ncbi.nlm.nih.gov/pubmed/23592714
https://www.ncbi.nlm.nih.gov/pubmed/21472763
https://www.ncbi.nlm.nih.gov/pubmed/21472763
https://academic.oup.com/biostatistics/article/1/2/123/438521/Combining-diagnostic-test-results-to-increase
https://academic.oup.com/biostatistics/article/1/2/123/438521/Combining-diagnostic-test-results-to-increase
http://www.people.fas.harvard.edu/~junliu/TechRept/93folder/linear.pdf
http://www.people.fas.harvard.edu/~junliu/TechRept/93folder/linear.pdf
https://www.ncbi.nlm.nih.gov/pubmed/24311111
https://www.ncbi.nlm.nih.gov/pubmed/24311111

	Abstract
	Keywords
	Introduction
	Basics about the ROC curve 
	Binormal model for ROC analysis 
	Under binormality 
	The Box-Cox transformation for cases without binormality

	Data example of binormal ROC analysis 
	Summary and discussion 
	Acknowledgement
	Conflict of interest 
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5 
	Figure 6
	Figure 7
	Figure 8
	Table 1
	Table 2 
	Table 3
	Table 4

