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Abstract

In this paper, the maximum likelihood and the Bayes estimators of the two unknown
parameters of the flexible Weibull distribution have been obtained for progressive
Interval type-I censoring scheme with binomial random removal. Point estimation
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and confidence intervals based on maximum likelihood and bootstrap method are also

proposed. A Bayesian approach using Markov chain Monte Carlo (MCMC) method to
generate from the posterior distributions and in turn computing the Bayes estimators
are developed. To illustrate the proposed methods will discuss an example with the

Correspondence: Afify WM, Department of Head of Statistics,
Mathematics & Insurance, Kafr El-sheikh University, Faculty of
Commerce, Egypt, Email waleedafify@yahoo.com

real data. Finally, comparing the two techniques through comparisons between the

maximum likelihood using bootstrap method and different Bayes estimators using

MCMC study.
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Introduction

Censoring is very common in life tests in the past several decades;
the experimenter may be unable to obtain complete information on
failure times of all experimental items. For this reason, Aggarwalla!
suggested a useful type of censoring, namely, a progressively Type
I interval censored data, which is a union of Type I interval and
progressive censoring. This method of lifetime data collection can be
useful to a biological experimenter, particularly when the experimental
units are humans, as continuous monitoring is often not possible to
implement, and withdrawal rates from such studies may high.

In progressive censored the number of units being removed from
the test at each failure time may occur at random. For example; the
number of patients who drop out of clinical test at each stage is random
and cannot be predetermined. That is why to display a more general
censoring scheme called progressive progressively Type I interval
censored with random removal. It can be described as follows: suppose
. units are puton life test attime 7,=0and under inspection at
m pre-specified times 7 <7, <..<7 whereT is scheduled time
to terminate the experiment. The number, &, ,of failures within ;.71
is recorded and r,  surviving items are randomly removed from the
life testing at the i" inspection time, 7 , for =1,2,..m. Since the
number, Y, , of surviving items is a random variable and exact number
of items with drawn should not be greater than v at time schedule
T, r's arerandom. Such a censoring mechanism is termed as
progressive interval type-I censoring with random removal scheme. If
we assume that probability of removal of a unit at every stage is « for
each unit then r, can be considered to follow a binomial distribution
ie,r~ B(n—m—zg;_lorj,;z) for; =1,2,..,m- The main difference
between progressive interval type I censoring with fixed removal
and progressive interval type I censoring with random removals is
that the removals are predetermined in the former case while they are
random in the latter case. Note that m is pre-determined in both cases.
However, many practical applications suggest that it is more flexible
to have removals random to accommodate the unexpected drop out of
experimental subjects.

Although progressive censoring occurs frequently in many
applications, there are relatively few works on it. Some early works
can be found in Cohen,? Readers can refer to the book Balakrishnan &
Aggarwala® for more details on the methods and applications of this
topic. However, all these works assumed that the number of units being
removed from the test is fixed in advance. In practice, it is impossible
to pre-determine the removal pattern. Thus, Yuen & Tse* and Yang et
al.,’ considered the estimation problem when lifetimes collected under
a Type II progressive censoring with random removals and Kendell &
Anderson® point out that the expected duration under grouped data.
Progressive type-I interval censored sampling is an important practical
problem that has received considerable attention in the past several
years. Based on the progressive type-I interval censored sampling,
Ashour & Afify’ derived the maximum likelihood estimators of
parameters of the exponentiated Weibull family and their asymptotic
variances under random removal. Lin et al.,* determined optimally
spaced inspection times for the log-normal distribution, while Ng
& Wang’® and Chen & Lio'® compared three classical estimation
methods, the maximum likelihood estimators the moment method and
the probability plot method in terms of the Weibull distribution and
generalized exponential respectively.

In Bayesian approach, It is too difficult to find integrate over the
posterior distribution and the problem is that the integrals are usually
impossible to evaluate analytically. But in MCMC technique, the
MCMC methodology provided a convenient and efficient way to
sample from complex, high-dimensional statistical distributions.
Recently, application of the MCMC method to the estimation of
parameters or some other vital properties about statistical models is
very common. Green et al.,'" using the MCMC method for estimating
the three parameters Weibull distribution, and they showed that the
MCMC method is better than the ML method, when given a proper
prior distribution of the parameters. As a generalization of the two
parameter Weibull model, Gupta et al.,'” gave a complete Bayesian
analysis of the Weibull extension model using MCMC simulation and
complete sample. Lin & Lio" discussed Bayesian inference under
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progressive type I interval censoring by using MCMC.

A random variable is said to have a Flexible Weibull Distribution
with parameters A, f# >0 if its probability density function,
cumulative function, survival function and hazard function are given

by

ﬂ.rfﬁ leﬁ
. _ E ok X
Tt [“xz ] ‘ 0
/Ixfg
F(xa,B)=1-¢° 7 (2)
s

Ax—
F(xa.B)=e ° (3) respectively.
In this paper we consider the Bayesian inference of the scale
parameters for progressive interval type-I censored data when both
parameters are unknown. We assumed that the both scale parameters
Aand f have gamma prior and they are independently distributed.
As expected in this case also, the Bayes estimates cannot be obtained
in closed form. We propose to use the Gibbs sampling procedure to
generate MCMC samples, and then using the Metropolis—Hastings
algorithms, we obtain the Bayes estimates of the unknown parameters.
We perform some simulation experiments to see the behavior of the
proposed Bayes estimators and compare their performances with the
maximum likelihood estimators.

The rest of the paper is organized as follows. In the next section,
the ML estimators of the unknown parameters and approximate
confidence intervals are presented. The corresponding parametric
bootstrap confidence intervals for the parameters are given in Section
3. In Section 4, we cover Bayes estimates and construction of credible
intervals using the MCMC techniques. In Section 5, for illustrative
purposes, we performed a real data analysis. Comparisons among
estimators are investigated through Monte Carlo simulations in
Section 6. Finally, conclusions appear in Section 7.

Classical estimation and percentile bootstrap
algorithm (Boot-p)

Classical estimation (maximum likelihood estimators) of the
unknown parameters and approximate confidence intervals are
presented. Also, the corresponding parametric bootstrap confidence
intervals using percentile bootstrap Algorithm (Boot-p) for the
parameters are given in this section.

Classical estimation

Suppose a progressively Type-I interval censored sample is
collected as described above, beginning with a random sample of
units with a continuous lifetime distribution F(x) and let & ,k;.,....k,
denote the number of units known to have failed in the intervals
(0,5,1.(1,,11,....(T,,_,.T,,1, respectively. Then, based on this observed
data, the joint likelihood function will be Aggarwala.!

L(X:A.B\R)=CII[F(T;:A.8)~F (T,_;:A. B [1-F (T;:4.8)]"
i=1 4)
Where is constant. Clearly, if 4=0 for i=1,2,...,m—1 and r,=n—k
equation (4) reduces to the likelihood function for interval type I
censoring data is defined as follows:
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L(X32,8)=C(1=F (T,,,.8)" “T1(F (T;,A.8)~F (T, 1,2, 8))'
i=1
Where ¥=2Z% and &,k ...k, are the number of units known to have
i=1

failed in the intervals (0,7;1,(7;,%51,--(T,,_;,T,, ], respectively.

For type I progressive Interval censoring, supposed that r, is
independent of X_ for all i ; Wu & Chang'* suggested the following
likelihood function of a progressive interval censoring with binomial
removals

L(X,R;A,B)=L (X;A,B\R=r)xP(R) )

Where Li(X;0\R=r) is the likelihood function for a progressive

type I interval censored with fixed removal (4) and P(R) will be

P(R) = P(Rm—l =Ta \Rm—Z = rm-z"“’Rl = rl)P(Rm-z =l \Rm—3 = rm-s"“’Rl = rl)
P(R, =7 \R =r)P(R =r)..P(R =7 \R =r)P(R =r)
Such as
mz—:I m—1
r; (m=1)(n-m)— X (m—j)r;
_m)! j j
P(R)=— Tt ——x (1-7) j=
m m—
17 (n=m=% r;)! (6)
i=1 Jj=1
and f(),F()are the same as defined before in (1) and (2)

respectively. The log likelihood function with random removal can
be written as

log L(X R 2. B)=log C+3. k; log[ F (T, )~F (T, )|+ %, log[1—F (T,) |+
m—1 i::nfl . (7)
2 rjlogm+(m=1)(n—m)— X (m—j)r;log(1-r)

J=1 J=1

The maximum likelihood estimations of Aand g  are the

simultaneous solutions of following normal equations
oF(1) aF(T,.) 0
—|1-F(T.
()]

+ XL cr@)] " (8)
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0
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o [=Rm)] ©)
Note that P(R)does not involve the parameters. Therefore, the
MLE 77 of ;7 canbe found by maximizing p(r) directly, that is,

i=1

1 m-1 1 m—1 .
= X ry——| (m=D)(n-m)= % (m=j)r; |=0
T -z =

Therefore, the maximum likelihood estimation of parameterﬁ' is
given by
m—1
X
j=1
m—1
(m=1)(n—m)=% (m—j-l)r;

J=1

7=

(10)

It may be noted that (9) and (10) cannot be solved simultaneously

Citation: Afify WM. On estimating flexible weibull parameters with Type | progressive interval censoring with random removal using data of cancerous tumors

in blood. Biom Biostat Int J. 2016;4(5):208-216. DOI: 10.15406/bbij.2016.04.00108


https://doi.org/10.15406/bbij.2016.04.00108

On estimating flexible weibull parameters with Type | progressive interval censoring with random removal

using data of cancerous tumors in blood

to provide a nicely closed form for the estimators. Therefore, we
propose to use fixed point iteration method for solving these equations.
Using Fisher information matrix /(4,3,7)in the Appendix and the
asymptotic normality of the maximum likelihood estimators can
be used to compute the approximate confidence intervals (ACI) for
parameters 4, g and 7 Therefore, (l—y) 100% confidence intervals

for parameters A , B and 7 will be become
itz var(é) ., ptz /Var( Blandz+Z  \Var(%)

Where Z,,is percentile of the standard normal distribution with
right-tail probability » /2 .
Data algorithm

The data generation is based on the algorithm proposed by
Aggarwala' to simulate the numbers, k, of failed items in each
subinterval (7;71,7;],1 =1,...,m,from an initial sample of size putting
on life testing at time 0. This algorithm, which is an extension from
the procedure developed by Kemp & Kemp® for the multinomial

distribution, involves generating m binomial random variables. A
procedure to generate a progressively type I interval censored data

with random removal,(k,, 7., T).i=1.....m, from the flexible
Weibull distribution can be described as follows briefly: £, =0 let
and’y =0and fori =1,...,m,

Step 1: seti =0 and let k sum = rsum = 0.

Step2: i=i+1

+ Using initial 7Z to generate a sample R=7, , i=1...,m ysing
binomial distribution, where r, following the binomial (n—m,7)
distribution and the variables ’ /7,77 follow the binomial

i-1
(n—m-— er,ﬂ) distribution for i = 2,3,...,m—1.
j=1
m—1 m—1
n—-m— Y r; if n—-m—3r;>0
j=1 j=1
0 otherwise

e Set r =
m

* Generate k; as a binomial random variable with parameters n'k
sumtT sum and

AL -

£ B s
B s -t
e T T %

p=|e —e /| 1-e
Step 3: Set & sum =k sum +kl_ and 7 sum = rsum+r.
Step 4: If i<m , go to step 2; otherwise, stop.

Percentile bootstrap algorithm (Boot-p)

We can increase information about the population value more than
does a point estimate by using a parametric bootstrap interval. We
propose to use confidence intervals based on the parameteric bootstrap
methods using percentile bootstrap Algorithm (Boot-p) based on the
idea of Efron.'¢

The algorithm for estimating the confidence intervals is illustrated
as follows:

Before progressing further, we first describe how we generate
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progressively interval Type I censored data with binomial random
removals. The following algorithm is followed to obtain these
samples.

1. Specify the values of n;m;T .
2. Specify the values of 4.8and 7 .

3. Form data algorithm; compute the maximum likelihood estimates
of the parameters [, Aand#, by solving the likelihood
equations simultaneously in (8), (9) and (10).

4, Usej , ,5’ and 7 | to generate a bootstrap sample K with the
same values of r, m;(i=1,2,...,m) using algorithm presented in
Balakrishnan & Sandhu.!”

5. Asinstep 3, based on K compute the bootstrap sample estimates
of ,{,ﬁand;% ,8ay i+, grandz+.

6. Repeat steps 4-5 B times representing B bootstrap maximum
likelihood estimators of A1, fand7z based on B different
bootstrap samples.

7. Arrange all i*'s ,f*'s and#*'s , in an ascending order to
obtain the bootstrap sample((p,[l],(p,[z],...,qz,[s]),l =1,2,3 (where
g, =2% ¢, =f*and ¢, =7%).

Let G(z) = P((o, Sz) be the cumulative distribution function of %, .

Define ¢,,, =G (z)for given z. The approximate bootstrap 100 (1-2) %

Iboot

confidence interval (ABCI) of  is given by

Bayesian estimation and MCMC technique

In this section, we will focus to Bayesian approach using Markov
chain Monte Carlo (MCMC) method to generate from the posterior
distributions and in turn computing the Bayes estimators are
developed.

Bayesian estimation

In Bayesian scenario, we need to assume the prior distribution of
the unknown model parameters to take into account uncertainty of
the parameters. The informative prior densities for and are given as

b-1 —2a
e ,a,b,A>0

s

g, (B)ap e c.d. p>0

and 7 has a

g (Aar

g, (7[)0:7/H (1-7)*" 0< 7z <1;A,B>0

Note that the parameters A, [ andz behave as independent
random variables. The joint informative prior probability density
function of A, fand z is

g(Apr)ag (2)xg, (B)xg,(7)

b-1 —da ,d-1 —pc A-1 B-1
(Apx)ar e g e (1-x) (an

where @,b,¢,d,Aand B are assumed to be known and are chosen

to reflect prior knowledge about 4 , S and 7 . Note that when
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a=b=c=d=A4A=B=0, (we call it prior 0) they are the non-

informative 4, B and 7 respectively.

It follows from (4), (6) and (11) that the joint posterior density

function of 4, gand 7 given x is thus

m -u(7;)
m* (/1,,5',71’)0! I1 -

| em)

B
A

where ATi=
Tia

U(Ti-l):e

It is not possible to compute (12) analytically. The problem is that
the integrals in (12) are usually impossible to evaluate analytically,
and the numerical methods may fail. The MCMC method provides
an alternative method for parameter estimation. In the following
subsections, we propose using the MCMC technique to obtain Bayes
estimates of the unknown parameters and construct the corresponding
credible intervals.

MCMC technique

Computer simulation of Markov chains in the space of parameter
will depend on Markov chain Monte Carlo (MCMC) Gilks et al.,'s The
Markov chains are defined in such a way that the posterior distribution
in the given statistical inference problem is the asymptotic distribution.
However, the posterior likelihood usually does not have a closed form
for a given progressively type-I interval-censored data. Moreover,
a numerical integration cannot be easily applied in this situation.
A lot of standard approaches to display like Markov chains exist,
including Gibbs sampling, Metropolis-Hastings (M-H) and reversible
jump. The M-H algorithm is a very general MCMC method first
expansion by Metropolis et al.,'” and later extended by Hastings.” it is
possible to use these algorithms by implement posterior simulation in
essentially any problem which allow point wise evaluation of the prior
distribution and likelihood function. It can be used to obtain random
samples from any arbitrarily complicated target distribution of any
dimension that is known up to a normalizing constant. In fact, Gibbs
sampler is just a special case of the M-H algorithm.

In order to use the method of MCMC for estimating the parameters
of the flexible Weibull distribution and random removal, namely, 1
,fand 7 . Let us consider independent priors as in (10), the full
conditional distribution for any parameter can be obtained, to within a
constant, by factoring out from the likelihood function ~ L(X,R;4,5)

any terms containing the relevant parameter and multiplying by its

prior. From (11), the full posterior conditional distribution for is
proportional to

ki
- (A/x,B.7) o ]:[1{1_;22'1))} o T )e ()} et —2a 12

Also, the full posterior conditional distribution for f is proportional
to

k.
* m T) i _{k.u(T~7 )+nu(T-)} d-1 —pe
x (ﬂ/x,ﬂ,ﬂ)oc]_[l}_u(’} RUCRETOINEY
(T (13)

i=1
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L(X;A,B/R=r)xP(R)xg(A.B.7)

7*(1,8.7)a
22 Ly(X32,B/R=1)xP(R)g(A,,7)d Ad fd

ks
Dk ()} (1) (nem) =575 (m=7)r; b1 ~da pd=1 ~pe_a-1 B-1
e 725 rj.(l—ﬂ') J ixA e B e " (1-n)

(12)

Similarly, the marginal posterior density of 7 is proportional to

m—1
A+ ¥ rj -1

m—1
”* (ﬂ-/x’ﬂ’ﬂ) w7 j=1 (1_”)B+(m—l)(n—m)— Z (m—j)rj—l (14)

Jj=1

It is noted that the posterior distribution of 7% is

3 m-1
beta  with parameters 4*and B*where 4 =A+ er and
j=1

% m—1
- _ _m)— _:)r and, therefore, samples of 7
B =B+(m-1)(n-m)- ¥ (m _])I‘j p

can be easily generated JJéing any beta generating routine. But the
conditional posterior distribution of A and f equations (12) and
(13) respectively, cannot be reduced analytically to well-known
distributions and therefore it is not possible to sample directly by
standard methods, but the plot of it show that it is similar to normal
distribution. So to generate random numbers from this distribution,
we use the M-H method with normal proposal distribution.

MCMC process

Now, we propose the following scheme to generate A, £ and 7
from density functions and in turn obtain the Bayes estimates and the
corresponding credible intervals.

1. Startwithan 2(® _ ,{,ﬁ(o) = pand M =burn—in .

2. Sett=1.

3. Generate ;z(t) from beta distribution 7z * (ﬁ/x,/l,ﬂ) .

4. Using M-H algorithm Metropolis et al.,” 1) from z *(/x,5,7)
with theN(i(”‘),o-f) proposal distribution where ‘72 is the
variance of A obtained using variance-covariance matrix;
similarly, /5(’) from z*(g/x,A,x) with the N(ﬂ(”‘),aé)
proposal distribution where 0'; is the variance of / obtained
using variance-covariance matrix.

5. Compute 2() | 2(0=7 g(D_3 and () |

6. Sett=t+1.

7. Repeats Steps 3-6 N times.

8. Obtain the Bayes estimates of A,/ andz with respect to

A 1 N
i E(A/x)=—— A
the squared error loss function as (4/x) N_M DI

K 1 N i=M+1
E(B/x)=—— X B . 1 i
(B1x) N-M i=M+1’H and E(ﬂ/x)=m DI 3
i=M+1
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9. To compute the credible intervals 4 of B.and 7 | order
Ay A

| NoM > as /‘Ll <..<A

BB, ,, and T, N,

B <.<p _, andz <..<z  Thenthel00(l-y)% symmetric
credible intervals (SCI) of 4 , fand 7 become:
[A(N—M)y/zﬁﬂ(N—M)(l—yQ)]9|:ﬂ(N—M)7/21ﬂ(N—M)(1—;//2):|

and

LT oy

Real data analysis

To conduct a study within the Institute of Oncology in Tanta -
Egypt. This study is concerned with the treatment of cancerous tumors
in blood and studies their impact on the overall health of the patient.
Underwent the study 228 patients and they had varying degrees of
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disease. Patients were examined every 15 days for 6 consecutive
months. Of course there were cases of withdrawal (death - interruption
of treatment for different reasons)

As we know on the basis of a single sample, one cannot make
a general statement regarding the behavior of proposed estimators,
therefore we present a simulation study for the study of the behavior
of the estimators in the next section.

Simulation

The simulation is conducted using the R version 3.2.2 (for more
information about R programming, the reader may refer to this manual
of R, version 3.3.0 under development (2015-10-30) Copyright 2000
—2015 R Core Team). The simulation setup is parallel to the real data
given in (Table 1). To be specific, each replication of the simulation
generates a progressively type-I interval-censored data within twelve
subintervals which have pre-specified inspection times (in terms
of half month ),

T =0,T =16,T =31,T =46,T =61,T =76,T =91,T =106, =121,T =136,T =151, =166and T  =181.
0 1 2 3 4 5 6 7 8 9 10 11 12

The last inspection time, T1 , = 181, is the scheduled time to terminate
the experiment. The lifetime distribution is flexible Weibull with
parameters 4 and S where the simulation input parameters are selected

close to the maximum likelihood estimators of flexible Weibull
parameters for modeling the real data in (Table 1). The performance
of parameter estimation under progressively type I interval censored
with random removal 7 is compared via the maximum likelihood,
bootstrap method and MCMC procedure developed in this paper. The
summary for 1000 simulation runs is shown in (Tables 2-5).

Bayes estimates of 4, £ and 7 using MCMC method, we assume
that informative priorsa=2b=3,c=4,d=2,A=2and B=3) on
A, f and7 in (Table 4) . Also, by non-informative prior using
MCMC procedure with Bayes estimation will be obtained on
estimates of parameters in (Table 5).

Posterior of A

Posterior of 8

Both of density functions of z (l/x,ﬁ',;z) and 7 (B/x,2.7) can be
approximated by normal distribution functions but density function
of (ﬁ/x,/l,ﬁ) will be beta as mentioned in subsection (3.3) which

are plotted in (Figure 1& 2) Chain of MCMC outputs of 4, fand 7
, using 100 000 MCMC samples. This was done with 1000 bootstrap
sample and 100 000 MCMC sample and discard the first 50000 values
as ‘burn-in’. The Bayes estimators can be seen to have the smaller
risks than classical estimators for all the considered cases. It may
also be noted that the Bayes estimators obtained under informative
prior are more efficient than those obtained under non-informative
priors. This indicates that the Bayesian procedure with accurate prior
information provides more precise estimates. Also, The Length of the
SCI (using informative prior) is smaller than the Length of the ACI
and ABCL

Posterior of

o
o
3
S 7] g - i
5 2 | 3 © I )
c c c —
g S o 1 5 3
o
g 27 g 2| g 3
L o i I8
o _|
o
2 o]
S " g |
o _| o | o _]
[ I I 1 1T 1T 17T 71T T
45 50 55 6.0 6 -2 246 04 06 08 10

Figure | Posterior density function of 1, Sand 7 .
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Chain values of 1 Chain values of 8 Chain values of
- ~ o
5 g - ~
@
< o _|
@
N o
~
© o
N ©
! o
< 0
! o
© <
I o
[ I I I I I [ I I I I I [ I I I I I
0 20000 40000 0 20000 40000 0 20000 40000
Figure 2 Chain of MCMC outputs of 1, # and 7 .
Table | Examine patients every |5 days
Cases of withdrawal Number
m Interval in Number Number of ©f random
hours T at risk failure k_ removals
| [0,16) 228 25 2
2 [16,31) 201 39 2
3 [31,46) 160 25 |
4 [46,61) 134 20 3
5 [61,76) Il I |
6 [76,91) 99 14 2
7 [91,106) 83 I 3
8 [106,121) 69 17 0
9 [121,136) 52 6 2
10 [136,151) 44 31 |
I [151,166) 12 6 |
12 [166,181) 5 5 0

Table 2 Progressively type | interval censored with random removal via the, maximum likelihood

Different parameters

A p T
Average 6.441 0.0841 0.6312
MSE 0.0134 0.0743 0.0484
Bias 0.0231 0.1073 0.0094
Variance 0.0129 0.0627 0.0483
ACI [5.0132,7.9801] [-0.1736,0.0901] [0.4421,0.7782]
Length ACI  2.9669 0.2637 0.3361
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Table 3 Progressively type | interval censored with random removal via the, bootstrap method

Different Parameters

A p 7

Average 5.966 0.099 0.7058

MSE 0.1174 0.0984 0.0487

Bias 0.0346 0.1764 0.0109
Variance  0.1162 0.0673 0.0486

ABCI [5.0117,80412]  [0.1811,00884]  [0.4434,0.7992]
e 3.0295 0.2695 0.3558

Table 4 Progressively type | interval censored with random removal via the, MCMC procedure developed (Informative Priors)

Different Parameters

A p V4
Average  4.902 0.0083 05118
MSE 0.0035 0.0277 0.04804
Bias 0.0049 0.0833 0.0017
Variance  0.0035 0.0207 0.04803
SCI [5.1023,7.6421] [-0.1075,0.0826] [0.4927,0.6524]
gé’l‘gth 2.5398 0.1901 0.1597

Table 5 Progressively type | interval censored with random removal via the, MCMC procedure developed (Non-Informative Priors)

Different Parameters

A B T

Average 4.671 0.0398 0.6501

MSE 0.0673 0.0559 0.0656

Bias 0.0174 0.0304 0.0093
Variance 0.067 0.0549 0.0655

Nel| [4.8821,8.0307] [-0.1010,0.0721] [0.3881,0.7061]
Length SCI  3.1486 0.1731 0.318

Conclusion Appendix

The methodology developed in this paper will be very useful to
the researchers, engineers, statisticians and in the field of medical
where such type of life test is needed and especially where the Weibull
distribution is used. we have considered the problem of estimation
for flexible Weibull distribution in the presence of Progressive Type-I
Interval censored sample with Binomial removals. The scope of
this censoring scheme in clinical trials has been discussed. We have
found that Bayesian procedure provides estimates of the unknown
parameters of flexible Weibull model with smaller MSE. The length
of SCI is smaller than that of the ACI and ABCI. Applying the MCMC
process through the application of the MH algorithm to deal with the
Bayesian estimation for another lifetime distributions under type
I progressive interval censoring with random removal could be a
fruitful future research.

The asymptotic variance-covariance matrix of the maximum
likelihood estimators for parameters A , 8 and 77 are given by elements
of the inverse of the Fisher information matrix with random removal
will be

LB 0 ,

0 L(#)

Unfortunately, the exact mathematical expressions for the above
expectations are very difficult to obtain. Therefore, we give the
approximate (observed) asymptotic varaince-covariance matrix for
the maximum likelihood estimators, which is obtained by dropping
the expectation operator E, where

I(i,ﬁﬁ){
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We explained how to find Fisher information matrix /; (4.B) in the Appendix B.

5 2 _im-l m-l
Fintn)| IR Ly (m—f)c}
on? or 7 j=1 (1-7) [ J=1

Iz(ﬁ)—E[—

Numerical techn.ique is neefied to obte}in the Fisher information censoring occur periodically say T=i.t .
matrix and the variance-covariance matrix. Note that under fixed
and random removal the estimates based on intervals with equal
length when the intervals are of equal length, so that monitoring and ~ partials, equations (8) and (9), obtaining

We determine the second partials by differentiating the first
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