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Introduction
Censoring is very common in life tests in the past several decades; 

the experimenter may be unable to obtain complete information on 
failure times of all experimental items. For this reason, Aggarwalla1 
suggested a useful type of censoring, namely, a progressively Type 
I interval censored data, which is a union of Type I interval and 
progressive censoring. This method of lifetime data collection can be 
useful to a biological experimenter, particularly when the experimental 
units are humans, as continuous monitoring is often not possible to 
implement, and withdrawal rates from such studies may high.

In progressive censored the number of units being removed from 
the test at each failure time may occur at random. For example; the 
number of patients who drop out of clinical test at each stage is random 
and cannot be predetermined. That is why to display a more general 
censoring scheme called progressive progressively Type I interval 
censored with random removal. It can be described as follows: suppose
n      units  are  put on life test  at time   0 0T = and under   inspection  at    
m         pre-specified  times 

1 2
...

m
T T T< < <  where m

T     is scheduled time 
to terminate the experiment. The number,   i

k  ,of failures within 1
( , ]

i i
T T
−                

is recorded and ri    surviving items are randomly removed from the 
life testing at the ith inspection time, 

i
T  , for  1, 2, ...i m= . Since the 

number,  i
Y  , of surviving items is a random variable and exact number 

of items with drawn should not be greater than    
i

Y   at time schedule
i

T ,     ' s
i

r    are random. Such a censoring mechanism is termed as 
progressive interval type-I censoring with random removal scheme. If 
we assume that probability of removal of a unit at every stage is π for 
each unit then ri can be considered to follow a binomial distribution 
i.e, ( )1

0 ,i
jji

r B n m r π−
=≈ − −∑  for 1, 2, ...,i m= .  The  main  difference 

between progressive interval type I censoring with fixed removal 
and progressive interval type I censoring with random removals is 
that the removals are predetermined in the former case while they are 
random in the latter case. Note that m is pre-determined in both cases. 
However, many practical applications suggest that it is more flexible 
to have removals random to accommodate the unexpected drop out of 
experimental subjects.

Although progressive censoring occurs frequently in many 
applications, there are relatively few works on it. Some early works 
can be found in Cohen,2 Readers can refer to the book Balakrishnan & 
Aggarwala3 for more details on the methods and applications of this 
topic. However, all these works assumed that the number of units being 
removed from the test is fixed in advance. In practice, it is impossible 
to pre-determine the removal pattern. Thus, Yuen & Tse4 and Yang et 
al.,5 considered the estimation problem when lifetimes collected under 
a Type II progressive censoring with random removals and Kendell & 
Anderson6 point out that the expected duration under grouped data. 
Progressive type-I interval censored sampling is an important practical 
problem that has received considerable attention in the past several 
years. Based on the progressive type-I interval censored sampling, 
Ashour & Afify7 derived the maximum likelihood estimators of 
parameters of the exponentiated Weibull family and their asymptotic 
variances under random removal. Lin et al.,8 determined optimally 
spaced inspection times for the log-normal distribution, while Ng 
& Wang9 and Chen & Lio10 compared three classical estimation 
methods, the maximum likelihood estimators the moment method and 
the probability plot method in terms of the Weibull distribution and 
generalized exponential respectively.

In Bayesian approach, It is too difficult to find integrate over the 
posterior distribution and the problem is that the integrals are usually 
impossible to evaluate analytically. But in MCMC technique, the 
MCMC methodology provided a convenient and efficient way to 
sample from complex, high-dimensional statistical distributions. 
Recently, application of the MCMC method to the estimation of 
parameters or some other vital properties about statistical models is 
very common. Green et al.,11 using the MCMC method for estimating 
the three parameters Weibull distribution, and they showed that the 
MCMC method is better than the ML method, when given a proper 
prior distribution of the parameters. As a generalization of the two 
parameter Weibull model, Gupta et al.,12 gave a complete Bayesian 
analysis of the Weibull extension model using MCMC simulation and 
complete sample. Lin & Lio13 discussed Bayesian inference under 
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In this paper, the maximum likelihood and the Bayes estimators of the two unknown 
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progressive type I interval censoring by using MCMC. 

A random variable is said to have a Flexible Weibull Distribution 
with parameters , 0λ β >  if its probability density function, 
cumulative function, survival function and hazard function are given 
by 

  				  

				                            (1)

					            (2)

 	                          		                        (3) respectively.

In this paper we consider the Bayesian inference of the scale 
parameters for progressive interval type-I censored data when both 
parameters are unknown. We assumed that the both scale parameters 

  andλ β  have gamma prior and they are independently distributed. 
As expected in this case also, the Bayes estimates cannot be obtained 
in closed form. We propose to use the Gibbs sampling procedure to 
generate MCMC samples, and then using the Metropolis–Hastings 
algorithms, we obtain the Bayes estimates of the unknown parameters. 
We perform some simulation experiments to see the behavior of the 
proposed Bayes estimators and compare their performances with the 
maximum likelihood estimators. 

The rest of the paper is organized as follows. In the next section, 
the ML estimators of the unknown parameters and approximate 
confidence intervals are presented. The corresponding parametric 
bootstrap confidence intervals for the parameters are given in Section 
3. In Section 4, we cover Bayes estimates and construction of credible 
intervals using the MCMC techniques. In Section 5, for illustrative 
purposes, we performed a real data analysis. Comparisons among 
estimators are investigated through Monte Carlo simulations in 
Section 6. Finally, conclusions appear in Section 7. 

Classical estimation and percentile bootstrap 
algorithm (Boot-p)

Classical estimation (maximum likelihood estimators) of the 
unknown parameters and approximate confidence intervals are 
presented. Also, the corresponding parametric bootstrap confidence 
intervals using percentile bootstrap Algorithm (Boot-p) for the 
parameters are given in this section.

Classical estimation

Suppose a progressively Type-I interval censored sample is 
collected as described above, beginning with a random sample of   
units with a continuous lifetime distribution ( )F x  and let	 1 2, ,..., mk k k
denote the number of units known to have failed in  the  intervals 

1 1 2 1(0, ],( , ],...,( , ]m mT T T T T− , respectively. Then, based on this observed 
data, the joint likelihood function will be Aggarwala.1

					   
( ) [ ] [ ]1 1

1

; , \ ( ; , ) ( ; , ) 1 ( ; , )
m k ri i

i i i
i

L X R C F T F T F Tλ β λ β λ β λ β−
=

= − −∏ 	
                                              		                             (4)

Where   is constant. Clearly, if 0ir = for 1,2,..., 1i m= − and  mr n k= −
equation (4) reduces to the likelihood function for interval type I 
censoring data is defined as follows:

1
1

( ; , ) (1 ( , , )) ( ( , , ) ( , , ))
m

n k ki
m i i

i

L X C F T F T F Tλ β λ β λ β λ β−
−

=

= − −∏
        	

Where 
1

m

i
i

k k
=

=∑ and 1 2, ,..., mk k k  are the number of units known to have 

failed in the intervals 1 1 2 1(0, ],( , ],...,( , ],m mT T T T T−  respectively.

For type I progressive Interval censoring, supposed that ri is 
independent of Xi for all i ; Wu & Chang14 suggested the following 
likelihood function of a progressive interval censoring with binomial 
removals 

		  1( , ; , ) ( ; , \ ) ( )L X R L X R r P Rλ β λ β= = × 	         (5)

Where 1( ; \ )L X R rθ = is the likelihood function for a progressive 
type I interval censored with fixed removal (4) and ( )P R  will be 

 1 1 2 2 1 1 2 2 3 3 1 1

2 2 1 1 1 1 2 2 1 1 1 1

( ) ( \ , ..., ) ( \ , ..., )...

( \ ) ( ).... ( \ ) ( )

m m m m m m m m
P R P R r R r R r P R r R r R r

P R r R r P R r P R r R r P R r

− − − − − − − −
= = = = = = =

= = = = = =

Such as

				      		 1 1
( 1)( ) ( )

1 1
1

11

( )!( ) (1 )
!( )!

m m
m n m m j rj j

j j
m m

i j
ji

rn mP R
r n m r

π π

− −
∑− − − −

= =
−

==

∑−
= −

− − ∑∏
			 

			          		                        (6) 

and ( ) ( ). , .f F are  the  same  as  defined  before  in (1) and (2) 
respectively. The log likelihood function with random removal can 
be written as

						                  (7) 

The maximum likelihood estimations of  λ and β   are the 
simultaneous solutions of following normal equations

					      	           (8)

					      	           (9)

Note that ( )P R does not involve the parameters. Therefore, the 
MLE π̂  of  π can be found by maximizing ( )P R  directly, that is,

 1 1

1 1

1 1 ( 1)( ) ( ) 0
1

m m

j j
j j

r m n m m j r
π π

− −

= =

 
 − − − − − =∑ ∑
 −  

 

Therefore, the maximum likelihood estimation of parameterπ̂ is 
given by

  

					                            (10)

It may be noted that (9) and (10) cannot be solved simultaneously 

( )
2

; ,
x x

x xf x e e
x

β β
λ λβλ β λ

− − 
 = + 
 

( ); , 1
x

e xF x e

β
λ

λ β
−

−= −

( ); ,
x

e xF x e
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λ β
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to provide a nicely closed form for the estimators. Therefore, we 
propose to use fixed point iteration method for solving these equations. 
Using Fisher information matrix ˆ ˆ( , , )I λ β π in the Appendix and the 
asymptotic normality of the maximum likelihood estimators can 
be used to compute the approximate confidence intervals (ACI) for 
parameters λ , β andπ Therefore, ( )1 100%γ− confidence intervals 
for parameters λ  , β and π will be become

( )
/2

ˆ ˆZ Var
γ

λ α±  , ( )/2
ˆ ˆZ Var

γ
β β± and ( )

/2
ˆ ˆZ Var

γ
π π±

Where ã/2
Z is percentile of the standard normal distribution with 

right-tail probability / 2γ  .

Data algorithm

The data generation is based on the algorithm proposed by 
Aggarwala1 to simulate the numbers, ki of failed items in each 
subinterval ( 1, , i 1, , m,i iT T−  = … from an initial sample of size putting 
on life testing at time 0. This algorithm, which is an extension from 
the procedure developed by Kemp & Kemp15 for the multinomial 
distribution, involves generating m binomial random variables. A 
procedure to generate a progressively type I interval censored data 
with random removal, ( ,  ,  ), 1, , ,

i i i
k r T i m= …  from the flexible 

Weibull distribution can be described as follows briefly: 0
0k =  let              

and 0
0r = and for 1, , ,i m= …

Step 1: set 0i =  and let   0k sum r sum= = .

Step 2:  1i i= + 

•	 Using initial π  to generate a sample  
i

R r=  ,  1, ,i m= …  using 
binomial distribution, where r1 following the binomial ( , )n m π−

distribution and the variables 1 2 1
/ , , ,

i i
r r r r

−
… follow the binomial

1

1

( , )
j

n m r π
−

=

− − ∑
i

j

 distribution for 2, 3, , 1i m= … − .		
							     
	

•	 Set  

1 1

 
1 1

  0 

0  

m m

j j
j jm

n m r if n m r
r

otherwise

− −

= =


 − − − − >∑ ∑

= 



			 
	

•	 Generate ki as a binomial random variable with parameters n-k 
sum-r sum and 

   1 1
1 1/ 1

T T Ti i i
T T Te e ei i ip

β β β
λ λ λ− − −− −

− − − − −

   
   
   = − −
   
   
   

e e e 

Step 3: Set    
i

k sum k sum k= +  and   
i

r sum r sum r= + .

Step 4: If  i m<  , go to step 2; otherwise, stop.

 Percentile bootstrap algorithm (Boot-p)

We can increase information about the population value more than 
does a point estimate by using a parametric bootstrap interval. We 
propose to use confidence intervals based on the parameteric bootstrap 
methods using percentile bootstrap Algorithm (Boot-p) based on the 
idea of Efron.16 

The algorithm for estimating the confidence intervals is illustrated 
as follows:

Before progressing further, we first describe how we generate 

progressively interval Type I censored data with binomial random 
removals. The following algorithm is followed to obtain these 
samples. 

1.	 Specify the values of  ; ;n m T  .

2.	 Specify the values of  ,λ β andπ .

3.	 Form data algorithm; compute the maximum likelihood estimates 
of the parameters λ̂ , β̂ and π̂ , by solving the likelihood 
equations simultaneously in (8), (9) and (10).

4.	 Use λ̂  , β̂  and π̂ , to generate a bootstrap sample *k with the 
same values of ri, m;(i=1,2,…,m) using algorithm presented in 
Balakrishnan & Sandhu.17 

5.	 As in step 3, based on *k compute the bootstrap sample estimates 
of λ̂ , β̂ and π̂ , say ˆ *λ , ˆ *β and ˆ *π .

6.	 Repeat steps 4-5 B times representing B bootstrap maximum 
likelihood estimators of λ , β andπ based on B different 
bootstrap samples.

7.	 Arrange all ˆ * ' sλ  , ˆ * ' sβ  and ˆ * ' sπ  , in an ascending order to 

obtain the bootstrap sample [ ] [ ] [ ]( )1 2, , , , 1, 2, 3B
l l l lϕ ϕ ϕ… = (where 

1
ˆ *ϕ λ≡ , 2

ˆ *ϕ β≡ and 3
ˆ *ϕ π≡ ).

Let ( ) ( )lG z P zϕ= ≤ be the cumulative distribution function of l
ϕ . 

Define ( )1

lboot
G zϕ −= for given z. The approximate bootstrap ( )100 1 2 %γ−

confidence interval (ABCI) of      is given by		                  .

Bayesian estimation and MCMC technique
In this section, we will focus to Bayesian approach using Markov 

chain Monte Carlo (MCMC) method to generate from the posterior 
distributions and in turn computing the Bayes estimators are 
developed.

Bayesian estimation

In Bayesian scenario, we need to assume the prior distribution of 
the unknown model parameters to take into account uncertainty of 
the parameters. The informative prior densities for   and   are given as

	            
( ) 1

1
 , , , 0b ae ag bλλ λλ α − − >

 ,

                   ( ) 1

2
, , , 0    d cg e c dββ α β β− − >  ,

and π has a

        
( ) ( )1

3
1  1 , 0 1; A, B 0A Bg π π ππ α − −− < < >

Note that the parameters λ , β andπ behave as independent 
random variables. The joint informative prior probability density 
function of λ , β andπ  is 

        ( ) ( ) ( ) ( )
1 2 3

 , ,g g g gλ β π α λ β π× ×

    
( ) ( )1 1 1 1, ,   1b a d c A Be eλ βλ β π α λ β π π− − − − − −−

    (11)

where , , , ,   aa b c A ndd B   are assumed to be known and are chosen 

to reflect prior knowledge about λ  , β  and π  . Note that when
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0a b c d A B= = = = = = , (we call it prior 0) they are the non-

informative λ , β and π respectively.

It follows from (4), (6) and (11) that the joint posterior density 
function of λ , β and π given  x is thus 

  

  
( ) ( ) ( ) ( )

( ) ( ) ( )
1

1
10 0 0

; , / , ,
* , ,

; , /R r , ,

L X R r P R g

L X P R g d d d

λ β λ β π
π λ β π α

λ β λ β π λ β π∞ ∞

= × ×

= ×∫ ∫ ∫

		 ( )
( )

( )
( ) ( ){ } ( )( )( ) ( ) ( )

1 1 1 11 11 1 1
1

11
* , , 1 . 1 1  

kim u T mi k u T r u T b a d c Am n m m j r Bi i i i m j jrj ju Tii

e e e e
e

λ β
ππ λ β π α π λ β π π

− −− + ∑ − − − − −− − − − −− − =∑ =
− −=

 
 ∏ − − × −
   		

									                                                                                 (12)

where  
( )

Ti
Ti

iT e

β
λ −

=u
 and

( )
1

1
1

Ti
Ti

iT e

β
λ −−

−
− =u

  .  

It is not possible to compute (12) analytically. The problem is that 
the integrals in (12) are usually impossible to evaluate analytically, 
and the numerical methods may fail. The MCMC method provides 
an alternative method for parameter estimation. In the following 
subsections, we propose using the MCMC technique to obtain Bayes 
estimates of the unknown parameters and construct the corresponding 
credible intervals.

MCMC technique

Computer simulation of Markov chains in the space of parameter 
will depend on Markov chain Monte Carlo (MCMC) Gilks et al.,18 The 
Markov chains are defined in such a way that the posterior distribution 
in the given statistical inference problem is the asymptotic distribution. 
However, the posterior likelihood usually does not have a closed form 
for a given progressively type-I interval-censored data. Moreover, 
a numerical integration cannot be easily applied in this situation. 
A lot of standard approaches to display like Markov chains exist, 
including Gibbs sampling, Metropolis-Hastings (M-H) and reversible 
jump. The M-H algorithm is a very general MCMC method first 
expansion by Metropolis et al.,19 and later extended by Hastings.20 it is 
possible to use these algorithms by implement posterior simulation in 
essentially any problem which allow point wise evaluation of the prior 
distribution and likelihood function. It can be used to obtain random 
samples from any arbitrarily complicated target distribution of any 
dimension that is known up to a normalizing constant. In fact, Gibbs 
sampler is just a special case of the M-H algorithm. 

In order to use the method of MCMC for estimating the parameters 
of the flexible Weibull distribution and random removal, namely,   λ
, β andπ . Let us consider independent priors as in (10), the full 
conditional distribution for any parameter can be obtained, to within a 
constant, by factoring out from the likelihood function        ( , ; , )L X R λ β  
any terms containing the relevant parameter and multiplying by its 
prior. From (11), the full posterior conditional distribution for   is 
proportional to

( ) ( )
( )

( ) ( ){ } 11

11

* / , , 1
im k u T r u T b ai i i i i

ii

k
u T

x e e
u T

λπ λ β π λ
− + − −−

−=

 
∝ − ×∏  

  
						                (12) 

Also, the full posterior conditional distribution for β is proportional 
to 

  ( ) ( )
( )

( ) ( ){ } 11

11

* / , , 1
im k u T r u T d ci i i i i

ii

k
u T

x e e
u T

βπ β λ π β
− + − −−

−=

 
∝ − ×∏  

  						                  (13) 

Similarly, the marginal posterior density ofπ is proportional to

( ) ( ) ( )( ) ( )

1
1 1

1 11

1

* / , , 1

m
A r mj

B m n m m j rj j
j

xπ π λ β π π

−
+ −∑ −

+ − − − − −= ∑

=
∝ −  						               (14) 

It  is  noted  that  the posterior  distribution  of  π  is  

beta  with parameters *A and *B where 
m 1

j
j 1

* A rA
−

=

= + ∑  and 

( ) ( ) ( )
m 1

j
j 1

* B m 1 n m m j rB
−

=

= + − − − −∑ and, therefore, samples of π

can be easily generated using any beta generating routine. But the 
conditional posterior distribution of λ  and β equations (12) and 
(13) respectively, cannot be reduced analytically to well-known 
distributions and therefore it is not possible to sample directly by 
standard methods, but the plot of it show that it is similar to normal 
distribution. So to generate random numbers from this distribution, 
we use the M-H method with normal proposal distribution.

MCMC process

Now, we propose the following scheme to generate λ , β andπ
from density functions and in turn obtain the Bayes estimates and the 
corresponding credible intervals.

1.	 Start with an  ( ) ( )0 0ˆ ˆ,λ λ β β= = and M burn in= −  .

2.	 Set 1t =  .

3.	 Generate ( )tπ from beta distribution ( )* / , ,xπ π λ β  .

4.	 Using M-H algorithm Metropolis et al.,19 ( )tλ from ( )* / , ,xπ λ β π

with the ( )( )1 2,tN λλ σ−  proposal distribution where 2

λ
σ is the 

variance of λ obtained using variance-covariance matrix; 
similarly, ( )tβ  from ( )* / , ,Xπ β λ π  with  the ( )( )1 2,tN ββ σ−

proposal distribution where 2

β
σ  is the variance of β obtained 

using variance-covariance matrix.

5.	 Compute ( )tλ  , ( ) ( )0 0ˆ ˆ,λ λ β β= =  and ( )tπ  .

6.	 Set 1t t= + .

7.	 Repeats Steps 3-6 N times.

8.	 Obtain the Bayes estimates of λ , β andπ with respect to 

the squared error loss function as ( )
1

1ˆ /
N

i
i M

E x
N M

λ λ
= +

∑=
− ,  

( )
1

1ˆ /
N

i
i M

E x
N M

β β
= +

∑=
−  and ( )

1

1ˆ /
N

i
i M

E x
N M

π π
= +

∑=
−
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9.	 To compute the credible intervals λ of β ,and π  ,  order 
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Real data analysis
To conduct a study within the Institute of Oncology in Tanta - 

Egypt. This study is concerned with the treatment of cancerous tumors 
in blood and studies their impact on the overall health of the patient. 
Underwent the study 228 patients and they had varying degrees of 

disease. Patients were examined every 15 days for 6 consecutive 
months. Of course there were cases of withdrawal (death - interruption 
of treatment for different reasons)

As we know on the basis of a single sample, one cannot make 
a general statement regarding the behavior of proposed estimators, 
therefore we present a simulation study for the study of the behavior 
of the estimators in the next section.

Simulation
The simulation is conducted using the R version 3.2.2 (for more 

information about R programming, the reader may refer to this manual 
of R, version 3.3.0 under development (2015-10-30) Copyright  2000 
–2015 R Core Team). The simulation setup is parallel to the real data 
given in (Table 1). To be specific, each replication of the simulation 
generates a progressively type-I interval-censored data within twelve 
subintervals which have  pre-specified   inspection   times  ( in  terms  
of  half  month ), 							    
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0, T 16, 31, 46, T 61, 76, T 91, T 106, 121, 136, T 151, 166 181.  T T T T T T T and T= = = = = = = = = = = = =
	

						    

The last inspection time, 
12

181T = , is the scheduled time to terminate 

the experiment. The lifetime distribution is flexible Weibull with 

parameters λ and β where the simulation input parameters are selected 

close to the maximum likelihood estimators of flexible Weibull 
parameters for modeling the real data in (Table 1). The performance 
of parameter estimation under progressively type I interval censored 
with random removalπ is compared via the maximum likelihood, 
bootstrap method and MCMC procedure developed in this paper. The 
summary for 1000 simulation runs is shown in (Tables 2-5).

Bayes estimates of λ , β and π using MCMC method, we assume 
that informative priors a = 2,b = 3,c = 4 , d = 2, A = 2 and B = 3) on
λ , β  andπ  in  (Table 4) . Also,  by  non-informative  prior  using  
MCMC  procedure  with Bayes estimation will be obtained on 
estimates of parameters in (Table 5). 

Both of density functions of ( )* / , ,xπ λ β π and ( )* / , ,xπ β λ π can be 
approximated by normal distribution functions but density function 
of ( )* / , ,xπ π λ β will be beta as mentioned in subsection (3.3) which 
are plotted in (Figure 1& 2) Chain of MCMC outputs of λ , β andπ
, using 100 000 MCMC samples. This was done with 1000 bootstrap 
sample and 100 000 MCMC sample and discard the first 50000 values 
as ‘burn-in’. The Bayes estimators can be seen to have the smaller 
risks than classical estimators for all the considered cases. It may 
also be noted that the Bayes estimators obtained under informative 
prior are more efficient than those obtained under non-informative 
priors. This indicates that the Bayesian procedure with accurate prior 
information provides more precise estimates. Also, The Length of the 
SCI (using informative prior) is smaller than the Length of the ACI 
and ABCI.

Figure 1 Posterior density function of λ , β and π .  
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Figure 2 Chain of MCMC outputs of λ , β  andπ  .

Table 1 Examine patients every 15 days

Cases of withdrawal Number 
of random 
removals 

Interval in 
hours 

Number 
at risk

Number of 
failure 

1 [0,16) 228 25 2

2 [16,31) 201 39 2

3 [31,46) 160 25 1

4 [46,61) 134 20 3

5 [61,76) 111 11 1

6 [76,91) 99 14 2

7 [91,106) 83 11 3

8 [106,121) 69 17 0

9 [121,136) 52 6 2

10 [136,151) 44 31 1

11 [151,166) 12 6 1

12 [166,181) 5 5 0

Table 2 Progressively type I interval censored with random removal via the, maximum likelihood

Different parameters

Average 6.441 0.0841 0.6312

MSE 0.0134 0.0743 0.0484

Bias 0.0231 0.1073 0.0094

Variance 0.0129 0.0627 0.0483

ACI [5.0132,7.9801] [-0.1736,0.0901] [0.4421,0.7782]

Length ACI 2.9669 0.2637 0.3361
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Table 3 Progressively type I interval censored with random removal via the, bootstrap method

Different Parameters

Average 5.966 0.099 0.7058

MSE 0.1174 0.0984 0.0487

Bias 0.0346 0.1764 0.0109

Variance 0.1162 0.0673 0.0486

ABCI [5.0117,8.0412] [-0.1811,0.0884] [0.4434,0.7992]

Length 
ABCI 3.0295 0.2695 0.3558

Table 4 Progressively type I interval censored with random removal via the, MCMC procedure developed (Informative Priors)

Different Parameters

Average 4.902 0.0083 0.5118

MSE 0.0035 0.0277 0.04804

Bias 0.0049 0.0833 0.0017

Variance 0.0035 0.0207 0.04803

SCI [5.1023,7.6421] [-0.1075,0.0826] [0.4927,0.6524]

Length 
SCI 2.5398 0.1901 0.1597

Table 5 Progressively type I interval censored with random removal via the, MCMC procedure developed (Non-Informative Priors)

Different Parameters

Average 4.671 0.0398 0.6501

MSE 0.0673 0.0559 0.0656

Bias 0.0174 0.0304 0.0093

Variance 0.067 0.0549 0.0655

SCI [4.8821,8.0307] [-0.1010,0.0721] [0.3881,0.7061]

Length SCI 3.1486 0.1731 0.318

Conclusion
The methodology developed in this paper will be very useful to 

the researchers, engineers, statisticians and in the field of medical 
where such type of life test is needed and especially where the Weibull 
distribution is used. we have considered the problem of estimation 
for flexible Weibull distribution in the presence of Progressive Type-I 
Interval censored sample with Binomial removals. The scope of 
this censoring scheme in clinical trials has been discussed. We have 
found that Bayesian procedure provides estimates of the unknown 
parameters of flexible Weibull model with smaller MSE. The length 
of SCI is smaller than that of the ACI and ABCI. Applying the MCMC 
process through the application of the MH algorithm to deal with the 
Bayesian estimation for another lifetime distributions under type 
I progressive interval censoring with random removal could be a 
fruitful future research.

Appendix 
The asymptotic variance-covariance matrix of the maximum 

likelihood estimators for parameters λ , β andπ are given by elements 
of the inverse of the Fisher information matrix with random removal 
will be

				               ,

Unfortunately, the exact mathematical expressions for the above 
expectations are very difficult to obtain. Therefore, we give the 
approximate (observed) asymptotic varaince-covariance matrix for 
the maximum likelihood estimators, which is obtained by dropping 
the expectation operator E, where 
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Numerical technique is needed to obtain the Fisher information 
matrix and the variance-covariance matrix. Note that under fixed 
and random removal the estimates based on intervals with equal 
length when the intervals are of equal length, so that monitoring and 

censoring occur periodically say .iT i t=  .

We determine the second partials by differentiating the first 
partials, equations (8) and (9), obtaining
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