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Introduction
Logistic regression and its corresponding odds ratio(s) (OR) 

are the most popular measure of association between a continuous 
or categorical variable with a binary outcome in epidemiology. For 
example, in epidemeology, we would be interested in the association 
between health status and life style measures. For a significantly 
associated predictor of a binary outcome, we can estimate the 
probability of a random observation being in one category and classify 
the observation into two groups based on the value of the predictor. 
For example, it is believed that arsenic exposure is associated with 
blackfoot disease. Such exposure can be continuous, i.e., the level 
of chronic arsenic exposure through drinking water, or binary, i.e., 
exposed versus non-exposed. However, using logistic regression 
and the odds ratio sometimes produces results that are puzzling and 
misleading: Kraemer and Pepe et al.,1,2 provided very good discussions 
about the paradoxical situations about the odds ratio, especially in the 
presence of strongly associated predictors. 

The odds ratio is the ratio between the odds of an outcome event 
of interest in one category of the predictor variable versus the odds 
of the same event in the other category of the predictor. For example, 
the odds ratio of arsenic exposure for blackfoot disease is defined 
as the ratio between the odds of getting the blackfoot disease in the 
exposed group versus the odds in the non-exposed group. Commonly, 
a variable associated with a binary outcome is interpreted as a rule for 
classification or prediction of the binary outcome. In order to predict 
or classify subjects into two categories, a cut-off point/threshold is 
needed if the predictor is continuous. Similarly, if the predictor is 
categorical with more than two levels, then a grouping of neighboring 
categories is needed. For example, in the field of medical diagnostics, 
some continuous biomarkers that are associated with the disease 
outcome are used to identify the sub-clinical diseased individuals. In 
medical diagnostics, it is common to assume that the diseased subject 
generally has a larger biomarker value than the healthy subject. In 
practice, sometimes a transformation of the biomarker values is 
necessary in order to meet such assumption. For example, HIV 
patients generally have lower CD4 cell counts, so we can transform 
the biomarker values as the reciprocal of the CD4 cell counts. An 
individual receives a positive diagnosis if his/her biomarker value 
of the diagnostic test is greater than the threshold; otherwise the 
diagnosis is considered “negative”. Generally, physicians determine 
the true disease status by the long-established reference standard, 

which is sometimes called the “gold standard”. Finally, for evaluation 
of the prediction accuracy of a biomarker/diagnostic test for the true 
disease status, a two-by-two association table is formed as in Table 1. 

In practice, the diseased and the healthy population distributions 
generally overlap, which means there exist diagnostic errors. The 
false negative (FN) is “those who have disease and are diagnosed 
as negative” and the false positive (FP) is “those who do not have 
disease and are diagnosed as positive”. The corresponding correct 
cases are the true positive (TP) and the true negative (TN), which 
are “those who have disease and are diagnosed as positive” and 
“those who do not have disease and are diagnosed as negative”, 
respectively. The proportion of true positives among the diseased 
population is commonly referred as the sensitivity and the proportion 
of true negatives among the healthy population as the specificity. The 
sensitivity and specificity characterize the diagnostic accuracy under 
the diseased and the healthy populations, respectively. Mathematically, 
the sensitivity and specificity are 

The odds ratio in medical diagnostic setting is referred as the 
diagnostic odds ratio (DOR), which is defined as the ratio of the odds 
of a positive result of a diagnostic test in the diseased population 
relative to that in the non-diseased population.3 Equivalently, the DOR 
is the ratio of the odds of the disease among the test positives versus 
that in the test negatives: 

Generally, an odds ratio of 1 indicates no association between 
the predictor and the outcome. Therefore, a DOR=1 means that the 
diagnostic test does not discriminate better than random chance 
between the diseased patients and those without the disease. The DOR 
rises steeply when one of the pair (sensitivity, specificity) becomes 
nearly perfect, while the other one of the pair may stay unsatisfactory. 
For example, when 0.99sensitivity = and 0.5specificity = ,

99DOR = . However, the total correct classification rate is 
1.49sensitivity specificity+ =  which indicates a moderate predictor 

for diagnosis. Furthermore, a large value of the DOR sometimes 
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have very wide confidence intervals. Additionally, for a continuous 
predictor, in order to make a prediction or a classification for a 
binary outcome, a cut-off point or threshold value is needed which 
is usually estimated by some optimization criteria. Bohning et al.,4 
found that determining an optimal cut-off value via maximizing the 
DOR might lead to optimal cut-off estimates on the boundary of the 
parameter range, which clearly is not an “optimal” cut-off value to 
use for classification. In summary, a predictor with a large DOR does 
not necessarily yield good prediction. Therefore, we need alternative 
approaches for evaluating associations. In this paper, we recommend 
the use of the Receiver Operating Characteristic (ROC) curve. 
Table 1 Contingency table of reference standard versus diagnostic test result

Reference standard

Diseased Healthy

Diagnostic Positive TP FP

test result Negative FN TN

 TP: True Positive; TN: True Negative; FP: False Positive; FN: False Negative 

In the following, we introduce the basics of the ROC curve and 
its summary indices in section 2. Section 3 present a parametric 
approach for making inference for the ROC analysis using binormal 
model under the assumption of binormality (i.e., both the diseased and 
healthy populations are normally distributed). In section 4, we discuss 
the use of the Box-Cox transformation for non-normally distributed 
data. Section 5 illustrates the binormal ROC analysis using a real data 
set. Finally we give a summary and discussion in section 6.

Basics about the ROC curve
For a continuous predictor, at each of the pre-specified threshold 

values, paired values of sensitivity and specificity can be computed. 
The Receiver Operating Characteristic (ROC) curve is a graph plotting 
the pair of (1− specificity, sensitivity) for all possible threshold values. 
Therefore, this graph demonstrates a trade-off phenomena between 
sensitivity and specificity. The ROC curve is an important and popular 
tool for the evaluation of the diagnostic tests. It can be used to 
demonstrate associations between a continuous variable for a binary 
outcome, as well as help to evaluate the accuracy of the prediction 
and classification based on a continuous variable. Extensive statistical 
research has been done in this field and there are several excellent 
reviews of statistical methods involving ROC curves.5-8

In theory, the ROC curve of a perfect diagnostic test would be 
the one connecting points (0,0), (0,1) and (1,1). The point (0,1) is 
sometimes referred as the perfection point. Some practitioners may 
compare different diagnostic tests for the same disease based on 
visual inspection of the estimated ROC curves that do not overlap. 
The optimal test is the one with the ROC curve bending most towards 
the perfection point. However, this is not applicable for situations 
when the fitted ROC curves cross each other, which frequently occurs 
in practice. Furthermore, even if the fitted ROC curves do not overlap, 
due to sampling variability, such visual inspection of the estimated 
ROC curves is still not a valid approach to make formal comparisons 
between tests. Therefore, there is a need for some type of formal index 
to summarize the ROC curve. Among all summary measures of the 
ROC curve, the area under the ROC curve (AUC) is very popular.

The AUC can be calculated by the integration of the ROC 
curve with respect to the false positive rate over [0,1]. The AUC is 
an overall summary of the ROC curve across all thresholds which 

is invariant to the prevalence of the disease and the choice of the 
diagnostic threshold. Under the assumption that a larger biomarker 
value indicates greater likelihood of the disease, Bamber and Donald8 
showed that the AUC equals the probability of the marker value D 
of a randomly selected subject from the diseased population being 
greater than the marker value H of a randomly selected subject from 
the healthy population. This is denoted as ( )AUC Pr D H= > . The 
AUC is more useful for evaluating a diagnostic test at early stages, 
for which the primary purpose is to pick up candidate tests with 
discriminating potentials. However, as a single index, the AUC lacks 
details about the trade-off between sensitivity and specificity, hence it 
cannot measure and balance the respective cost of the false positives 
and the false negatives. For different types of disease, the clinical-
meaningful range of the sensitivity and specificity would vary. 
Therefore, the partial area under the ROC curve ( )pAUC , which is 
obtained by integrating the ROC curve over a predetermined range 
of the false positive rate, would be more appropriate than the AUC 
for this purpose. Alternatively, sensitivity at a predetermined false 
positive rate can be used for specific applications.

For the purpose of making a diagnosis, a diagnostic threshold for 
the test is required. As the AUC is a global summary measure across 
all possible thresholds, separate computation after the AUC evaluation 
is needed to derive the optimal cut-off point for making diagnosis. 
Furthermore, the global measure AUC lacks direct link to the sensitivity 
and specificity, hence it is rather abstract for clinicians to understand 
and compute. For selecting an “optimal” diagnostic cut-off point, 

there exist a variety of approaches.10,11 Among them, the Youden index 

J , defined as ( ) ( ){ }max 1sensitivity c specificity cc + − , is very popular 

since it ties nicely into the ROC framework and it has a closed-form 
solution under normality.12 The cut-off point determined via the Youden 
index maximizes the overall correct classification rate (i.e., sum of 
sensitivity and specificity) and assigns equal weight to the sensitivity 
and the specificity. The Youden index has a clinical interpretation as 
a direct measure of the maximum diagnostic accuracy that a marker 
can achieve. Another advantage of the Youden index over the AUC 
is that it can detect differences other than in location while the AUC 
can only detect location differences between the diseased and healthy 
samples.13 Graphically, the Youden index is the maximum vertical 
distance between the ROC curve and the chance line. It measures the 
difference of the diagnostic accuracy of a marker and that determined 
by random chance. In order to give varying weights for sensitivity 

and specificity, the weighted Youden index was proposed14,15 and is 

expressed as ( ) ( ) ( ){ }max * * 1s 1W ensitivity c W specificity cc + − −  with 

predetermined weights W and 1 W− .

Binormal model for ROC analysis
For the ROC analysis, sometimes, parametric assumptions are 

made on the distributions of the marker measurements for both 
healthy and diseased groups. The binormality assumption is the 
most popular as it utilizes many properties of the normal distribution 
and hence is the most straightforward for applications in practice. 
When the two discriminating populations are normally distributed 
or can be simultaneously transformed to normal after some 
monotonic transformation, the corresponding ROC curve satisfies 
the binormality assumption and is thus called the binormal ROC 
curve.16-18 Hanley19 listed some primary justifications of applying the 
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binormal model for fitting the ROC curves. These includes “Gaussian 
distribution is natural for many situations”, “Other distributions can 
be approximated by Gaussian”, “The ROC curve is invariant under 
monotonic transformation of marker values” and “Mathematical 
convenience based on nice properties of normality.” The binormal 
ROC model provides a basis for parametric estimation and inference 
about the ROC curve and its summary indices. The binormal model 
generally fits well for continuous marker values. It is also robust for 
rating data on an ordinal scale assuming a continuous latent variable 
under large sample assumption.19 This article focuses on the binormal 
model fitted explicitly on the continuous biomarker values. 

For making inference about the ROC curve using the binormal 
model, Linnet20 developed a parametric approach based on maximum 
likelihood estimation for sensitivity given a fixed value of specificity 
or false positive rate. The confidence interval about sensitivity at a 
single value of specificity or false positive rate can also be considered 
as the pointwise confidence interval for the ROC curve. For making 
inference about the whole or partial ROC curve and maintaining the 
type I error within the range of specificity, the simultaneous confidence 
band needs to be estimated. Ma and Hall21 proposed a parametric 
confidence band of the ROC curve by applying the binormal model 
and extending the Working and Hotelling22 confidence band for a 
regression line. Demidenko23 proposed an ellipse-envelope confidence 
band under binormality for the ROC curve. Yin and Tian24 proposed a 
generalized inference confidence band for the ROC Curve.

For the Youden index and its associated optimal cut-point, some 
researchers examined different estimation and inference methods 
under binormal assumption. For example, Fluss et al.,25 compared 
parametric methods with and without the Box-Cox transformation; 
Schisterman and Perkins12 proposed asymptotic confidence intervals 
based on bi-normal and bi-gamma models; Lai and Tian26 applied the 
generalized inference method. For making inference about the AUC 
using the binormal model, Wieand et al.,27 applied the delta method 
based asymptotic results to construct a test of difference between two 
AUCs in a paired design. Molodianovitch et al.,28 applied the Box-
Cox transformation for non-normal data and then applied the method 
of Wieand et al.,27 on the transformed data. Tian29 and Li et al.,30 
applied the generalized pivotal quantity approach to obtain the exact 
confidence intervals for single AUC and paired AUC respectively. 
Recently, the parametric joint inference under binormality for two or 
more ROC summary indices were proposed. For example, Yin and 
Tian30 proposed joint confidence region estimation of the AUC and the 
Youden index based on the asymptotic delta method and generalized 
inference approach. Yin and Tian31 and Bantis et al.,32 used similar 
approaches for joint inference about sensitivity and specificity at the 
optimal threshold value associated with the Youden index. 

Under binormality

Let ( )2
11 1,Y Normal µ σ  and ( )2

22 2,Y Normal µ σ  denote 

diagnostic marker measurements for the diseased and the healthy 

populations respectively. The cumulative distribution function (cdf) 

for the two populations is denoted as ( ) ( )i
Y

i

t
F ti

µ
σ
−

= Φ  for 1,2i =

. Assume that 1y and 2y are independent. Without loss of generality, 

assume that 1 2µ µ> . Zou and Hall18 stated that the ROC curve is 

completely determined by the parameters α and β which are defined as 

					                           (1)

Under binormality, given the false positive rate ( )p , the ROC 
curve can be expressed as 

	

Sensitivity and specificity at any known threshold c are expressed 
as 

		

						          (2)

where ( ).Φ denotes the standard normal cumulative distribution 
function.

The optimal cut-point 0c  associated with Youden index can be 

obtained by maximizing 2 1

2 1

c cJ µ µ
σ σ

   − −
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to c. Hence the optimal cut-point 0c  is achieved at the intersection 
of the two normal density functions of the healthy and the diseased 
groups which gives largest separation of the two populations. Denote 
the optimal threshold value associated with the Youden index as 0c  
and it is obtained by 

	 0c 	 =	 ( ) ( ){ }1 2arg max 1c p c p c+ − 	 (3)

		  =	 ( ) ( ){ }12argmax Y YF c F c
c

= +

Youden index ( )J  is 

	

and the sensitivity (P1) and specificity (P2) at the optimal threshold 
co selected by the Youden index are 

	

Schisterman and Perkins11 presented the Youden index ( )J and the 

optimal cut-off value ( )0c  as functions of 'i sµ  and 'i sσ  ( )1,2i =

. Based on two binormal parameters in (1), we can derive the Youden 

index as a function of α and β. When 1 2σ σ≠  (i.e. β≠1), co can be 
expressed as 
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and hence j  is calculated to be 
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When variances for the healthy and the diseased groups are the 

same and equal to 2σ , i.e. 1β = , then 1 2
0 2

c µ µ+
=  and J can be 

obtained correspondingly as 

	

The optimal cut-off point associated with the Youden index 
is the only optimal estimation with a closed-form solution under 
binormality. Therefore, among all cut-off point selection criteria, the 
one based on the Youden index is the most straightforward approach 
for clinicians to apply directly.

The AUC is calculated by integration of the ROC curve function 
with respect to false positive rate (p) from 0 to 1: 

	

Under normality, AUC can be expressed as a function of α and β: 

 

						      (6)

Since all the aforementioned ROC indices have closed-form 
solutions, which are functions of normal means and variances, 
substituting the sample means and variances of the observed data into 
corresponding expressions, e.g., (4), (5) and (6), provides the large-
sample estimates of these ROC indices. For making inferences about 
these ROC indices, we must derive the large-sample variances of 
these estimates. This can be achieved by applying the large-sample 
delta method. However, there are times such as when making a joint 
inference about several ROC indices, when it is challenging and 
labor intensive to derive a closed-form solution for the asymptotic 
variance matrix by the large sample delta method. In such situations, 
some alternative simulation based methods can be applied, such as the 
parametric bootstrapping or the generalized inference approach based 
on simulated generalized pivots.33,34 After obtaining the point estimate 
and the variance estimate of corresponding ROC indices of interest, 
it is straightforward to derive the confidence interval or region and 
the test statistics for hypothesis testing using standard z-test type of 
approach for univariate case and chi-square-test type of approach for 
multivariate case. There may be times when the obtained confidence 
interval or region is not bounded by the meaningful range of the ROC 
index. When this happens, it is recommended to apply a logit or a 
arcsin-square-root transformation for both univariate and multivariate 
inference problems. Alternatively, if the parametric bootstrapping or 
the generalized inference approach is applied, the lower and upper 
limits of the confidence intervals can be estimated by the quantiles of 
the simulated bootstrap samples or generalized pivots. 

The Box-Cox transformation for cases without 
binormality

When normality is not satisfied, it is a standard practice to use 
the Box-Cox transformation to approximate normality in diagnostics 

due to the fact that the ROC curve is invariant under monotonic 
transformations. This type of approach is very popular and has been 
shown to perform very well for a wide variety of situations in ROC 
studies.28,25,18,35-37 For review of Box-Cox transformation in general, 
see Sakia.38

For the ( )1,....,th
ij j n= subject in the thi  group (i=1,2) with each 

group having in observations, let 

			 

					   

					                              (7)

where it is assumed that ( ) ( ). .
2,

i i d

ij i iY Nλ µ σ . Based on the 

observations from the healthy and the diseased group, the log-
likelihood function can be simplified as follows: 

		

						    

						              (8)

The maximum likelihood estimate (MLE) of λ can be obtained by 
maximizing the function in (8). As the same transformation is used for 
both the diseased and the healthy populations, we are required to take 
the same transformation for both groups to approximate binormality. 
After applying the Box-Cox transformation, the binormal-model 
based inference approaches can be readily applied for the transformed 
data.

There are some alternative versions of Box-Cox transformation. 
For example, only positive Y values are allowed in the Box-Cox 
transformation equation in (7). In order to address such a limitation, 
it is suggested to apply the shifted power transformation [36] with 
the form

	

where 1λ  is the Box-Cox transformation parameter and 2λ  is a 
fixed value such that ( ) 2min ijY λ> − . This adjustment is the same as 
moving the whole data distribution towards right by a value of 2λ .

It is important to note that the range of ( )( )
ijY

λ
is restricted 

according to whether λ is positive or negative. This implies that the 
transformed values do not cover the entire real line, which provides 
only approximate normality for the Box-Cox transformed data set.

For non-normal data, researchers generally apply the Box-Cox 
transformation first to approximate binormality for the original data 
and then the binormal model is applied based on the transformed 
approximately normal data. Therefore, the parameter λ is assumed to 
be fixed when applying the binormal model and the delta method. 
Bantis et al.,32 discussed that as λ is a parameter in the likelihood 
function, the information matrix should include it in addition to the 
normal means and variances, resulting in an information matrix of 
the normal parameters that is no longer diagonal. It has been shown 
to perform well for univariate inference problems in the ROC analysis 
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context. However, it does not perform satisfactorily under multivariate 
situations13,31 due to the lack of consideration of the variability of λ, 
when the Box-Cox transformation completely separates from the 
estimation process under binormality using the delta method. 

In order to take into account the variability of λ , Bantis et al.,32 
proposed to apply the standard asymptotic delta method incorporating 
λ in the information matrix of normal means and variances in 
order to calculate the variance of the corresponding ROC index/
indices. Alternatively, they proposed to generate bootstrap samples 
parametrically under binormality to allow λ to vary for each bootstrap 
sample, and then use the transformed samples to calculate the bootstrap 
variance matrix. They demonstrated significant improvements through 
a simulation study in terms of the coverage probability of the proposed 
confidence region of sensitivity and specificity at the optimal cut-off 
point associated with Youden index when taking the variability of λ 
into account. Even though empirically, the performance of Box-Cox 
transformation under univariate case is satisfactory and not as sensitive 
as the multivariate case, the process assuming fixed λ is theoretically 
not sound. Therefore, we recommend future researchers to take into 
account of the variability of λ when calculating the variances of the 
ROC indices for both univariate and multivariate scenarios in ROC 
analysis. 

Data example of binormal ROC analysis
Duchenne muscular dystrophy (DMD) is a recessive X-linked 

form of a genetic disorder. It is characterized by progressive muscular 
degeneration and weakness. It is caused by the mutation in the gene 
for dystrohin, which is a protein found in the muscle. Because of the 
way the disease is inherited, the female carriers are unaware of this 

mutation until they have an affected son. Percy et al.,39 presented data 
of four different DMD markers, namely serum creatine kinase (CK), 
hemopexin (HPX), pyruvate kinase (PK) and lactate dehydrogenase 
(LD). Complete data is available on 66 female carriers with affected 
sons and 127 female controls. For illustrative purposes, markers CK 
and HPX are used in this section.

Figures 1 and 2 presents Q-Q plots of markers CK and HPX, 
respectively, for the control and carrier groups. It can be seen that 
marker HPX is normally distributed for both groups, while marker 
CK is not. The Box-Cox transformation is applied for marker CK and 
the estimate of the Box-Cox parameter λ is obtained by maximizing 
the log-likelihood function of the data set as in (8), which is estimated 
to be −0.345. Figure 3 give the Q-Q plots of the Box-Cox transformed 
CK marker values, and we can see that both diseased and healthy 
groups are normally distributed. The binormal model is applied on 
the Box-Cox transformed CK values and the original HPX values. 
Both the binormal and the non-parametric empirical ROC curves 
are estimated and the corresponding Working Hotelling22 type of 
confidence band is plotted with the empirical and the binormal ROC 
curves (see Figures 4 and 5). The reason for the confidence band being 
narrow is due to the relatively large sample sizes of this data set. We 
will use the Box-Cox transformed CK marker values for illustrating 
the univariate inferences in the ROC context and HPX marker for the 
multivariate inferences. 

Table 2 gives the contingency table for marker CK at the cut-off 
point associated with the Youden index, which can be calculated from 
(4) using the binormal model. For table 3, the optimal cut-off point for 
the diagnosis based on marker CK is determined by maximizing the 
DOR or equivalently, the logarithm of DOR, i.e.,               			

		  ( )( ) 1 2 1 2

1 2 1 2
max log log log log logOR c

c c c cc DOR c µ µ µ µ
σ σ σ σ

               − − − − = = Φ + Φ − Φ − Φ                                             
. 

For this data set, the DOR does not reach its maximum within the 
observed range of cut-off point, so we select a point on the boundary. 
The maximum CK value of 2.6535 is chosen to be the optimal cut-off 
point. This situation is not rare, as Bohning et al.,4 concluded that the 
DOR criteria for optimizing the cut-off point can “easily lead to cut-
off point on the boundary of the parameter range”. 

Table 4 summarizes the point and interval estimates for the AUC, 
the Youden index ( )J and the diagnostic odds ratios (DOR) at the 
optimal cut-off point corresponding to the maximum Youden index 

( )Jc  and the maximum ( )ORDOR c for marker CK. When the cut-

off point selected corresponds to the maximum DOR, the estimate 
for the DOR is infinity and therefore, no valid confidence interval 
can be calculated. Even at the optimal cut-off point with the Youden 
index, the DOR estimate still has a relatively wide confidence interval. 
However, both ROC indices, i.e., the AUC and the Youden index 
always yield bounded confidence intervals within the range of [0,1].
Table 2 Contingency table of marker CK at the optimal cut-off point with the 

Youden index ( 2.1837jc = )

Diseased Healthy

Diagnostic >2.1837 47 17

test result1 ≤2.1837 19 110

 1: The diagnosis is based on the Box-Cox transformed marker value 

In Figure 7, the joint confidence region of the sensitivity and the 
specificity at the optimal cut-off point associated with the Youden 
index are plotted for marker HPX, along with the rectangular region 
formed by respective confidence intervals of the sensitivity and the 
specificity after the Bonferroni correction. The Bonferroni-corrected 
method is commonly used for adjusting multiple testing in practice 
due to its straightforward application. However, it is known to give 
conservative results. Similarly, Figure 8 gives the joint confidence 
region of the AUC and the Youden index for marker HPX along with 
the rectangular Bonferroni region. From Figure 8, since the correlation 
between the AUC and the Youden index is very high, the advantages 
of the joint confidence region are significant.

Table 3 Contingency table of marker CK at the optimal cut-off point with the 
maximum DOR ( 2.6535)ORc =

Diseased Healthy

Diagnostic 22.6535> 0 0

test result1 ≤2.6535 66 127

1:The diagnosis is based on the Box-Cox transformed marker value.
2:Since the DOR does not reach its maximum within the observed range of 
cut-off point (as shown in Figure 6), the maximum CK value (2.6535) is thus 
chosen to be the optimal cut-off point.
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Figure 1 Q-Q plots of marker CK. Values from both the diseased and 
the healthy groups are not normally distributed, therefore, Box-Cox 
transformation is needed.

Figure 2 Q-Q plots of marker HPX. Values from both the diseased and the 
healthy groups are normally distributed.

Figure 3 Q-Q plots of the Box-Cox transformed values of marker CK. After 
Box-Cox transformation, the values from both the diseased and the healthy 
groups are normally distributed.

Figure 4 The estimated binormal ROC curve (bold), empirical ROC curve (step 
line) and the 95% confidence bands (CB) of the ROC curve. The binormal ROC 
curve and the corresponding Working Hotelling confidence band22 are fitted 
on the Box-Cox transformed values of marker CK.

Figure 5 The estimated binormal ROC curve (bold), empirical ROC curve (step 
line) and the 95% confidence bands (CB) of the ROC curve. The binormal ROC 
curve and the corresponding Working Hotelling confidence band22 are fitted 
on the original values of marker HPX.

Table 4 Summary of point and interval estimates about the AUC, the Youden 

index ( )J and the diagnostic odds ratios (DOR) at the optimal cut-off point 

corresponding to the maximum Youden index ( )Jc  and the maximum 

( )ORDOR c  for marker CK

AUC J ( )JDOR c ( )ORDOR c

Point Est. 0.8721 0.6113 19.9650 inf

95% C.I. (0.8157, 0.9284) (0.5132, 0.7093) (7.65 , 33.48) -

1: The cut-off estimate is for the Box-Cox transformed CK values.
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Figure 6 Logarithm of the DOR values across all possible values of the cut-off 
point for marker CK of the data set.

Figure 7 The 95% joint confidence region of the sensitivity and the specificity 
at the optimal cut-off point associated with the Youden index for marker HPX. 
Since both the sensitivity and the specificity are given at the same cut-off 
point which is estimated by all samples from the two populations. Therefore, 
the sensitivity and the specificity at the optimal cut-off point are correlated 
(the sample correlation is −0.26 for this data set). Meanwhile, the rectangular 
region formed by respective individual confidence intervals adjusted by the 
Bonferroni correction is also plotted to compare with the joint elliptical 
region. The joint confidence region is estimated by the generalized inference 
approach, which automatically account for the correlation structure through 
simulations. The joint confidence region is given by the elliptical equation 

( ) ( )2 2

2 2

0.7590 0.6179
1

0.1298 0.0956

x y− −
+ =

with major axis being in the direction 

of vector ( )1, 1.7237 T± − and with point (0.7590,0.6179) as the origin. The 
individual confidence intervals are calculated by the lower and upper 0.05/4 
percentiles of the simulated generalized pivotal quantities. The 97.5% adjusted 
confidence interval for sensitivity is (0.6418,0.8370), and that for specificity is 

(0.4957,0.7188).

Figure 8 The 95% joint confidence region of the AUC and the Youden index 
and the rectangular region formed by respective individual confidence intervals 
adjusted by the Bonferroni correction for marker HPX. The joint confidence 
region is estimated by the large sample delta method, for which the variance 
matrix of AUC and Youden index is calculated analytically. The joint confidence 

region is given by the elliptical equation 
( ) ( )2 2

2 2

0.7523 0.3802
1

0.1840 0.0146

x y− −
+ =  

with major axis being in the direction of vector ( )1,1.5975 T± and with point 

(0.7523,0.3802) as the origin. The adjusted individual confidence intervals are 

calculated by the standard z-test at the confidence level of 97.5%, and it is 
(0.6747,0.8300) for the AUC and (0.2571,0.5033) for the Youden index. Since 
the AUC and Youden index are highly correlated, the rectangular region formed 
by Bonferroni approach is very conservative (as its area is much larger than 
that of the ellipse) and has less likelihood to successfully reject the multivariate 
outliers (e.g., point (0.7,0.45) in red).

Summary and discussion
Logistic regression and its corresponding odds ratio are the most 

popular measures of association between a continuous or categorical 
variable with a binary outcome in epidemiology, but it often produces 
results that are puzzling and misleading. A predictor with a large DOR 
does not necessarily yield a good prediction. Also, the DOR is not 
a proper measure of prediction accuracy for a strongly associated 
variable since the DOR will be very large and even close to infinity 
with wild confidence intervals. Henceforth, we need alternative 
approaches for evaluating strong association. In this paper, we 
recommend the use of the Receiver Operating Characteristic (ROC) 
curve. The most straightforward parametric approach to estimate the 
ROC curve and make inference about the ROC curve and its related 
summary indices is the binormal model. 

The classical binormal model with two parameters has some 
limitations. Specifically, it does not fit well for “degenerate” data set. 
Metz and Pan40 suggested that the fitted ROC curve by the classical 
binormal model always lie partly below the diagonal line, and such 
phenomena is especially obvious for degenerate data. The sensitivity 
is not a monotonic increasing function with respect to the false 
positive rate, as is supposed to be by the ROC theory. Therefore, 
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for such degenerate data, the binormal ROC curve is not “proper”. 
Alternative parametric models were proposed when the conventional 
binormal model is no longer appropriate, including the “proper” 
binormal model41 and the “proper” bigamma model.41 Particularly, 
the “proper” binormal model contains three parameters by making 
diagnostic decisions based upon some monotonic transformations 
of the likelihood ratio of the bi-normally distributed random marker 
values. Unlike the two-parameter classical binormal model, the ROC-
related indices may not have closed-form solutions expressed by 
the three parameters, which can be an interesting problem for future 
research.

When normality is not satisfied for either the diseased or the healthy 
population, it is a common practice to use Box-Cox transformation to 
achieve binormality in diagnostic studies. This is achieved due to the 
fact that ROC curve is invariant under monotonic transformations. An 
issue about the application of the binormal model in the ROC context 
is that it is not a very robust approach under violations of binormality 
assumption.42 Sometimes it is impossible to approximate normality 
well enough for both populations under a common transformation 
with the same λ. In such situation, the non-parametric bootstrap 
methods based on empirical estimates or kernel-smoothed estimates 
of the ROC curves or its summary indices has been shown to perform 
very well and are easily applied. For example, see Faraggi and Reiser35 

and Fluss et al.,25 for single indices, Yin and Tian13 and Bantis et al.,32 
for joint inference.

If multiple variables are believed to associate with the binary 
outcome of interest collectively but not individually, it is recommended 
to combine the variables to a composite score or function. In the 
context of the ROC analysis, researchers have proposed combining 
the multiple predictors by maximizing the ROC indices, such as the 
AUC or the Youden index.43-47,11 After a composite score is obtained, 
the binormal model discussed here is readily applied for the composite 
score to make inference about the prediction accuracy when all 
variables are combined.
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