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Abbreviations: ECoG, electro cortico graphic; BdSEM, 
bayesian differential structural equation modeling; ODEs, ordinary 
differential equations; ROI, region of interest; fMRI, functional 
magnetic resonance imaging; MCMC, markov chain monte carlo; 
FDA, functional data analysis; STG, superior temporal gyrus; 
PostSTG, posterior STG; MidSTG, middle STG; BIC, bayesian 
information criterion; AIC, akaike information criterion; FF, feed 
forward; FB, feed back;  ERP, evoked response potential

Introduction
To date, imaging neuroscience and electrophysiology have 

provided a solid foundation for functional specialization as a principle 
of brain organization in humans. However, accurately modeling 
functional integration of specialized areas of the brain has proven to 
be a more difficult task.1 For example, the human brain can be viewed 
as a holistic and dynamic system involving functionally specialized 
areas or regions that are related by effective connections during 
cognitive processing. Connectivity models (functional or effective) 
have become useful approximations to holistic and dynamic systems 
for understanding underlying relationships between regions of neural 
activation. For example, functional connectivity models provide 
relational maps based on statistical dependency (correlations) between 
remote neuro physiological events. Effective connectivity models 
involve estimating the influence that one neuronal system exerts 
over another, either at the synaptic or population level.1 Furthermore, 
effective connectivity is activity-dependent involving interactions 
among regions of the brain. Finally, modeling intrinsic connectivity 
involves capturing dynamic elements of the system reflecting the 
essential nature of the collective system. 

One approach to modeling effective connectivity is based on 
intracranial electrocorticographic (ECoG) time series data. In 

ECoG-based studies, data are acquired from multi-contact subdural 
electrodes implanted during surgical evaluation in epilepsy patients.  
ECoG provides a higher signal to noise ratio and temporal and 
spatial resolution than EEG due to the fact that ECoG signals are 
not influenced by the low conductivity of the skull and the fact that 
measurements are acquired in the vicinity of the underlying brain 
sources.2 In clinical practice, ECoG has become the “gold standard” 
for defining epileptogenic zones.3 The locations of ECoG electrodes 
implantation are determined using pre-operative clinical data 
such as ictal semiology, ictal and interictal features on scalp EEG, 
and structural MRI findings.4 The pattern of the subsequent ECoG 
recordings is then used for further localization of epileptogenic foci. 

In this study, we present an innovative modeling approach for 
the development and estimation of human electrophysiological 
inferential connectivity maps using ECoG data. The aim of the 
method is to obtain accurate representations of underlying effective 
relationships while also considering intrinsic or dynamically changing 
aspects of regional components of brain activity. Specifically, we use 
ordinary differential equations within a structural equation modeling 
framework and a heuristic model search strategy to provide insights 
into electrode-to-electrode connectivity using ECoG. Here, our 
interest is based on modeling simultaneous or dynamic change in 
neural activity so as to provide unique insights into the causal nature 
of the relationships between brain regions in specific vocalization and 
auditory processes. Given the high spatial and temporal resolution of 
ECoG data, inferences about underlying neural functions as mapped 
on to brain anatomy allow for exquisite representation of both time 
and space in the human brain.3,5,6  

The organization of this manuscript is as follows. The first section 
briefly reviews SEM and the advantages of using Bayesian SEM 
in studies such as ours. The second section details the application 
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Abstract

Advances in the sophistication of imaging techniques necessitate the development 
of techniques to model the neural and cognitive phenomena they represent. Using 
electrocorticographic (ECoG) data, we propose a data-driven approach using ordinary 
differential equations and Bayesian differential structural equation modeling (BdSEM) 
to model effective connectivity related to sensorimotor integration. First, we tested the 
region-based covariance structure across subjects by each experimental condition to 
evaluate the tenability of pooling subject data to perform group level versus single-
subject analyses. Second, we applied a differential equation approach to model 
dynamic change originating from regional neuronal states across the data acquisition 
period. Finally, we employed an information-theoretic search strategy to identify the 
optimal connectivity model within each experimental condition for a single subject. 
Results of subject-specific (intra-individual) relationship maps include effective, 
contemporaneous and delayed effective connections of across different brain regions. 
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of ordinary differential equations (ODEs) to measure simultaneous 
change in brain activity propagating from the level of neural activity 
upward to the region of interest (ROI) level. The third section 
introduces a model for Bayesian SEM based on differential equations 
(BdSEM) and describes the heuristic specification search procedure 
used to arrive at optimal models of effective connectivity. The fourth 
section outlines a simulation study conducted to evaluate the efficacy 
of the modeling strategy. 

Structural equation modeling: A frequently used technique 
used for modeling population-level relationships among regions 
caused by neural activation in brain regions is structural equation 
modeling (SEM). SEM was first adapted to imaging data by McIntosh 
& Gonzales-Lima7,8 to examine effective9 relationships between 
regions of interests (ROIs). To date, SEM of neural connectivity 
has predominantly been applied to functional magnetic resonance 
imaging (fMRI). In part, this trend may reflect difficulties in source 
localization that are inherent in most electrophysiological data capture 
methods. 

Application of SEM involves developing a set of simultaneous 
equations to estimate 

a)	 The regression coefficients between measurements on observed 
variables and associated latent variables (i.e. a measurement 
model) and 

b)	 Relationships among latent variables comprising a hypothesized 
model. SEM is based on the general linear and/or generalized 
nonlinear model and is very useful for complex or longitudinal 
data structures (e.g., multilevel random coefficients models, 
growth curve modeling, and differential equation-based manifest 
or latent change). Perhaps SEM is most often associated 
with confirmatory (theory confirming) modeling approaches. 
However, SEM can be used to conduct heuristic search 
techniques in high dimensional data structures to locate an 
optimal model from among a set of competing ones. Heuristic 
search techniques leverage information-theoretic algorithms 
from the field of artificial intelligence (e.g., mathematically-based 
approaches based on lagrangian heuristic/incomplete branch-
and-bound algorithms). Application of SEM involves measuring 
the discrepancy between a parameterized causal structure of 
hypothesized relationships (e.g., between observed or latent 
variables or a combination of both) and estimated parameters 
from data as measured through a series of fit indices.10,11  SEM 
employing Bayesian probability and statistics12,13 has recently 
emerged and provides increased precision and flexibility in 
modeling scenarios with high dimensional data structures, small 
sample size and non-normally distributed variables. 

Statistical inference and bayesian learning: The history and 
development of Bayesian statistical methods are substantial and 
closely related to frequentist statistical methods. In some ways, 
Bayesian statistical thinking can be viewed as an extension of the 
traditional (i.e., frequentist) approach, in that it formalizes aspects 
of the statistical analysis that are left to uninformed judgment by 
researchers in classical statistical analyses.14 Bayesian methods 
include data analytic techniques that are derived from the principles 
of Bayesian statistical inference. Statistical induction involves 
learning about the characteristics of a population from a subset of 
members of a particular population. Numerical values of populations 
are expressed as parameters (θ) while numerical values of the subset 
of the population are expressed as (y). Given the numerical values 

(y) in the subset or sample dataset, uncertainty is reduced about the 
population parameters. Quantifying this shift in uncertainty is the goal 
of Bayesian inference. The parameter space Θ is the set of all possible 
parameter values from which we wish to identify the value(s) that 
best reflect the true population parameters (e.g., regression weights 
in connectivity models). Bayesian learning involves a numerical 
formulation of the joint beliefs about y and θ, expressed as probability 
distributions over y and θ. In short, Bayesian learning involves the 
components listed below.

I.	 Given each value θ∈Θ the prior distribution ( )p θ  describes the 
belief that  ( )θ   represents the true population parameter.

II.	 Given each value θ∈Θ and y Y∈  the sampling model (y| )p θ    
captures the belief that y  will be the outcome of a particular 
study if we knew θ  to be correct or true.

III.	After y  is acquired, each numerical value of the posterior 
distribution (y| )p θ  describes the belief that θ  is the true value 
having observed dataset y  .

The posterior distribution for model parameters is derived using 
Bayes rule as in Equation 1.

                                       						   
                                                                                                   (1)

A core component of Bayesian modeling is accurately modeling 
the generating process (e.g., unknown causes modeled using a prior 
distribution) and unknown population parameters θ  to observed 
sensory data values ( y ). Bayesian statistical methods are particularly 
well-suited for developing generative or recognition models of 
complex systems15-17 because the goal in Bayesian learning is to 
model the generating process that produced the observed data values. 
For example, in generative and recognition models, functions are 
applied thereby allowing a mechanism for mapping causes to sensory 
input. Specifically, the goal of generative modeling is to: “learn 
representations that are economical to describe but allow the input to 
be reconstructed accurately”.18 The goal is to make inferences about 
the causes and learn the parameters. Bayesian probability provides 
a natural framework for linking unknown parameters and causes 
to observed data. Finally, in the classical school of probability, the 
sample data values are selected randomly with the statistics estimated 
being fixed point estimates of population parameters. Conversely, in 
the Bayesian school of probability and inference, the sample is fixed 
(i.e. not considered random) with the parameters estimated being 
random (e.g., obtained using Markov chain Monte Carlo [MCMC] 
resampling methods). Because our estimated parameters are random 
variables, we can make probabilistic statements about their certainty 
with a high level of precision.

In the Bayesian modeling approach, we view any unknown 
quantity (e.g., parameter) as random and these quantities are assigned 
a probability distribution (e.g., normal, Poisson, multinomial, 
geometric, etc.) that provides the impetus for generating a particular 
set of data. In this study, our unknown population parameters were 
modeled as being random and then assigned to a joint probability 
distribution. In this way, we were able to summarize our current state 
of knowledge regarding the model parameters. The sampling-based 
approach to Bayesian estimation provides a solution for the random 
parameter vector θ by estimating the posterior density or distribution 
of a parameter. This posterior distribution is defined as the product of 
the likelihood function (accumulated over all possible values of θ) and 
the prior density of θ.19 In our case, a generative model is specified in 

( | ) ( )( | )
( | ) ( )

p y pp y
p y p d

θ θθ
θ θ θΘ

=
∫   
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terms of a prior distribution relative to the neuronal activity (i.e. the 
causative mechanism of the observed data).

Modeling long time series relative to small sample size: 
Developing statistical models for studying populations relevant 
to neuroscience often poses considerable challenges due to small 
sample sizes, the issue of low statistical power, and the length of 
the time series (i.e. number of repeated measurements) being quite 
long (e.g., > 100 time points). One analytic approach appropriate 
for the challenging scenarios previously noted are multivariate 
autoregressive models.20-22,13 The use of Bayesian statistical modeling 
is more sensitive for hypothesis testing and interval estimation 
than frequentist approaches when there are small sample sizes with 
multivariate structure and a long time series.23-25,19 In the present study, 
the number of time series measurements is large (i.e. > 1000) with the 
length of the time series greater than the sample size (N=1). Although 
our data acquisition involved multiple trials for each electrode within 
each subject, the average time series (waveform) for each site within 
each subject was used for BdSEM modeling.

Modeling fMRI data involves capturing the degree of deoxygenated 
vascularization relative to baseline for each voxel or congregation 
of voxels corresponding to ROIs across multiple trials (i.e. time 
series) nested within subjects. Each case within the time-series data 
structure for each ROI corresponds to the peak, or averaged peak, of 
hemodynamic activity for that trial. Furthermore, after slice timing 
correction, the resulting data structures for each ROI are obtained 
contemporaneously for any given trial. When extended to multivariate 
regression or multivariate autoregressive models (or SEMs), mapping 
hypothesized effective connectivity relationships (including those with 
theoretical support) becomes fallacious given that inferences of causal 
influence of one region on another requires temporal precedence. For 
example, the empirical conditions for inferring a causal relationship 
between two variables include (a) X is related to Y, (b) X temporally 
precedes Y, and (c) the relationship between X and Y is not mediated 
by a third variable - Z.15,26  Although more complicated, the same rules 
apply when modeling the relationships in a system of simultaneous 
equations (e.g., more than two variables). 

Kim et al.,27 developed a Unified SEM technique of fMRI 
time-series using data on visual attention using multivariate 
auto regression to model both contemporaneous and temporal 
(longitudinal) relationships simultaneously. However, the effective 
relationships determined from delayed representations and real-time 
representations of data were separated by a single trial with a time 
resolution of 3 seconds. Moreover, inferences of interregional causal 
relationships between multiple regions’ underlying electrophysiology 
were made from vascular data that was obtained 3 seconds prior. 
Also, Unified SEM requires relationships between parameters to 
be specified a priori. Gates et al.,28 improved upon this technique, 
by developing an Extended Unified SEM technique integrating an 
automatic search procedure based on Lagrangian multiplier tests, or 
modification indices. In this paper, we improve on these procedures 
by the estimation of electrophysiological connectivity maps to 
obtain more accurate representations of effective relationships by 
leveraging the high temporal and spatial resolution of (ECoG), a 
form of electrophysiological data collected from electrodes placed 
directly on the brain cortical surface during neurosurgery.2,3,5,6  ECoG 
remedies issues of localization frequently encountered in EEG while 
retaining the advantage of high temporal resolution (0.5 – 1.0ms) 
and spatial resolution (diameter 2.0-3.0mm). The improved temporal 

resolution relative to fMRI makes ECoG ideal for reducing bias to 
very small or optimal levels specific to inferences based on underlying 
neurophysiology. Leveraging the high quality of ECoG data, we 
present a novel method for modeling dynamic data structures of ROIs 
to be input in a data-driven method of modeling the relationships 
between regions of the cortical voice network.  

Differential structural equation modeling: Modeling dynamic 
intraindividual change using differential equations based on long 
time series is a rapidly evolving technique. Functional data analysis 
(FDA)29 provides an approach for fitting differential equations 
directly from acquired measurements in studies of human growth and 
EEG. Using differential equations within SEM provides an approach 
for applying the FDA approach to model the effective connectivity 
expressed as dynamic coupling between the neuronal states of various 
brain systems when exposed to experimental conditions. Typically, 
in neuroimaging studies, experimental conditions are modeled 
as inputs via boxcar or stick functions. Here we approximate the 
(reciprocal) relationships among brain region activity using a bilinear 
approximation. 

Ordinary differential equations (ODEs): Using ODEs to model 
neuronal activity provides a way to express the rate of change of the 
states as a parameterized function of the states and inputs. In Equation 
2,  ( )tu  represents a particular experimental stimulus as an input.  Here 
we use ODEs to model instantaneous changes in neuronal activity 
in two steps.  First, we employ neuronal state equations thereby 
linking the derivatives of neuronal states 1( ) ( ( ), , ( )) 'dt x t x t=x   of d 
brain regions to themselves under the influence of an experimental 
condition.2 The ODE-based dynamic model assumes a Markov 
property whereby instantaneous changes of the system depend only 
on system states and experimental inputs at the same moment in time. 
Importantly, the Markov property is tenable for the brain system 
performing simple auditory and vocalization experimental tasks as 
in our study. The ODE-based state equation detailing the dynamic 
changes of neural states is provided in Equation 2.

                                                                                             (2)

Where F1 is a set of nonlinear basis functions capturing neuronal 
influences that specific brain regions (t)x  and experimental stimuli 

( )tu  exert on other specific regions. The vector 
1
θ  contains the 

unknown parameters in the system. In Equation 2, (t)x  is a continuous 
function reflecting an average of the neuronal activity in a specific 
region. Equation 3 conveys the observation-level (output) equation 
that enables a description of how the underlying neuronal activity 
causes changes in the observed data vector y  in each ROI.

                                                                                            (3)

Where 2F  is an unknown function, 2θ  are parameters to be 
estimated, and x(t)  are error terms. Equations 2 and 3 are requisite 
to modeling any dynamic system (i.e. they link underlying or hidden 
states to observable outputs,30). Particularly relevant to our study is that 
the causal relationships between the outputs and the inputs conform 
to a Volterra series, which expresses the outputs as a generalized 
convolution of the input – without reference to the hidden states x(t)
.1 In short, the Volterra series is a functional Taylor expansion of the 
outputs with respect to the inputs.

Next, in Equation 4 we are able to include a bilinear approximation 

( ) ( ) ( )( )11
, ,

dx t
F X t u t

dt
θ=

2 2( ( ), , ( ))(t)=F t txy eθ
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to F1 by combining elements in Equations 2 and 3. In Equation 4, 
causal influences among regions are possible to elucidate since 
bidirectional estimates of parameters are included in the 1 2

Ai i
 
and 

1 2
Ai i  portion of the equation. These bidirectional influences include 

the dynamic effect of the time series. The parameters in the B  matrix 
enable the estimation of stimulus-dependent effective connectivity 
between component regions. Parameters are allowed to vary over 
the time course of the data capture (ECoG signal) in order to ensure 
accurate approximation to F1. 

                                                                                                 (4)

Here A = 1 2 dxdAi i( )  with 1 2
Ai i

 
denotes the effect of component 2i  

on component 1i  exerted at the current state; jB =  j,i i dxd1 2
B , j=1,…,J,( )  

couples the jth stimulus with the neuronal states and nonzero 
1 2j,i iB  

implies that the effect exerted by component  2i  
on component  1i  

depends on stimulus j; ij dxJC=C ( )  with ijC  indicated the effect of 
stimulus j on component i; and 1,…, dD D=D ( )'  with iD  representing the 
intercept for component i.2

To estimate parameters at the ROI (observation) level, we use 
Equation 5.

			   (t)= (t)+ (t)y x e 		           (5)

Where (t)e  is a d-dimensional vector of measurement errors with 
mean error of zeros.  Further, we assume that the distribution of errors 
is normally distributed with mean zero and variance 2

iσ . Finally, to 
estimate the differential equations, we use basis function expansion 
as described in Ramsay & Silverman.31 The basis function expansion 
approach is appropriate due to the temporally dense observations of 
brain regions and the average of a large number of neuron activities in 
the region of interest. The basis function approach allows for closed 
form solutions based on a large number of neural activity and the 
associated derivatives of the regional activity. Estimating parameters 
in the bilinear model is straightforward and reduces to solving d linear 
regression equations.

Analytic strategy: Here we use a three-step approach to achieve 
an optimal model of effective connectivity.  First, we fit differential 
equations to ECoG signal data to capture instantaneous change of 
neuronal activity within each region of interest based on data acquired 
via target subdural electrode sites. Second, we developed a BdSEM to 
model effective connectivity of the brain system using derivatives and 
observational data of each ROI. Third, we use a Bayesian information-
theoretic algorithm to identify the optimal network model (i.e. the 
model with the highest posterior probability of being optimal). Our 
approach is flexible in that one can (a) use the entire ECoG electrode 
array to model signals from a large amount of regional activity (e.g., 
48 to 96 electrodes within a specific area of the brain) propagating 
from dense neuronal activity, or (b) use one ECoG electrode (single 
channel) within the array to model a targeted brain region. The first 
example above begins by modeling the neuronal dynamics and is 
similar to Dynamic Causal Modeling (DCM, Friston et al.,32) because 
the brain is viewed as a continuous-time dynamic system of neuronal 
activity where signals propagate upward to an observational or 
population level. DCM incorporates two equations: a bilinear equation 
capturing neuronal activity in a bidirectional, nonlinear fashion, and an 
observation-level equation enabling effective connectivity modeling. 
The approach presented here is viewed as a special case of a DCM. 

Methods
Customized high-density electrode arrays were implanted on 

the pial surface of exposed cortex for all subjects. Electrode arrays 
consisted of 96 platinum-iridium disc electrodes embedded within a 
silicon sheet with 5.0 mm center-to-center spacing and 3.0 mm contact 
diameter (Ad-Tech, Racine, WI). Since grid placements were tailored 
to clinical considerations for each subject, exact placements differed. 
However, analyzed ROIs , namely, inferior frontal gyrus (IFG), 
premotor cortex (PreM), primary motor cortex (M1) and 2 regions 
from superior temporal gyrus (STG), -posterior STG (PostSTG) and 
middle STG (MidSTG) were significantly covered for each subject. 
Moreover, our task was a sustained vocalization task (e.g., produce 
and sustain the vowel /a/) during recording of cortical signals (see 
Experimental Design section) and these regions are well known to be 
associated with sensory motor control of vocalization.

Subjects: Four male patients ages 31 to 47, mean (41 years) 
undergoing neurosurgical treatment for medically intractable epilepsy 
served as subjects for this study. Written consent was obtained from 
all subjects and all research protocols were approved by University of 
Iowa Human Subjects Review Board. Experiments were conducted 
in an electromagnetically-shielded private suite in the University of 
Iowa General Clinical Research Unit. 

All subjects underwent comprehensive pre-surgical neurological 
examination, brain imaging, neuropsychological evaluation and 
audiometric testing to confirm normal hearing, speech, and language 
function. No anatomical lesions were detected for cortical regions 
of interest. Subjects underwent preoperative sodium amobarbital 
(Wada) testing revealing left hemispheric language dominance in 
3 subjects (including s186) and bilateral dominance in one subject 
number. Detailed description of our electrode arrays and localization 
of recording sites can be found in previous studies from our lab.5,6 

Experimental design: Subjects underwent 2 blocks of vocalization 
and playback tasks. The vocalization task required subjects to 
produce and maintain vocalization of the vowel /a/ for 2 seconds 
at a natural conversational pitch and volume (approximately 70-75 
dB). The vocalization task was repeated 30-50 trials with 1-2second 
breaks between the self-paced trials. Voice sound was captured by a 
microphone (Beta 87C, Shure, Niles, IL) located near the subject’s 
mouth, amplified (10 dB gain; Ultralite MK3, MOTU, Cambridge, 
MA), and passed through a harmonizer (Eclipse, Eventide, Little 
Ferry, NJ). Auditory feedback stimuli were delivered bilaterally 
through insert earphones (ER-4, Etymotic, Elk Grove Village, IL) 
placed in custom fitted, vented ear molds for each subject. A 10 dB 
feedback amplification gain was inserted between the voice sound and 
its auditory feedback to partially mask the potentially confounding 
effects of bone-conduction. During the playback task, subjects were 
instructed to listen to the recorded sound signal of their same self-
produced vocalizations. The gain of the signal during playback 
condition was adjusted at a nearly equal level to voice feedback 
during vocalization block. The total duration of each block was 
approximately 5–8 minutes. Subjects were given short breaks (2 
minutes) between successive blocks.

Data processing: Data acquired from electrode arrays consisting of 
96 platinum-iridium disc electrodes embedded within a silicon sheet 
with 5.0 mm center-to-center spacing and 3.0 mm contact diameter 
yielded the data structure from underlying neural populations. At the 
observation level, a single central electrode was selected to represent 

1

d t t u t t t
d t =

= + ⋅ + +∑
J

j
j

x( ) Ax( ) ( ) B x( ) Cu( ) D
( )
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the activation for each of the 5 ROIs (a) IFG, (b) PreM, (c) M1, 
(d) PostSTG, and (e) MidSTG based on gross anatomical surface 
landmarks for each subject. Electrophysiological signals for 2-second 
intervals were averaged across trials. We used short intervals to 
maintain an efficient bilinear approximation of nonlinear connectivity 
relationships among components. For both playback and vocalization 
conditions, a 500-millisecond interval (obtained at 0.5ms temporal 
resolution) was isolated starting from onset of vocalization/playback. 
This short interval was necessary as the subjects were subsequently 
presented with altered auditory feedback for other study purposes.  

Assessing inter individual versus intra individual dynamics: 
Developing models of effective connectivity often proceeds with the 
goal of creating a model that accurately captures brain dynamics for 
a group of subjects. Standard statistical analyses (e.g., regression, 
ANOVA, SEM and other general linear modeling techniques) that 
yield inferences within a randomly-selected population of subjects 
are considered to be homogeneous in all aspects specific to the 
research endeavor. In this scenario, model parameters are derived 
based on pooling covariance matrices across subjects. Based on the 
homogeneity of subjects assumption, population-based inferences are 
made based on individual differences between subjects (whether the 
study design is cross-sectional or time-series based). At the heart of 
this approach is the study of individual differences rather than within-
person (a.k.a. intra individual change). When the goal is to model a 
continuous-time complex neural system that changes dynamically, 
applying standard statistical techniques used for studying individual 
differences may be unjustified.33 Testing this assumption involves the 
statistical property of ergodicity.34,35 In the present study, we evaluated 
the ergodic property by testing the homogeneity of the variance-
covariance matrices (assembled from the time-series vector and their 
derivatives for each subject) prior to pooling matrices across subjects 
and proceeding with a group-level, traditional analytic technique. 
Specifically, we were interested in (a) measuring the degree to 
which neural changes in brain activity of a subject with intractable 
epilepsy occurs between temporal states of the ECoG signals and (b) 
if subjects’ data structures were homogeneous enough to develop a 
single connectivity model by study condition. To this end, developing 
a single model of effective connectivity for the four subjects in 
this study may or may not accurately represent the intra individual 
brain dynamics of each subject. Based on the results of our test, the 
individual subjects’ covariance matrices were not homogeneous 
(statistically different at p < .001 for each pair wise comparison 
corrected for Type 1 error); therefore we proceeded by using right 
(non-language dominant) hemisphere data for subject 186 under both 
experimental conditions (i.e. speaking and playback).

Exploratory model development: To construct a model of effective 
connectivity that provided optimal fit, exploratory BdSEM using ROIs 
and every possible path was performed. Contemporaneous relationships 
were extracted based on the direct connections between both real-time 
to real-time and delayed to delayed relationships between two ROIs. 
The continuous signal acquired from ECoG was discretized into 
1110 observations. Intrinsic relationships were interpreted as a path 
from the delayed representation (derivative) of a region to its real-
time representation. Lastly, longitudinal relationships were derived 
from the delayed (derivative) representation of one region bearing a 
relationship to the real-time representation of another. Model fit was 
iteratively improved through the use of a heuristic search strategy.36,37 
Our use of heuristics was guided by the neuroscience experience of 
the team, mathematical logic and computational skills. We employed 
a mathematically-based approach based on lagrangian heuristic/

incomplete branch-and-bound algorithms. Decision rules for optimal 
model selection was based on Burnham & Anderson38 guidelines for 
BCC interpretation as the BCC0 between 0-2 (no credible evidence 
that the model should be ruled out as being the Kullback-Leibler (K-
L;39) best model for the population of possible samples).

Our exploratory model fitting protocol followed guidelines 
established from research in the information-theoretic and Bayesian 
modeling fields.40,38 Specifically, we employed the Kullback-Leibler 
distance measure39 as incorporated into the information theoretic 
measure the Browne-Cudeck Criterion (BCC,41), to identify the model 
with the highest probability of being the correct model. The BCC 
was developed specifically for covariance structure modeling and 
imposes a greater penalty for model complexity than does the Akaike 
Information Criterion (AIC) and the Bayesian Information Criterion 
(BIC). The BCC is defined as:
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Where, Ĉ  is the minimum value of the discrepancy function, q  
is the number of parameters in the model, p  is the number of sample 
moments in all groups combined, ( )gN  equals the total sample size (N) 
times the ratio of the sample size in a group ( )gN  to the total sample 
size (N), ( )gp  is the number of variables in an observed group, ( )gN , 
and G  is the number of groups in the model. Of particular relevance, 
the exploratory strategy we employed provides a mechanism for the 
prevention of over fitting (a particular challenge in selecting an optimal 
model from a very large number of competing models). Ensuring that 
model over fitting in heuristic specification search procedures does 
not occur in high-dimensional data structures37,42 is a challenging but 
not insurmountable. Exploratory modeling began with a null model 
with only the derivative for a specific ROI regressed on the respective 
ROI. Under this specification, the starting model representation is 
that each region has no significant correlation with the activity of any 
other region. Iterative model refinement evolved through evaluating 
model improvement in the likelihood ratio 2χ  test, root mean square 
error of approximation (RMSEA;43) and Browne-Cudeck Criterion 
(BCC,41) with successive path additions.

Bayesian SEM model development and refinement: After 
identification of optimal models for each study condition, BdSEM 
proceeded by modeling the population parameters using semi-
conjugate priors for θ ~ multivariate normal (~N 0, 4), Σ ~ inverse-
Wishart ( 1

0S− , 1
0S− ;44-47,42). The selection of priors was based on (a) 

a review of the distributional properties of the acquired ECoG time 
series, and (b) recommendations for using informative priors for 
complex models with small samples Gelman46 and Asparouhov & 
Múthen.48 One-thousand MCMC burn-in iterations were used to 
establish convergence criteria for the joint posterior distribution 
of the model parameters and the criterion for acceptable posterior 
distribution summary estimates of parameters was set at 1.001.42 
Bayesian estimation proceeded using the SEM facility in Mplus, 
version 7.3.49 Convergence was achieved at S=20,000 post burn-in 
iterations after which posterior distributions were evaluated using time 
series, auto correlation plots, and the posterior predictive p-values to 
judge the behavior of the MCMC convergence.44 Time series and auto 
correlation plots revealed acceptable MCMC performance in all four 
subjects in left and right hemisphere models. Posterior predictive 
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p values were acceptable for subject 186; p = .53 (vocalization 
condition) and .47 (auditory condition).

For the final model in our heuristic search, the BCC0 was observed 
as 1.22 (vocalization condition) and 2.0 (listening condition). 
Additionally, we used (a) an RMSEA of <.05, (b) comparative fit index 
(CFI) of >.95, and (c) the Bayesian information criteria (BIC) being 
the smallest among competing models as decision criteria. Figure 
1 illustrates selected path loadings for the final right hemisphere 
vocalization and listening condition models for subject 186. Complete 
presentation of path loadings are provided in Tables 1&2.

Simulation study: In the next phase of our study, Markov chain Monte 
Carlo (MCMC, [50]) methods were used to examine the sampling 
distribution of the parameter estimates and their error structure for 
subject 186 under both study conditions. We conducted a simulation 
by evaluating the impact of sample size (N=1, 2, 3 and 5) on parameter 
estimation bias in vocalization and listening conditions. A byproduct 
of our simulation included a power analysis providing estimates for 
each regression path at each sample size condition. The Monte Carlo 
simulation facility in Mplus version 7.3,49 was used to conduct the 
simulation study. The results of our simulation are presented next.

For the N=1 condition, 95% coverage was attained 21% of the 
time. Power analysis revealed that 32% of the parameter estimates 
were below a power of .85. For the N=2 condition, 95% coverage 
was attained 28% of the time. Power analysis revealed that 28% of 

the parameter estimates were below a power of .85.  For the N=3 
condition, 95% coverage was attained 27% of the time. Power analysis 
revealed that 38% of the parameter estimates were below a power of 
.85.  For the N=5 condition, 95% coverage was attained 21% of the 
time. Power analysis revealed that 77% of the parameter estimates 
were below a power of 85 Tables 3&4. 

In summary, the results of the simulation study revealed that at 
small sample sizes, group-level effective connectivity analyses are 
like to yield estimates with low statistical power, parameter estimates 
with bias greater than 5% at least 50% of the time. The 95% coverage 
was low ranging from 21% to 28%. The problems of low power and 
excessive parameter bias resolved upon reaching a sample size of N 
= 200,000. At this point, statistical power for all parameter estimates 
was greater than .95 and bias was below 5%. This pattern of findings 
concurs with the fully Bayesian model which also included 200,000 
replications. Based on the results of our simulation, a fully Bayesian 
approach to modeling single subject-specific effective connectivity 
using ECoG data is recommended since (a) the Bayesian probability 
is not based on classical frequency school of probability with random 
sampling of experimental units (i.e. subjects), and (b) the approach 
directly incorporates a Markov chain Monte Carlo (MCMC) simulation 
component in estimating the random parameters comprising a model. 
Using the Bayesian approach, prior information can be included in 
the parameter estimation process and Gibbs sampling within the 
MCMC framework can be leveraged to ensure accurate final model 
parameters.

Table 1 Bayesian SEM estimates playback-listen condition – right hemisphere (subject 186)

Regression paths Standardized 
estimate

Unstandardized 
estimate S.E. SD p Relationship 

type

MidSTG <- IFG -0.28 -0.1 0.01 0.001 0.01 C

PostSTG <- IFG 0.07 0.03 0.001 0.013 0.01 C

dM1 <- IFG 0.21 0 0 0 *** D

dPostSTG <- IFG 0.26 0 0 0 *** D

M1 <- IFG 0.59 0.03 0.001 0.015 0.02 C

dMidSTG <- IFG 0.06 0 0 0 0.09 D

PreM <- IFG -0.01 -0.01 0.001 0.011 0.39 C

dPreM <- IFG 0.49 0.01 0 0 *** D

dIFG <- IFG 0 0 0 0.001 0.94 I

dMidSTG <- dIFG -0.2 -0.05 0.011 0.015 *** C

dPreM <- dIFG -0.14 -0.04 0.009 0.165 *** C

dPostSTG <- dMidSTG 0.48 0.72 0.002 0.024 *** C

dPreM <- dMidSTG -0.32 -0.14 0.003 0.04 *** C

dM1 <- dMidSTG 0.41 0.77 0 0.001 *** C

dM1 <- dPostSTG -0.47 -0.6 0.002 0.037 *** C

dM1 <- dPreM 0.22 0.43 0 0.002 *** C

dPreM <- dPostSTG -0.07 -0.04 0.003 0.042 0.01 C

dM1 <- dIFG -0.08 -0.04 0.001 0.015 *** C

PreM <- dMidSTG -0.32 -12.25 0.068 1.045 *** D

PostSTG <- MidSTG 0.61 0.93 0.002 0.034 *** C

dPostSTG <- PreM 0.1 0 0 0.001 *** D

M1 <- PostSTG -0.63 -0.71 0.003 0.033 *** C
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Regression paths Standardized 
estimate

Unstandardized 
estimate S.E. SD p Relationship 

type

PostSTG <- dMidSTG -0.05 -4.66 0.081 1.24 *** D

M1 <- dIFG -0.1 -1.53 0.023 0.357 *** D

M1 <- dPostSTG -0.01 -0.43 0.082 1.02 0.66 D

MidSTG <- dIFG -0.04 -0.41 0.015 0.301 0.18 D

M1 <- dMidSTG 0.18 10.85 0.102 1.484 *** D

PreM <- MidSTG 0.55 0.16 0.003 0.038 *** C

M1 <- dPreM 0.15 9.43 0.125 1.661 *** D

PostSTG <- dIFG -0.16 -2.61 0.023 0.311 *** D

dPreM <- MidSTG 0.61 0.02 0 0.001 *** D

dPostSTG <- dIFG 0.32 0.12 0.01 0.117 *** C

PreM <- dIFG -0.26 -2.43 0.021 0.297 *** D

dPreM <- PostSTG -0.2 0 0 0.001 *** D

dM1 <- PreM -0.05 0 0 0.002 0.1 D

M1 <- PreM 0.5 0.73 0.003 0.035 *** C

M1 <- MidSTG 0.55 0.92 0.004 0.055 *** C

dM1 <- MidSTG 0.05 0 0 0.002 0.21 D

dM1 <- PostSTG -0.1 0 0 0.001 0.01 D

PreM <- PostSTG -0.2 0.12 0.001 0.026 *** C

dPostSTG <- PostSTG 0.08 0 0 0.001 0 I

dMidSTG <- MidSTG 0.01 0 0 0.001 0.76 I

dM1 <- M1 -0.15 -0.01 0 0.001 *** I

dPreM <- PreM -0.11 0 0 0.001 *** I

dIFG <- dM1 -0.01 -0.02 0.006 0.09 0.81 C

dPostSTG <- dPreM 0.03 0.05 0.003 0.042 0.28 C

dMidSTG <- dPostSTG 0 0.01 0.002 0.024 0.84 C

dIFG <- dMidSTG -0.01 -0.04 0.011 0.151 0.78 C

dMidSTG <- dPreM 0 0 0.003 0.04 0.98 C

dlFG <- dPreM 0 0 0.009 0.165 0.98 C

dPostSTG <- dM1 0.03 0 0.004 0.155 0.95 C

dMidSTG <- dM1 0.01 0 0 0.03 0.96 C

dPreM <- dM1 0.43 0.1 0.005 0.046 *** C

dIFG <- dPostSTG 0 0 0.01 0.117 0.99 C

Note: *** denotes significant at p<.001. C =contemporaneous; D = delayed; I = intrinsic. Note. Path coefficients are mean standardized regression weights (point 
estimates) based on marginal posterior distribution resulting from Bayesian analysis with MCMC resampling. Parameter estimates (regression weights) are 
modeled as random parameters. SD = posterior standard deviation of the distribution. S.E. = posterior standard error of the distribution. 95% Bayesian credible 
interval runs from the 2.5 percentile to the 97.5 percentile. Credible intervals do not depend on a normal (Gaussian) distribution to establish confidence limits. 
PPP = .36, DIC = 134.09
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Table 2 Bayesian SEM estimates vocalization condition – right hemisphere (subject 186)

Regression Paths Standardized 
estimate

Unstandardized 
estimate S.E. SD p Relationship 

type

dIFG <- IFG 0.17 0.01 0 0.002 *** I

MidSTG <- IFG -0.37 -0.69 0.003 0.054 *** C

PostSTG <- IFG -0.35 -0.63 0.003 0.046 *** D

dM1 <- IFG 0.57 0.02 0 0.001 *** D

dPostSTG <- IFG -0.5 -0.02 0 0.002 *** D

M1 <- IFG -0.4 -0.47 0.002 0.039 *** D

dMidSTG <- IFG 0.01 0 0 0.002 0.76 D

PreM <- IFG 0.06 0.05 0.002 0.029 0.06 C

dPreM <- IFG -0.35 -0.01 0 0.001 *** D

dMidSTG <- dIFG -0.05 -0.04 0 0.001 0.1 C

dPreM <- dIFG 0.28 0.2 0.051 0.653 *** C

dPostSTG <- dMidSTG -0.03 -0.04 0.015 0.013 *** C

dPreM <- dMidSTG -0.04 -0.04 0.004 0.064 0.1 C

dM1 <- dMidSTG 0 0 0.001 0.031 0.99 C

dM1 <- dPostSTG -0.08 -0.05 0 0.001 0.01 C

dM1 <- dPreM 0.33 0.28 0 0.001 *** C

dPreM <- dPostSTG 0.35 0.29 0 0.001 *** C

dM1 <- dIFG -0.46 -0.28 0.027 0.59 *** C

dMidSTG <- MidSTG -0.08 0 0 0.001 0.02 I

dPostSTG <- PostSTG -0.39 -0.01 0 0.001 *** I

dPreM <- PreM -0.04 0 0 0.001 0.14 I

dM1 <- M1 0.04 0 0 0.001 0.23 I

PreM <- dMidSTG -0.67 -17.27 0.278 2.052 *** D

PostSTG <- MidSTG 0.49 0.47 0.001 0.024 *** C

dPostSTG <- PreM 0.62 0.03 0.001 0.004 *** D

M1 <- PostSTG -0.57 -0.37 0.001 0.027 *** C

PostSTG <- dMidSTG -0.15 -7.52 0.108 1.794 *** D

M1 <- IFG -0.17 -4.07 0.002 0.039 *** C

M1 <- dPostSTG -0.1 -2.72 0.049 0.859 0 D

MidSTG <- IFG -0.19 -7.05 0.003 0.054 *** C

M1 <- dMidSTG 0 -0.12 0.059 0.948 0.91 D

PreM <- MidSTG 0.28 0.14 0.001 0.014 *** C

M1 <- dPreM 0.09 3.08 0.067 1.136 0.01 D

PostSTG <- dIFG 0.1 3.43 0 0.002 *** D

dPreM <- MidSTG 0.48 0.01 0 0.001 *** D

dPostSTG <- dIFG 0.16 0.14 0.003 0.041 *** C

PreM <- dIFG -0.08 -1.47 0.051 0.653 0.01 D

dPreM <- PostSTG -0.62 -0.01 0 0.001 *** D

dM1 <- PreM -0.31 -0.01 0 0.001 *** D

M1 <- PreM 0.36 0.47 0.002 0.04 *** C

M1 <- MidSTG -0.21 -0.13 0.001 0.023 *** C
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Regression Paths Standardized 
estimate

Unstandardized 
estimate S.E. SD p Relationship 

type

dM1 <- MidSTG -0.01 0 0 0.001 0.74 D

dM1 <- PostSTG 0.4 0.01 0 0.001 *** D

dIFG <- dMidSTG -0.05 -0.07 0 0.002 0.18 D

dMidSTG <- dPostSTG 0.56 0.45 0.015 0.103 *** C

dPostSTG <- dPreM 0.04 0.05 0.003 0.053 0.25 C

dPreM <- dM1 0 0 0.001 0.031 1 C

dIFG <- dM1 0 -0.01 0.004 0.064 0.88 C

dMidSTG <- dPreM 0.01 0.01 0.004 0.064 0.81 C

dPostSTG <- dM1 0 -0.01 0.004 0.054 0.83 C

dMidSTG <- dM1 0 0 0.007 0.068 0.87 C

dIFG <- dPreM 0.03 0.03 0.005 0.074 0.57 C

Note: *** denotes significant at p<.001. C =contemporaneous; D = delayed; I = intrinsic. Note. Path coefficients are mean standardized regression weights (point 
estimates) based on marginal posterior distribution resulting from Bayesian analysis with MCMC resampling. Parameter estimates (regression weights) are 
modeled as random parameters. SD = posterior standard deviation of the distribution. S.E. = posterior standard error of the distribution. 95% Bayesian credible 
interval runs from the 2.5 percentile to the 97.5 percentile. Credible intervals do not depend on a normal (Gaussian) distribution to establish confidence limits. 
PPP = .42, DIC = 131.05.

Table 3 Monte Carlo Simulation – Vocalization Condition (N=1 and N=2)

N = 1 N = 2

Path Popula-
tion Average %Bias 95% 

Coverage Power Population Average %Bias 95% Co-
verage Power

IFG on

dM1 61.43 43.05 -0.29 0.65 0.96 61.43 45.729 -0.256 0.676 0.999

dIFG 26.72 26.14 -0.022 0.91 0.99 26.715 26.704 0 0.933 1

MidSTG -1.99 -1.71 -0.141 0.63 0.98 -1.99 -1.71 -0.141 0.63 0.98

dMidSTG -2.04 -1.241 -0.392 0.77 0.15 -2.04 -0.783 -0.616 0.7 0.238

MidSTG on

IFG -1.99 -1.71 -0.141 0.63 0.98 -1.99 -1.726 -0.133 0.66 1

PostSTG on

IFG 0.735 -0.416 -1.566 0.65 0.85 0.735 -0.422 -1.574 0.683 0.976

MidSTG 0.55 0.51 -0.073 0.82 1 0.546 0.518 -0.051 0.744 1

dMidSTG -7.79 -9.96 0.279 0.84 0.99 -7.79 -9.924 0.274 0.736 1

dIFG 7.85 10.93 0.392 0.67 0.99 7.847 10.751 0.37 0.677 1

dM1 on

IFG 0.004 0.007 0.75 0.69 0.33 0.004 0.007 0.625 0.68 0.332

dMidSTG 0.006 0.033 4.5 0.864 0.152 0 0 0 1 0

dPostSTG 0.089 0.098 0.101 0.93 0.43 0.089 0.098 0.101 0.93 0.43

dPreM 0.28 0.28 0 0.99 0.99 0.28 0.28 0 1 0

dIFG 0.083 0.078 -0.06 0.9 0.65 0.28 0.28 0 1 0

M1 0.008 0.006 -0.25 0.656 0.247 0.008 0.006 -0.25 0.678 0.498

PreM -0.054 -0.038 -0.296 0.63 0.99 -0.054 -0.0405 -0.25 0.668 1

MidSTG 0.019 0.014 -0.279 0.63 0.915 0.019 0.014 -0.279 0.669 0.998

PostSTG 0.019 0.014 -0.289 0.64 0.935 0.019 0.014 -0.247 0.675 0.996

dPostSTG on

IFG -0.025 -0.0254 0.016 0.94 1 -0.025 -0.025 0 0.938 1
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N = 1 N = 2

Path Popula-
tion Average %Bias 95% 

coverage Power Population Average %Bias 95% co-
verage Power

dMidSTG -0.037 -0.037 0 1 0 -0.037 -0.037 0 1 0

PostSTG -0.008 -0.009 0.125 0.84 1 -0.008 -0.009 0.125 0.791 1

PreM 0.028 0.029 0.032 0.92 0.99 0.028 0.029 0.032 0.893 1

dIFG 0.083 0.078 -0.06 0.9 0.65 0.083 0.074 -0.114 0.861 0.859

dPreM 0.098 0.152 0.551 0.67 0.69 0.098 0.152 0.551 0.671 0.86

dM1 0.089 0.089 0 0.93 0.43 0.089 0.089 0.002 0.951 0.636

M1 on

IFG -0.576 -0.57 -0.01 0.95 1 -0.576 -0.57 -0.01 0.937 1

PostSTG -0.415 -0.422 0.017 0.917 1 -0.415 -0.4214 0.015 0.906 1

dPostSTG -2.929 -2.925 -0.001 0.945 0.89 -2.929 -2.914 -0.005 0.945 0.998

dMidSTG 0.207 0.23 0.111 0.946 0.06 0.207 0.189 -0.086 0.945 0.061

dPreM 0.543 0.575 0.059 0.955 0.085 0.543 0.529 -0.027 0.953 0.116

PreM 0.437 0.459 0.05 0.848 1 0.437 0.458 0.048 0.78 1

MidSTG -0.051 -0.059 0.157 0.896 0.567 -0.051 -0.0577 0.131 0.863 0.721

dMidSTG on

IFG -0.006 -0.005 -0.167 0.943 0.641 -0.006 -0.005 -0.167 0.949 0.901

dIFG -0.035 -0.035 0 0.99 1 -0.035 -0.035 0 0.99 1

MidSTG 0.003 0.002 -0.333 0.641 0.388 0.003 0.002 -0.333 0.669 0.67

dPostSTG 0.431 0.466 0.081 0.855 0.997 0.431 0.43 -0.002 0.829 1

dPreM -0.01 -0.032 2.2 0.918 0.083 -0.01 -0.022 1.2 0.925 0.099

dM1 0.006 0.033 4.5 0.864 0.152 0.006 0.022 2.667 0.828 0.199

PreM on

IFG 0.267 0.17 -0.363 0.666 0.633 0.267 0.185 -0.306 0.681 0.708

dMidSTG -20.397 -19.428 -0.048 0.632 1 -20.397 -18.969 -0.07 0.669 1

MidSTG -0.013 0.033 -3.538 0.633 0.35 -0.013 0.027 -3.077 0.67 0.331

dIFG -4.215 -4.018 -0.047 0.856 0.997 -4.215 -3.986 -0.054 0.791 1

dPreM on

IFG -0.018 -0.023 0.278 0.659 1 -0.018 -0.0237 0.317 0.681 0.708

dIFG -0.035 -0.035 0 1 0 -0.19 -0.19 0 1 0

dMidSTG -0.04 -0.04 0 1 0 -0.04 -0.04 0 1 0

dPostSTG 0.29 0.29 0 1 0 0.29 0.29 0 1 0

PreM 0 0.002 0 0.637 0.363 0 0.002 0 0.676 0.324

MidSTG 0.009 0.017 0.922 0.658 1 0.009 0.011 0.189 0.674 1

PostSTG -0.013 -0.0173 0.331 0.658 1 -0.013 -0.0173 0.331 0.681 1

dM1 0.28 0.28 0 0.99 0.99 0.28 0.28 0 1 0

dIFG on

dM1 0.567 0.612 0.079 0.939 0.896 0.567 0.609 0.074 0.946 0.995

dPreM 0.43 1.23 1.86 0.654 0.997 0.43 1.222 1.842 0.68 1

Note 1 Results based on 200000 MCMC samples for 1110 discrete time points. Chi-Sq = 24.87 (4); RMSEA = .025; SRMR = 0.008/SD = 0.007.

Note 2  Results based on 200000 MCMC samples using 2220 discrete time points. Chi-Sq = 17.12 (4); RMSEA = .025; SRMR = 0.008/SD = 0.007.
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Table 4 Monte Carlo Simulation – Vocalization Condition (N=1 and N=2)

N = 3 N = 5

Path Population Average %Bias 95% 
coverage Power Population Average %Bias 95% 

coverage Power

dM1 61.43 45.285 -0.263 0.673 1 61.429 47.049 -0.234 0.708 1

dIFG 26.715 26.734 0.001 0.943 1 26.715 26.785 0.003 0.943 1

MidSTG 0 0 0 1 0 -1.99 0 -1 1 0

dMidSTG -2.04 -0.702 -0.656 0.677 0.323 -2.04 -0.785 -0.615 0.709 0.462

MidSTG 
on

IFG -1.99 -1.7115 -0.14 0.657 0.999 -1.99 -1.729 -0.131 0.704 1

PostSTG 
on

IFG -0.735 -0.4095 -0.443 0.676 0.997 -0.735 -0.446 -0.393 0.701 0.999

MidSTG 0.546 0.519 -0.05 0.723 1 0.546 0.521 -0.046 0.713 1

dMidSTG -7.79 -10.024 0.287 0.682 1 -7.79 -9.811 0.259 0.705 1

dIFG 7.847 10.794 0.376 0.66 1 7.847 10.418 0.328 0.694 1

dM1 on

IFG 0.004 0.006 0.6 0.675 0.368 0.004 0.006 0.525 0.7 0.398

dMidSTG 0 0 0 1 0 0 0 0 1 0

dPostSTG 0.089 0.098 0.101 0.93 0.43 0.089 0.098 0.101 0.93 0.43

dPreM 0.28 0.28 0 1 0 0.28 0.28 0 1 0

dIFG 0.28 0.28 0 1 0 -0.28 -0.28 0 1 0

M1 0.008 0.006 -0.25 0.658 0.682 0.008 0.006 -0.25 0.703 0.899

PreM -0.054 -0.0401 -0.257 0.667 1 -0.054 -0.0417 -0.228 0.702 1

MidSTG 0.019 0.014 -0.253 0.67 1 0.019 0.015 -0.226 0.698 1

PostSTG 0.019 0.014 -0.253 0.661 1 0.019 0.015 -0.221 0.7 1

dPostSTG 
on

IFG -0.025 -0.025 0 0.931 1 -0.025 -0.0249 -0.004 0.954 1

dMidSTG -0.037 -0.037 0 1 0 -0.037 -0.037 0 1 0

PostSTG -0.008 -0.009 0.125 0.71 1 -0.008 -0.0084 0.05 0.729 1

PreM 0.028 0.028 -0.004 0.876 1 0.028 0.028 -0.014 0.854 1

dIFG 0.083 0.073 -0.117 0.825 0.943 0.083 0.074 -0.106 0.782 0.993

dPreM 0.098 0.155 0.579 0.667 0.955 0.098 0.15 0.533 0.709 0.999

dM1 0.089 0.091 0.019 0.947 0.779 0.089 0.09 0.016 0.938 0.921

M1 on

IFG -0.576 -0.5707 -0.009 0.93 1 -0.576 -0.5715 -0.008 0.918 1

PostSTG -0.415 -0.4219 0.017 0.863 1 -0.415 -0.4208 0.014 0.854 1

dPostSTG -2.929 -2.955 0.009 0.936 0.998 -2.929 -2.912 -0.006 0.943 1

dMidSTG 0.207 0.21 0.013 0.95 0.063 0.207 0.195 -0.059 0.937 0.081

dPreM 0.543 0.546 0.006 0.949 0.166 0.543 0.55 0.013 0.934 0.234

PreM 0.437 0.459 0.051 0.719 1 0.437 0.455 0.041 0.709 1

MidSTG -0.051 -0.0582 0.141 0.817 0.835 -0.051 -0.0574 0.125 0.765 0.943
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N = 3 N = 5

Path Population Average %Bias 95% 
coverage Power Population Average %Bias 95% 

coverage Power

dMidSTG 
on

IFG -0.006 -0.0056 -0.067 0.948 1 -0.006 -0.0058 -0.033 0.946 1

dIFG -0.035 -0.035 0 1 0 -0.035 -0.035 0 1 0

MidSTG 0.003 0.002 -0.367 0.67 0.845 0.003 0.002 -0.333 0.7 0.939

dPostSTG 0.431 0.426 -0.011 0.76 1 0.431 0.432 0.002 0.747 1

dPreM -0.01 -0.0293 1.93 0.9 0.139 -0.01 -0.0226 1.26 0.859 0.189

dM1 0.006 0.026 3.3 0.787 0.243 0.006 0.022 2.667 0.743 0.279

PreM on

IFG 0.267 0.184 -0.31 0.676 0.717 0.267 0.194 -0.272 0.705 0.747

dMidSTG -20.397 -18.8361 -0.077 0.661 1 -20.397 -18.856 -0.076 0.707 1

MidSTG -0.013 0.029 -3.238 0.66 0.333 -0.013 0.024 -2.877 0.698 0.336

dIFG -4.215 -3.9623 -0.06 0.722 1 -4.215 -3.959 -0.061 0.714 1

dPreM on

IFG -0.018 -0.0239 0.328 0.656 1 -0.018 -0.0233 0.294 0.698 0.708

dIFG -0.19 -0.19 0 1 0 -0.19 -0.19 0 1 0

dMidSTG -0.04 -0.04 0 1 0 -0.04 -0.04 0 1 0

dPostSTG 0.29 0.29 0 1 0 0.29 0.29 0 1 0

PreM 0 0.002 0 0.67 0.333 0 0.002 0 0.698 0.302

MidSTG 0.009 0.011 0.2 0.68 1 0.009 0.011 0.178 0.713 1

PostSTG -0.013 -0.0174 0.338 0.673 1 -0.013 -0.0169 0.3 0.71 1

dM1 0.28 0.28 0 1 0 0.28 0.28 0 1 0

dIFG on

dM1 0.567 0.61 0.076 0.929 0.999 0.567 0.603 0.063 0.898 1

dPreM 0.43 1.259 1.928 0.678 1 0.43 1.173 1.728 0.705 1

Note 1 Results based on 1000 MCMC samples for 3330 discrete time points. Chi-Sq = 24.87 (4); RMSEA = .025; SRMR = 0.008/SD = 0.007.

Note 2 Results based on 5550 MCMC samples using 1110 discrete time points. Chi-Sq = 34.19 (4); RMSEA = .022; SRMR = 0.007/SD = 0.007.

Results 
Emergent patterns in connectivity – right  hemisphere: A primary 
goal of the method illustrated here was to present a methodological 
approach for identifying emergent patterns (i.e. strength and 
connectivity) in effective network connectivity using ECoG data 
under two study conditions. Our analytic strategy provides a way to 
capture intrinsic, delayed and contemporaneous relations in a single, 
unified model. A secondary goal included evaluating the tenability 
of pooling covariance matrices across subjects to conduct group-
level analyses of ECoG data to model effective connectivity. Pooling 
subject covariance matrices was determined as untenable and we 
proceeded by modeling intra individual dynamics of each subject. 
Examination of Figure 1 reveals unique paths and associated strengths 
by playback-listen and vocalization conditions. For example, the final 
models by study condition were not conclusively the same, the sign 

and standardized path loadings were inconsistent or reversed in sign 
or both. The exception to this pattern of findings is in the case of 
some cross-covariances (i.e. lagged relationships with an ROI on 
itself or a lagged relationship with another ROI’s lagged relationship). 
However, the observed pattern(s) of lagged effects was expected and 
provides no further insight relative to the goals of our study.

Discussion 
Modeling complex relationships of neural systems based on 

functional and effective connectivity poses unique challenges to 
neuroscientists. In this paper we presented an approach to modeling 
effective and intrinsic relationships between ROIs simultaneously 
within a functional network. A primary goal of our work included 
systematically addressing issues specific to effective and intrinsic 
connectivity in a way that yielded an accurate map of vocal 
sensorimotor integration within and between ROIs. This is particularly 

Table Continued
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important in dealing with electrophysiological data from neurosurgical 
patients because of the exquisite anatomical localization and temporal 
resolution. 

The modeling approach presented here is aimed toward increasing 
an understanding of the causal relationships observed among 
electrodes during different conditions that implicate various stages of 

sensorimotor vocal control. Our approach is geared to the development 
of network models that can explain the neural control of human 
vocalization.  Specifically, our work is focused on understanding 
feed forward (FF) and feedback (FB) control mechanisms using a 
paradigm by which we alter auditory feedback to subjects in real time 
while they are vocalizing. Such data inform specific processes such as 
self-voice identification and FB based error detection. 

Figure 1 Listen and Vocalization Conditions – Right Hemisphere (Subject 186).

dPostSTG
dMidSTG

dPreM

dM1

dIFG

Note. dIFG = inferior temporal gyrus, dPreM = premotor cortex, dM1 = primary 
motor cortex, dPostSTG = posterior temporal gyrus, dMidSTG = anterior 
temporal gyrus. Coefficients are standardized weights/estimates. d indicates 
derivative. For clarity, only inner paths representing instantaneous change 
between ROIs are illustrated. For complete results see Table X.

Subject 186: Right Hemisphere Playback-Listen Condition

Search Posterior Probability = .47; χ2 = 7.52(2), p = 0.02; RMSEA = .03 (0.01-0.09); CFI = .99; BIC = 378.93

dPostSTG
dMidSTG

dPreM

dM1

dIFG

Subject 186: Right Hemisphere Vocalization Condition

Search Posterior Probability = .53; χ2 = 3.2(2), p = 0.20; RMSEA = .02 (0.00-0.06); CFI = 1.0; BIC = 374.84
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Note. dIFG = inferior temporal gyrus, dPreM = premotor cortex, dM1 = primary 
motor cortex, dPostSTG = posterior temporal gyrus, dMidSTG = anterior 
temporal gyrus. Coefficients are standardized weights/estimates. d indicates 
derivative. For clarity, only inner paths representing instantaneous change 
between ROIs are illustrated. For complete model results see Table X.
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Our work proceeded by first demonstrating an approach for 
estimating delayed data structures relative to each ROI using 
differential equations. Second, real-time and delayed representations 
were input for each region into a baseline or null model that assumed 
no relationships. Next, an heuristic iterative search algorithm was used 
to iteratively specify directional paths between regions. Our method 

was demonstrated on 5 regions of the voice network using ECoG data. 
The approach presented here offers a systematic and comprehensive 
way to model effective and intrinsic relationships and appears to work 
well for electrocorticography (ECoG), a form of electrophysiological 
data collected from electrodes placed on the surface of patents’ cortex 
during neurosurgery. 
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While this is not an applications paper, it is useful to determine 
the nature of the relations among the ROIs modeled here. In this work 
we used data for which subjects vocalized an “ah” at a comfortable 
loudness and pitch feel or listened to their own vocalizations (passive 
listening). Based on our previous work with fMRI, ERP and ECoG we 
selected regions that are implicated in sensory control of the human 
voice. What is novel about the use of ECoG data is that we were able 
to divide STG into multiple regions in order to determine functional 
connectivity associated with the percolation of this region, a task that 
is highly challenging with fMRI or scalp based ERP data. Since we 
know that the STG plays a central role in the sensory motor control 
of the voice, this region likely serves as the hub for modulation of 
other brain regions.51,52 Given this, by understanding how different 
regions within the area relate to one another and to the rest of the 
brain will shed light on this complex process. That the middle and 
posterior STG show differential connectivity patterns allows for the 
generation of neural control hypotheses that can drive our future 
work in a large group of subjects and help provide mechanistic 
information about vocalization in healthy and disease.  For example, 
we know that patients with Parkinson’s disease have hypophonia in 
which they vocalize with very low loudness levels. Importantly, we 
know that they under scale motor output such that they report that 
they are speaking at normal or greater than normal loudness levels. 
These patients have abnormal responses to altered auditory feedback 
and this may be associated with abnormal STG function within the 
broader network of brain regions controlling vocalization. 

In our fMRI and evoked response potential (ERP) studies we have 
shown key connectivity differences associated with alterations in 
auditory feedback during vocalization.  Our dynamic causal modeling 
of ERP signals has shown important coupling properties associated 
with bilateral STG, inferior frontal and pre-motor cortices. We have 
extended this observations to study musicians with absolute pitch, 
those with relative pitch and non-musicians showing that connectivity 
variations in these regions differentiated the three subject groups. 
While these findings are important, the ability to use ECoG data 
and capitalize on its temporal and spatial resolution will allow for 
far greater insight into the role of different regions of STG in vocal 
control. 

Limitations: The method introduced here includes a novel and powerful 
approach to modeling ECoG data. However, we acknowledge several 
limitations that warrant investigation in future studies. First, in the 
present study the selection of electrodes was anatomically driven. In a 
future study we plan to investigate the utility of our modeling approach 
using a physiological response-based electrode location strategy. 
Second, a larger sample of subjects will allow us to conduct a more 
comprehensive evaluation of our modeling framework in measuring 
neuronal dynamics focusing on intra-individual (single-subject) 
versus inter individual (group-level). Third, in a related manner, using 
a larger sample of subjects exhibiting language dominant versus non-
dominant network differences, we will be able to evaluate the utility 
of our modeling approach in accurately capturing brain dynamics.  
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