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Abstract

Advances in the sophistication of imaging techniques necessitate the development
of techniques to model the neural and cognitive phenomena they represent. Using
electrocorticographic (ECoG) data, we propose a data-driven approach using ordinary
differential equations and Bayesian differential structural equation modeling (BASEM)
to model effective connectivity related to sensorimotor integration. First, we tested the
region-based covariance structure across subjects by each experimental condition to
evaluate the tenability of pooling subject data to perform group level versus single-
subject analyses. Second, we applied a differential equation approach to model
dynamic change originating from regional neuronal states across the data acquisition
period. Finally, we employed an information-theoretic search strategy to identify the
optimal connectivity model within each experimental condition for a single subject.
Results of subject-specific (intra-individual) relationship maps include effective,
contemporaneous and delayed effective connections of across different brain regions.
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Introduction

To date, imaging neuroscience and electrophysiology have
provided a solid foundation for functional specialization as a principle
of brain organization in humans. However, accurately modeling
functional integration of specialized areas of the brain has proven to
be a more difficult task.! For example, the human brain can be viewed
as a holistic and dynamic system involving functionally specialized
areas or regions that are related by effective connections during
cognitive processing. Connectivity models (functional or effective)
have become useful approximations to holistic and dynamic systems
for understanding underlying relationships between regions of neural
activation. For example, functional connectivity models provide
relational maps based on statistical dependency (correlations) between
remote neuro physiological events. Effective connectivity models
involve estimating the influence that one neuronal system exerts
over another, either at the synaptic or population level.! Furthermore,
effective connectivity is activity-dependent involving interactions
among regions of the brain. Finally, modeling intrinsic connectivity
involves capturing dynamic elements of the system reflecting the
essential nature of the collective system.

One approach to modeling effective connectivity is based on
intracranial electrocorticographic (ECoG) time series data. In

ECoG-based studies, data are acquired from multi-contact subdural
electrodes implanted during surgical evaluation in epilepsy patients.
ECoG provides a higher signal to noise ratio and temporal and
spatial resolution than EEG due to the fact that ECoG signals are
not influenced by the low conductivity of the skull and the fact that
measurements are acquired in the vicinity of the underlying brain
sources.” In clinical practice, ECoG has become the “gold standard”
for defining epileptogenic zones.* The locations of ECoG electrodes
implantation are determined using pre-operative clinical data
such as ictal semiology, ictal and interictal features on scalp EEG,
and structural MRI findings.* The pattern of the subsequent ECoG
recordings is then used for further localization of epileptogenic foci.

In this study, we present an innovative modeling approach for
the development and estimation of human electrophysiological
inferential connectivity maps using ECoG data. The aim of the
method is to obtain accurate representations of underlying effective
relationships while also considering intrinsic or dynamically changing
aspects of regional components of brain activity. Specifically, we use
ordinary differential equations within a structural equation modeling
framework and a heuristic model search strategy to provide insights
into electrode-to-electrode connectivity using ECoG. Here, our
interest is based on modeling simultaneous or dynamic change in
neural activity so as to provide unique insights into the causal nature
of the relationships between brain regions in specific vocalization and
auditory processes. Given the high spatial and temporal resolution of
ECoG data, inferences about underlying neural functions as mapped
on to brain anatomy allow for exquisite representation of both time
and space in the human brain.>¢

The organization of this manuscript is as follows. The first section
briefly reviews SEM and the advantages of using Bayesian SEM
in studies such as ours. The second section details the application
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of ordinary differential equations (ODEs) to measure simultaneous
change in brain activity propagating from the level of neural activity
upward to the region of interest (ROI) level. The third section
introduces a model for Bayesian SEM based on differential equations
(BASEM) and describes the heuristic specification search procedure
used to arrive at optimal models of effective connectivity. The fourth
section outlines a simulation study conducted to evaluate the efficacy
of the modeling strategy.

Structural equation modeling: A frequently used technique
used for modeling population-level relationships among regions
caused by neural activation in brain regions is structural equation
modeling (SEM). SEM was first adapted to imaging data by McIntosh
& Gonzales-Lima’® to examine effective’ relationships between
regions of interests (ROIs). To date, SEM of neural connectivity
has predominantly been applied to functional magnetic resonance
imaging (fMRI). In part, this trend may reflect difficulties in source
localization that are inherent in most electrophysiological data capture
methods.

Application of SEM involves developing a set of simultaneous
equations to estimate

a) The regression coefficients between measurements on observed
variables and associated latent variables (i.e. a measurement
model) and

b) Relationships among latent variables comprising a hypothesized
model. SEM is based on the general linear and/or generalized
nonlinear model and is very useful for complex or longitudinal
data structures (e.g., multilevel random coefficients models,
growth curve modeling, and differential equation-based manifest
or latent change). Perhaps SEM is most often associated
with confirmatory (theory confirming) modeling approaches.
However, SEM can be used to conduct heuristic search
techniques in high dimensional data structures to locate an
optimal model from among a set of competing ones. Heuristic
search techniques leverage information-theoretic algorithms
from the field of artificial intelligence (e.g., mathematically-based
approaches based on lagrangian heuristic/incomplete branch-
and-bound algorithms). Application of SEM involves measuring
the discrepancy between a parameterized causal structure of
hypothesized relationships (e.g., between observed or latent
variables or a combination of both) and estimated parameters
from data as measured through a series of fit indices.'*"" SEM
employing Bayesian probability and statistics'>!> has recently
emerged and provides increased precision and flexibility in
modeling scenarios with high dimensional data structures, small
sample size and non-normally distributed variables.

Statistical inference and bayesian learning: The history and
development of Bayesian statistical methods are substantial and
closely related to frequentist statistical methods. In some ways,
Bayesian statistical thinking can be viewed as an extension of the
traditional (i.e., frequentist) approach, in that it formalizes aspects
of the statistical analysis that are left to uninformed judgment by
researchers in classical statistical analyses.'* Bayesian methods
include data analytic techniques that are derived from the principles
of Bayesian statistical inference. Statistical induction involves
learning about the characteristics of a population from a subset of
members of a particular population. Numerical values of populations
are expressed as parameters (6) while numerical values of the subset
of the population are expressed as (y). Given the numerical values
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(») in the subset or sample dataset, uncertainty is reduced about the
population parameters. Quantifying this shift in uncertainty is the goal
of Bayesian inference. The parameter space @ is the set of all possible
parameter values from which we wish to identify the value(s) that
best reflect the true population parameters (e.g., regression weights
in connectivity models). Bayesian learning involves a numerical
formulation of the joint beliefs about y and 6, expressed as probability
distributions over y and 6. In short, Bayesian learning involves the
components listed below.

1. Given each value §e® the prior distribution p(&) describes the
belief that (6) represents the true population parameter.

II. Given each value 8€® and yeY the sampling model p(y|0)
captures the belief that } will be the outcome of a particular
study if we knew @ to be correct or true.

III. After V is acquired, each numerical value of the posterior
distribution p(yl€)) describes the belief that @ is the true value
having observed dataset ) .

The posterior distribution for model parameters is derived using
Bayes rule as in Equation 1.

[ P(10) p(0)dO (M

A core component of Bayesian modeling is accurately modeling
the generating process (e.g., unknown causes modeled using a prior
distribution) and unknown population parameters @ to observed
sensory data values ( ). Bayesian statistical methods are particularly
well-suited for developing generative or recognition models of
complex systems'*!7 because the goal in Bayesian learning is to
model the generating process that produced the observed data values.
For example, in generative and recognition models, functions are
applied thereby allowing a mechanism for mapping causes to sensory
input. Specifically, the goal of generative modeling is to: “learn
representations that are economical to describe but allow the input to
be reconstructed accurately”.'® The goal is to make inferences about
the causes and learn the parameters. Bayesian probability provides
a natural framework for linking unknown parameters and causes
to observed data. Finally, in the classical school of probability, the
sample data values are selected randomly with the statistics estimated
being fixed point estimates of population parameters. Conversely, in
the Bayesian school of probability and inference, the sample is fixed
(i.e. not considered random) with the parameters estimated being
random (e.g., obtained using Markov chain Monte Carlo [MCMC]
resampling methods). Because our estimated parameters are random
variables, we can make probabilistic statements about their certainty
with a high level of precision.

p(Oly)=

In the Bayesian modeling approach, we view any unknown
quantity (e.g., parameter) as random and these quantities are assigned
a probability distribution (e.g., normal, Poisson, multinomial,
geometric, etc.) that provides the impetus for generating a particular
set of data. In this study, our unknown population parameters were
modeled as being random and then assigned to a joint probability
distribution. In this way, we were able to summarize our current state
of knowledge regarding the model parameters. The sampling-based
approach to Bayesian estimation provides a solution for the random
parameter vector 6 by estimating the posterior density or distribution
of a parameter. This posterior distribution is defined as the product of
the likelihood function (accumulated over all possible values of §) and
the prior density of 6."° In our case, a generative model is specified in
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terms of a prior distribution relative to the neuronal activity (i.e. the
causative mechanism of the observed data).

Modeling long time series relative to small sample size:
Developing statistical models for studying populations relevant
to neuroscience often poses considerable challenges due to small
sample sizes, the issue of low statistical power, and the length of
the time series (i.e. number of repeated measurements) being quite
long (e.g., > 100 time points). One analytic approach appropriate
for the challenging scenarios previously noted are multivariate
autoregressive models.?*?>!1> The use of Bayesian statistical modeling
is more sensitive for hypothesis testing and interval estimation
than frequentist approaches when there are small sample sizes with
multivariate structure and a long time series.?*?>! In the present study,
the number of time series measurements is large (i.e. > 1000) with the
length of the time series greater than the sample size (N=1). Although
our data acquisition involved multiple trials for each electrode within
each subject, the average time series (waveform) for each site within
each subject was used for BASEM modeling.

Modeling fMRI data involves capturing the degree of deoxygenated
vascularization relative to baseline for each voxel or congregation
of voxels corresponding to ROIs across multiple trials (i.e. time
series) nested within subjects. Each case within the time-series data
structure for each ROI corresponds to the peak, or averaged peak, of
hemodynamic activity for that trial. Furthermore, after slice timing
correction, the resulting data structures for each ROI are obtained
contemporaneously for any given trial. When extended to multivariate
regression or multivariate autoregressive models (or SEMs), mapping
hypothesized effective connectivity relationships (including those with
theoretical support) becomes fallacious given that inferences of causal
influence of one region on another requires temporal precedence. For
example, the empirical conditions for inferring a causal relationship
between two variables include (a) X is related to Y, (b) X temporally
precedes Y, and (c) the relationship between X and Y is not mediated
by a third variable - Z.!? Although more complicated, the same rules
apply when modeling the relationships in a system of simultaneous
equations (e.g., more than two variables).

Kim et al.,”’” developed a Unified SEM technique of fMRI
time-series using data on visual attention using multivariate
auto regression to model both contemporaneous and temporal
(longitudinal) relationships simultaneously. However, the effective
relationships determined from delayed representations and real-time
representations of data were separated by a single trial with a time
resolution of 3 seconds. Moreover, inferences of interregional causal
relationships between multiple regions’ underlying electrophysiology
were made from vascular data that was obtained 3 seconds prior.
Also, Unified SEM requires relationships between parameters to
be specified a priori. Gates et al.,® improved upon this technique,
by developing an Extended Unified SEM technique integrating an
automatic search procedure based on Lagrangian multiplier tests, or
modification indices. In this paper, we improve on these procedures
by the estimation of electrophysiological connectivity maps to
obtain more accurate representations of effective relationships by
leveraging the high temporal and spatial resolution of (ECoG), a
form of electrophysiological data collected from electrodes placed
directly on the brain cortical surface during neurosurgery.>*>¢ ECoG
remedies issues of localization frequently encountered in EEG while
retaining the advantage of high temporal resolution (0.5 — 1.0ms)
and spatial resolution (diameter 2.0-3.0mm). The improved temporal
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resolution relative to fMRI makes ECoG ideal for reducing bias to
very small or optimal levels specific to inferences based on underlying
neurophysiology. Leveraging the high quality of ECoG data, we
present a novel method for modeling dynamic data structures of ROIs
to be input in a data-driven method of modeling the relationships
between regions of the cortical voice network.

Differential structural equation modeling: Modeling dynamic
intraindividual change using differential equations based on long
time series is a rapidly evolving technique. Functional data analysis
(FDA)® provides an approach for fitting differential equations
directly from acquired measurements in studies of human growth and
EEG. Using differential equations within SEM provides an approach
for applying the FDA approach to model the effective connectivity
expressed as dynamic coupling between the neuronal states of various
brain systems when exposed to experimental conditions. Typically,
in neuroimaging studies, experimental conditions are modeled
as inputs via boxcar or stick functions. Here we approximate the
(reciprocal) relationships among brain region activity using a bilinear
approximation.

Ordinary differential equations (ODEs): Using ODEs to model
neuronal activity provides a way to express the rate of change of the
states as a parameterized function of the states and inputs. In Equation
2, u(t) represents a particular experimental stimulus as an input. Here
we use ODEs to model instantaneous changes in neuronal activity
in two steps. First, we employ neuronal state equations thereby
linking the derivatives of neuronal states x(¢)=(x,(?),...,x,(?))' of d
brain regions to themselves under the influence of an experimental
condition.> The ODE-based dynamic model assumes a Markov
property whereby instantaneous changes of the system depend only
on system states and experimental inputs at the same moment in time.
Importantly, the Markov property is tenable for the brain system
performing simple auditory and vocalization experimental tasks as
in our study. The ODE-based state equation detailing the dynamic
changes of neural states is provided in Equation 2.

dx(t)
dar B (X(t)’”(t)ﬁl)

2

Where F| is a set of nonlinear basis functions capturing neuronal
influences that specific brain regions x(#) and experimental stimuli
u(z) exert on other specific regions. The vector € contains the
unknown parameters in the system. In Equation 2, x(z) is a continuous
function reflecting an average of the neuronal activity in a specific
region. Equation 3 conveys the observation-level (output) equation
that enables a description of how the underlying neuronal activity
causes changes in the observed data vector y in each ROL

YO)=F,(x(1),6,,e(1)) (3)

Where F, is an unknown function, 6, are parameters to be
estimated, and X(?) are error terms. Equations 2 and 3 are requisite
to modeling any dynamic system (i.e. they link underlying or hidden
states to observable outputs,*®). Particularly relevant to our study is that
the causal relationships between the outputs and the inputs conform
to a Volterra series, which expresses the outputs as a generalized
convolution of the input — without reference to the hidden states x(z)
.'In short, the Volterra series is a functional Taylor expansion of the
outputs with respect to the inputs.

Next, in Equation 4 we are able to include a bilinear approximation
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to F, by combining elements in Equations 2 and 3. In Equation 4,
causal influences among regions are possible to elucidate since
bidirectional estimates of parameters are included in the 4, and
4, portion of the equation. These bidirectional influences include
the dynamic effect of the time series. The parameters in the B matrix
enable the estimation of stimulus-dependent effective connectivity
between component regions. Parameters are allowed to vary over
the time course of the data capture (ECoG signal) in order to ensure
accurate approximation to F,.

dx(t)

J
0 =Ax(1)+3 u(t)Bx(1)+Cu(1)+D

j=1

“4)

Here A = (4ii))awa with 4iji, denotes the effect of component i,
By, Vaxa rJ=1w0,

couples the j* stimulus with the neuronal states and nonzero B iy

implies that the effect exerted by component i2 on component il

on component I, exerted at the current state; B i~

depends on stimulus j; C=(C;),, with C; indicated the effect of
stimulus j on component i; and D=(D,_D,)" with D; representing the
intercept for component 7.2

To estimate parameters at the ROI (observation) level, we use
Equation 5.

YO)=x(t)+e() )

Where e(?) is a d-dimensional vector of measurement errors with
mean error of zeros. Further, we assume that the distribution of errors
is normally distributed with mean zero and variance o7 . Finally, to
estimate the differential equations, we use basis function expansion
as described in Ramsay & Silverman.®' The basis function expansion
approach is appropriate due to the temporally dense observations of
brain regions and the average of a large number of neuron activities in
the region of interest. The basis function approach allows for closed
form solutions based on a large number of neural activity and the
associated derivatives of the regional activity. Estimating parameters
in the bilinear model is straightforward and reduces to solving d linear
regression equations.

Analytic strategy: Here we use a three-step approach to achieve
an optimal model of effective connectivity. First, we fit differential
equations to ECoG signal data to capture instantaneous change of
neuronal activity within each region of interest based on data acquired
via target subdural electrode sites. Second, we developed a BASEM to
model effective connectivity of the brain system using derivatives and
observational data of each ROI. Third, we use a Bayesian information-
theoretic algorithm to identify the optimal network model (i.e. the
model with the highest posterior probability of being optimal). Our
approach is flexible in that one can (a) use the entire ECoG electrode
array to model signals from a large amount of regional activity (e.g.,
48 to 96 electrodes within a specific area of the brain) propagating
from dense neuronal activity, or (b) use one ECoG electrode (single
channel) within the array to model a targeted brain region. The first
example above begins by modeling the neuronal dynamics and is
similar to Dynamic Causal Modeling (DCM, Friston et al.,*?) because
the brain is viewed as a continuous-time dynamic system of neuronal
activity where signals propagate upward to an observational or
population level. DCM incorporates two equations: a bilinear equation
capturing neuronal activity in a bidirectional, nonlinear fashion, and an
observation-level equation enabling effective connectivity modeling.
The approach presented here is viewed as a special case of a DCM.
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Methods

Customized high-density electrode arrays were implanted on
the pial surface of exposed cortex for all subjects. Electrode arrays
consisted of 96 platinum-iridium disc electrodes embedded within a
silicon sheet with 5.0 mm center-to-center spacing and 3.0 mm contact
diameter (Ad-Tech, Racine, WI). Since grid placements were tailored
to clinical considerations for each subject, exact placements differed.
However, analyzed ROIs , namely, inferior frontal gyrus (IFG),
premotor cortex (PreM), primary motor cortex (M1) and 2 regions
from superior temporal gyrus (STG), -posterior STG (PostSTG) and
middle STG (MidSTG) were significantly covered for each subject.
Moreover, our task was a sustained vocalization task (e.g., produce
and sustain the vowel /a/) during recording of cortical signals (see
Experimental Design section) and these regions are well known to be
associated with sensory motor control of vocalization.

Subjects: Four male patients ages 31 to 47, mean (41 years)
undergoing neurosurgical treatment for medically intractable epilepsy
served as subjects for this study. Written consent was obtained from
all subjects and all research protocols were approved by University of
Iowa Human Subjects Review Board. Experiments were conducted
in an electromagnetically-shielded private suite in the University of
Iowa General Clinical Research Unit.

All subjects underwent comprehensive pre-surgical neurological
examination, brain imaging, neuropsychological evaluation and
audiometric testing to confirm normal hearing, speech, and language
function. No anatomical lesions were detected for cortical regions
of interest. Subjects underwent preoperative sodium amobarbital
(Wada) testing revealing left hemispheric language dominance in
3 subjects (including s186) and bilateral dominance in one subject
number. Detailed description of our electrode arrays and localization
of recording sites can be found in previous studies from our lab.>¢

Experimental design: Subjects underwent 2 blocks of vocalization
and playback tasks. The vocalization task required subjects to
produce and maintain vocalization of the vowel /a/ for 2 seconds
at a natural conversational pitch and volume (approximately 70-75
dB). The vocalization task was repeated 30-50 trials with 1-2second
breaks between the self-paced trials. Voice sound was captured by a
microphone (Beta 87C, Shure, Niles, IL) located near the subject’s
mouth, amplified (10 dB gain; Ultralite MK3, MOTU, Cambridge,
MA), and passed through a harmonizer (Eclipse, Eventide, Little
Ferry, NJ). Auditory feedback stimuli were delivered bilaterally
through insert earphones (ER-4, Etymotic, Elk Grove Village, IL)
placed in custom fitted, vented ear molds for each subject. A 10 dB
feedback amplification gain was inserted between the voice sound and
its auditory feedback to partially mask the potentially confounding
effects of bone-conduction. During the playback task, subjects were
instructed to listen to the recorded sound signal of their same self-
produced vocalizations. The gain of the signal during playback
condition was adjusted at a nearly equal level to voice feedback
during vocalization block. The total duration of each block was
approximately 5-8 minutes. Subjects were given short breaks (2
minutes) between successive blocks.

Data processing: Data acquired from electrode arrays consisting of
96 platinum-iridium disc electrodes embedded within a silicon sheet
with 5.0 mm center-to-center spacing and 3.0 mm contact diameter
yielded the data structure from underlying neural populations. At the
observation level, a single central electrode was selected to represent
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the activation for each of the 5 ROIs (a) IFG, (b) PreM, (c) M1,
(d) PostSTG, and (e) MidSTG based on gross anatomical surface
landmarks for each subject. Electrophysiological signals for 2-second
intervals were averaged across trials. We used short intervals to
maintain an efficient bilinear approximation of nonlinear connectivity
relationships among components. For both playback and vocalization
conditions, a 500-millisecond interval (obtained at 0.5ms temporal
resolution) was isolated starting from onset of vocalization/playback.
This short interval was necessary as the subjects were subsequently
presented with altered auditory feedback for other study purposes.

Assessing inter individual versus intra individual dynamics:
Developing models of effective connectivity often proceeds with the
goal of creating a model that accurately captures brain dynamics for
a group of subjects. Standard statistical analyses (e.g., regression,
ANOVA, SEM and other general linear modeling techniques) that
yield inferences within a randomly-selected population of subjects
are considered to be homogeneous in all aspects specific to the
research endeavor. In this scenario, model parameters are derived
based on pooling covariance matrices across subjects. Based on the
homogeneity of subjects assumption, population-based inferences are
made based on individual differences between subjects (whether the
study design is cross-sectional or time-series based). At the heart of
this approach is the study of individual differences rather than within-
person (a.k.a. intra individual change). When the goal is to model a
continuous-time complex neural system that changes dynamically,
applying standard statistical techniques used for studying individual
differences may be unjustified.® Testing this assumption involves the
statistical property of ergodicity.*** In the present study, we evaluated
the ergodic property by testing the homogeneity of the variance-
covariance matrices (assembled from the time-series vector and their
derivatives for each subject) prior to pooling matrices across subjects
and proceeding with a group-level, traditional analytic technique.
Specifically, we were interested in (a) measuring the degree to
which neural changes in brain activity of a subject with intractable
epilepsy occurs between temporal states of the ECoG signals and (b)
if subjects’ data structures were homogeneous enough to develop a
single connectivity model by study condition. To this end, developing
a single model of effective connectivity for the four subjects in
this study may or may not accurately represent the intra individual
brain dynamics of each subject. Based on the results of our test, the
individual subjects’ covariance matrices were not homogeneous
(statistically different at p < .001 for each pair wise comparison
corrected for Type 1 error); therefore we proceeded by using right
(non-language dominant) hemisphere data for subject 186 under both
experimental conditions (i.e. speaking and playback).

Exploratory model development: To construct a model of effective
connectivity that provided optimal fit, exploratory BASEM using ROIs
and every possible path was performed. Contemporaneous relationships
were extracted based on the direct connections between both real-time
to real-time and delayed to delayed relationships between two ROIs.
The continuous signal acquired from ECoG was discretized into
1110 observations. Intrinsic relationships were interpreted as a path
from the delayed representation (derivative) of a region to its real-
time representation. Lastly, longitudinal relationships were derived
from the delayed (derivative) representation of one region bearing a
relationship to the real-time representation of another. Model fit was
iteratively improved through the use of a heuristic search strategy.*’
Our use of heuristics was guided by the neuroscience experience of
the team, mathematical logic and computational skills. We employed
a mathematically-based approach based on lagrangian heuristic/
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incomplete branch-and-bound algorithms. Decision rules for optimal
model selection was based on Burnham & Anderson®® guidelines for
BCC interpretation as the BCC between 0-2 (no credible evidence
that the model should be ruled out as being the Kullback-Leibler (K-
L;*) best model for the population of possible samples).

Our exploratory model fitting protocol followed guidelines
established from research in the information-theoretic and Bayesian
modeling fields.***® Specifically, we employed the Kullback-Leibler
distance measure® as incorporated into the information theoretic
measure the Browne-Cudeck Criterion (BCC,*), to identify the model
with the highest probability of being the correct model. The BCC
was developed specifically for covariance structure modeling and
imposes a greater penalty for model complexity than does the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion
(BIC). The BCC is defined as:

gb(g) p(g)(p(g)+3)
A _ (&) _ ,(8)_ ,(8) _
BCC=C+2¢%"! GN PP 2
3 5O (p©13) )
g=1

Where, ¢ is the minimum value of the discrepancy function, ¢
is the number of parameters in the model, p is the number of sample
moments in all groups combined, ¥(¢ equals the total sample size (V)
times the ratio of the sample size in a group N (&) to the total sample
size (N), p'® is the number of variables in an observed group, N®,
and G is the number of groups in the model. Of particular relevance,
the exploratory strategy we employed provides a mechanism for the
prevention of over fitting (a particular challenge in selecting an optimal
model from a very large number of competing models). Ensuring that
model over fitting in heuristic specification search procedures does
not occur in high-dimensional data structures®”#* is a challenging but
not insurmountable. Exploratory modeling began with a null model
with only the derivative for a specific ROI regressed on the respective
ROI. Under this specification, the starting model representation is
that each region has no significant correlation with the activity of any
other region. Iterative model refinement evolved through evaluating
model improvement in the likelihood ratio ¥ : test, root mean square
error of approximation (RMSEA;*) and Browne-Cudeck Criterion
(BCC,*) with successive path additions.

Bayesian SEM model development and refinement: After
identification of optimal models for each study condition, BASEM
proceeded by modeling the population parameters using semi-
conjugate priors for # ~ multivariate normal (~N 0, 4), X' ~ inverse-
Wishart (s;', Sp';**7#). The selection of priors was based on (a)
a review of the distributional properties of the acquired ECoG time
series, and (b) recommendations for using informative priors for
complex models with small samples Gelman*® and Asparouhov &
Muthen.* One-thousand MCMC burn-in iterations were used to
establish convergence criteria for the joint posterior distribution
of the model parameters and the criterion for acceptable posterior
distribution summary estimates of parameters was set at 1.001.%
Bayesian estimation proceeded using the SEM facility in Mplus,
version 7.3.% Convergence was achieved at S=20,000 post burn-in
iterations after which posterior distributions were evaluated using time
series, auto correlation plots, and the posterior predictive p-values to
judge the behavior of the MCMC convergence.* Time series and auto
correlation plots revealed acceptable MCMC performance in all four
subjects in left and right hemisphere models. Posterior predictive
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p values were acceptable for subject 186; p = .53 (vocalization
condition) and .47 (auditory condition).

For the final model in our heuristic search, the BCC was observed
as 1.22 (vocalization condition) and 2.0 (listening condition).
Additionally, we used (a) an RMSEA of <.05, (b) comparative fit index
(CFI) of >.95, and (c) the Bayesian information criteria (BIC) being
the smallest among competing models as decision criteria. Figure
1 illustrates selected path loadings for the final right hemisphere
vocalization and listening condition models for subject 186. Complete
presentation of path loadings are provided in Tables 1&2.

Simulation study: In the next phase of our study, Markov chain Monte
Carlo (MCMC, [50]) methods were used to examine the sampling
distribution of the parameter estimates and their error structure for
subject 186 under both study conditions. We conducted a simulation
by evaluating the impact of sample size (N=1, 2, 3 and 5) on parameter
estimation bias in vocalization and listening conditions. A byproduct
of our simulation included a power analysis providing estimates for
each regression path at each sample size condition. The Monte Carlo
simulation facility in Mplus version 7.3, was used to conduct the
simulation study. The results of our simulation are presented next.

For the N=1 condition, 95% coverage was attained 21% of the
time. Power analysis revealed that 32% of the parameter estimates
were below a power of .85. For the N=2 condition, 95% coverage
was attained 28% of the time. Power analysis revealed that 28% of
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the parameter estimates were below a power of .85. For the N=3
condition, 95% coverage was attained 27% of the time. Power analysis
revealed that 38% of the parameter estimates were below a power of
.85. For the N=5 condition, 95% coverage was attained 21% of the
time. Power analysis revealed that 77% of the parameter estimates
were below a power of 85 Tables 3&4.

In summary, the results of the simulation study revealed that at
small sample sizes, group-level effective connectivity analyses are
like to yield estimates with low statistical power, parameter estimates
with bias greater than 5% at least 50% of the time. The 95% coverage
was low ranging from 21% to 28%. The problems of low power and
excessive parameter bias resolved upon reaching a sample size of N
=200,000. At this point, statistical power for all parameter estimates
was greater than .95 and bias was below 5%. This pattern of findings
concurs with the fully Bayesian model which also included 200,000
replications. Based on the results of our simulation, a fully Bayesian
approach to modeling single subject-specific effective connectivity
using ECoG data is recommended since (a) the Bayesian probability
is not based on classical frequency school of probability with random
sampling of experimental units (i.e. subjects), and (b) the approach
directly incorporates a Markov chain Monte Carlo (MCMC) simulation
component in estimating the random parameters comprising a model.
Using the Bayesian approach, prior information can be included in
the parameter estimation process and Gibbs sampling within the
MCMC framework can be leveraged to ensure accurate final model
parameters.

Table | Bayesian SEM estimates playback-listen condition — right hemisphere (subject 186)

Regression paths :::il::::ized ;Jsrtiis:?:tdeardized S.E sD p :iyel;::tionship
MidSTG <- IFG -0.28 -0.1 0.01 0.001 0.01 C
PostSTG <- IFG 0.07 0.03 0.001 0.013 0.01 C
dMlI <- IFG 0.21 0 0 0 ok D
dPostSTG <- IFG 0.26 0 0 0 ok D
M <- IFG 0.59 0.03 0.001 0.015 0.02 C
dMidSTG <- IFG 0.06 0 0 0 0.09 D
PreM <- IFG -0.01 -0.01 0.001 0.011 0.39 C
dPreM <- IFG 0.49 0.0l 0 0 ok D
dIFG <- IFG 0 0 0 0.001 0.94 |
dMidSTG <- dIFG -0.2 -0.05 0.011 0.015 ok C
dPreM <- dIFG -0.14 -0.04 0.009 0.165 ok C
dPostSTG <- dMidSTG 0.48 0.72 0.002 0.024 ok C
dPreM <- dMidSTG -0.32 -0.14 0.003 0.04 ok C
dMl <- dMidSTG 0.41 0.77 0 0.001 ok C
dMlI <- dPostSTG -0.47 -0.6 0.002 0.037 ok C
dMlI <- dPreM 0.22 0.43 0 0.002 ok C
dPreM <- dPostSTG -0.07 -0.04 0.003 0.042 0.01 C
dMlI <- dIFG -0.08 -0.04 0.001 0.015 ok C
PreM <- dMidSTG -0.32 -12.25 0.068 1.045 ok D
PostSTG <- MidSTG 0.6l 0.93 0.002 0.034 ok C
dPostSTG <- PreM 0.1 0 0 0.001 ok D
Ml <- PostSTG -0.63 -0.71 0.003 0.033 ok C
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Regression paths :::.ir:::::ized :Jsr:is:::tdeardized S.E SD P ?Y(:)I:tionship
PostSTG <- dMidSTG -0.05 -4.66 0.081 1.24 ok D
Ml <- dIFG -0.1 -1.53 0.023 0.357 ok D
Ml <- dPostSTG -0.01 -0.43 0.082 1.02 0.66 D
MidSTG <- dIFG -0.04 -0.41 0.015 0.301 0.18 D
Ml <- dMidSTG 0.18 10.85 0.102 1.484 ok D
PreM <- MidSTG 0.55 0.16 0.003 0.038 ok C
Ml <- dPreM 0.15 9.43 0.125 1.661 ok D
PostSTG <- dIFG -0.16 2.6l 0.023 0.311 ok D
dPreM <- MidSTG 0.6l 0.02 0 0.001 ok D
dPostSTG <- dIFG 0.32 0.12 0.01 0.117 ok C
PreM <- dIFG -0.26 -2.43 0.021 0.297 ok D
dPreM <- PostSTG -0.2 0 0 0.001 ok D
dMl| <- PreM -0.05 0 0 0.002 0.1 D
Ml <- PreM 0.5 0.73 0.003 0.035 ok C
Ml <- MidSTG 0.55 0.92 0.004 0.055 ok C
dMl| <- MidSTG 0.05 0 0 0.002 0.21 D
dMl| <- PostSTG -0.1 0 0 0.001 0.01 D
PreM <- PostSTG -0.2 0.12 0.001 0.026 ok C
dPostSTG <- PostSTG 0.08 0 0 0.001 0 |
dMidSTG <- MidSTG 0.0l 0 0 0.001 0.76 |
dMl <- Ml -0.15 -0.01 0 0.001 ok |
dPreM <- PreM -0.11 0 0 0.001 ok |
dIFG <- dMlI -0.01 -0.02 0.006 0.09 0.81 C
dPostSTG <- dPreM 0.03 0.05 0.003 0.042 0.28 C
dMidSTG <- dPostSTG 0 0.0l 0.002 0.024 0.84 C
dIFG <- dMidSTG -0.01 -0.04 0.011 0.151 0.78 C
dMidSTG <- dPreM 0 0 0.003 0.04 0.98 C
dIFG <- dPreM 0 0 0.009 0.165 0.98 C
dPostSTG <- dMlI 0.03 0 0.004 0.155 0.95 C
dMidSTG <- dMlI 0.0l 0 0 0.03 0.96 C
dPreM <- dMlI 0.43 0.1 0.005 0.046 ok C
dIFG <- dPostSTG 0 0 0.01 0.117 0.99 C

Note: *** denotes significant at p<.001. C =contemporaneous; D = delayed;| = intrinsic. Note. Path coefficients are mean standardized regression weights (point
estimates) based on marginal posterior distribution resulting from Bayesian analysis with MCMC resampling. Parameter estimates (regression weights) are
modeled as random parameters. SD = posterior standard deviation of the distribution. S.E. = posterior standard error of the distribution. 95% Bayesian credible
interval runs from the 2.5 percentile to the 97.5 percentile. Credible intervals do not depend on a normal (Gaussian) distribution to establish confidence limits.

PPP = .36, DIC = 134.09
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Regression Paths :::rr\::::ized :Jsr::rt;z:t(lardized S.E. SD P 'F:(yeplztionship
dIFG <- IFG 0.17 0.01 0 0.002 oK |
MidSTG <- IFG -0.37 -0.69 0.003 0.054 ok C
PostSTG <- IFG -0.35 -0.63 0.003 0.046 oK D
dMl <- IFG 0.57 0.02 0 0.001 ok D
dPostSTG <- IFG -0.5 -0.02 0 0.002 oK D
MI <- IFG -0.4 -0.47 0.002 0.039 ok D
dMidSTG <- IFG 0.0l 0 0 0.002 0.76 D
PreM <- IFG 0.06 0.05 0.002 0.029 0.06 C
dPreM <- IFG -0.35 -0.01 0 0.001 oK D
dMidSTG <- dIFG -0.05 -0.04 0 0.001 0.1 C
dPreM <- dIFG 0.28 0.2 0.051 0.653 oK C
dPostSTG <- dMidSTG -0.03 -0.04 0.015 0.013 ok C
dPreM <- dMidSTG -0.04 -0.04 0.004 0.064 0.1 C
dMl <- dMidSTG 0 0 0.001 0.031 0.99 C
dMlI <- dPostSTG -0.08 -0.05 0 0.001 0.01 C
dMl <- dPreM 0.33 0.28 0 0.001 ok C
dPreM <- dPostSTG 0.35 0.29 0 0.001 oK C
dMl <- dIFG -0.46 -0.28 0.027 0.59 ok C
dMidSTG <- MidSTG -0.08 0 0 0.001 0.02 |
dPostSTG <- PostSTG -0.39 -0.01 0 0.001 ok |
dPreM <- PreM -0.04 0 0 0.001 0.14 |
dMl <- Ml 0.04 0 0 0.001 0.23 |
PreM <- dMidSTG -0.67 -17.27 0.278 2.052 oK D
PostSTG <- MidSTG 0.49 0.47 0.001 0.024 ok C
dPostSTG <- PreM 0.62 0.03 0.001 0.004 oK D
MI <- PostSTG -0.57 -0.37 0.001 0.027 ok C
PostSTG <- dMidSTG -0.15 -7.52 0.108 1.794 ok D
MI <- IFG -0.17 -4.07 0.002 0.039 ok C
MI <- dPostSTG -0.1 -2.72 0.049 0.859 0 D
MidSTG <- IFG -0.19 -7.05 0.003 0.054 ok C
MI <- dMidSTG 0 -0.12 0.059 0.948 091 D
PreM <- MidSTG 0.28 0.14 0.001 0.014 ok C
MI <- dPreM 0.09 3.08 0.067 1.136 0.01 D
PostSTG <- dIFG 0.1 343 0 0.002 ok D
dPreM <- MidSTG 0.48 0.01 0 0.001 oK D
dPostSTG <- dIFG 0.16 0.14 0.003 0.041 ok C
PreM <- dIFG -0.08 -1.47 0.051 0.653 0.01 D
dPreM <- PostSTG -0.62 -0.01 0 0.001 ok D
dMlI <- PreM -0.31 -0.01 0 0.001 oK D
MI <- PreM 0.36 0.47 0.002 0.04 ok C
MI <- MidSTG -0.21 -0.13 0.001 0.023 ok C
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Regression Paths :::irr\::::ized (L:sr:isrt;z:t(lardized S.E. SD ] :lye;:tionship
dMlI <- MidSTG -0.01 0 0 0.001 0.74 D
dMl <- PostSTG 0.4 0.0l 0 0.001 ok D
dIFG <- dMidSTG -0.05 -0.07 0 0.002 0.18 D
dMidSTG <- dPostSTG 0.56 0.45 0.015 0.103 ok C
dPostSTG <- dPreM 0.04 0.05 0.003 0.053 0.25 C
dPreM <- dMlI 0 0 0.001 0.031 | C
dIFG <- dMI 0 -0.01 0.004 0.064 0.88 C
dMidSTG <- dPreM 0.0l 0.0l 0.004 0.064 0.8l C
dPostSTG <- dMI 0 -0.01 0.004 0.054 0.83 C
dMidSTG <- dMlI 0 0 0.007 0.068 0.87 C
dIFG <- dPreM 0.03 0.03 0.005 0.074 0.57 C

Note: *** denotes significant at p<.001. C =contemporaneous; D = delayed; | = intrinsic. Note. Path coefficients are mean standardized regression weights (point
estimates) based on marginal posterior distribution resulting from Bayesian analysis with MCMC resampling. Parameter estimates (regression weights) are
modeled as random parameters. SD = posterior standard deviation of the distribution. S.E. = posterior standard error of the distribution. 95% Bayesian credible
interval runs from the 2.5 percentile to the 97.5 percentile. Credible intervals do not depend on a normal (Gaussian) distribution to establish confidence limits.
PPP = .42,DIC = 131.05.

Table 3 Monte Carlo Simulation —Vocalization Condition (N=1 and N=2)

N=1 N=2
Path :’iz‘r:ma- Average %Bias Z:st:éerage Power  Population Average %Bias 3::/;::- Power
IFG on

dMlI 61.43 43.05 -0.29 0.65 0.96 61.43 45.729 -0.256 0.676 0.999
dIFG 26.72 26.14 -0.022 0.91 0.99 26.715 26.704 0 0.933 |
MidSTG -1.99 -1.71 -0.141 0.63 0.98 -1.99 -1.71 -0.141 0.63 0.98
dMidSTG -2.04 -1.241 -0.392 0.77 0.15 -2.04 -0.783 -0.616 0.7 0.238
MidSTG on

IFG -1.99 -1.71 -0.141 0.63 0.98 -1.99 -1.726 -0.133 0.66 |
PostSTG on

IFG 0.735 -0.416 -1.566 0.65 0.85 0.735 -0.422 -1.574 0.683 0.976
MidSTG 0.55 0.51 -0.073 0.82 | 0.546 0.518 -0.051 0.744 |
dMidSTG -7.79 -9.96 0.279 0.84 0.99 -7.79 -9.924 0.274 0.736 |
dIFG 7.85 10.93 0.392 0.67 0.99 7.847 10.751 0.37 0.677 |

dMl on

IFG 0.004 0.007 0.75 0.69 0.33 0.004 0.007 0.625 0.68 0.332
dMidSTG 0.006 0.033 4.5 0.864 0.152 0 0 0 | 0
dPostSTG 0.089 0.098 0.101 0.93 0.43 0.089 0.098 0.101 0.93 0.43
dPreM 0.28 0.28 0 0.99 0.99 0.28 0.28 0 | 0
dIFG 0.083 0.078 -0.06 0.9 0.65 0.28 0.28 0 | 0

M 0.008 0.006 -0.25 0.656 0.247 0.008 0.006 -0.25 0.678 0.498
PreM -0.054 -0.038 -0.296 0.63 0.99 -0.054 -0.0405 -0.25 0.668 |
MidSTG 0.019 0.014 -0.279 0.63 0915 0.019 0.014 -0.279 0.669 0.998
PostSTG 0.019 0.014 -0.289 0.64 0.935 0.019 0.014 -0.247 0.675 0.996
dPostSTG on

IFG -0.025 -0.0254 0.016 0.94 | -0.025 -0.025 0 0.938 |
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N=1 N=2

Path :’it:;ula- Average %Bias Ztsnof’erage Power  Population Average %Bias 3:1;:- Power
dMidSTG -0.037 -0.037 0 | 0 -0.037 -0.037 0 | 0
PostSTG -0.008 -0.009 0.125 0.84 | -0.008 -0.009 0.125 0.791 |
PreM 0.028 0.029 0.032 0.92 0.99 0.028 0.029 0.032 0.893 |
dIFG 0.083 0.078 -0.06 0.9 0.65 0.083 0.074 -0.114 0.861 0.859
dPreM 0.098 0.152 0.551 0.67 0.69 0.098 0.152 0.551 0.671 0.86
dMlI 0.089 0.089 0 0.93 0.43 0.089 0.089 0.002 0.951 0.636
Ml on

IFG -0.576 -0.57 -0.01 0.95 | -0.576 -0.57 -0.01 0.937 |
PostSTG -0.415 -0.422 0.017 0917 | -0.415 -0.4214 0.015 0.906 |
dPostSTG -2.929 -2.925 -0.001 0.945 0.89 -2.929 2914 -0.005 0.945 0.998
dMidSTG 0.207 0.23 0.111 0.946 0.06 0.207 0.189 -0.086 0.945 0.061
dPreM 0.543 0.575 0.059 0.955 0.085 0.543 0.529 -0.027 0.953 0.116
PreM 0.437 0.459 0.05 0.848 | 0.437 0.458 0.048 0.78 |
MidSTG -0.051 -0.059 0.157 0.896 0.567 -0.051 -0.0577 0.131 0.863 0.721
dMidSTG on

IFG -0.006 -0.005 -0.167 0.943 0.641 -0.006 -0.005 -0.167 0.949 0.901
dIFG -0.035 -0.035 0 0.99 | -0.035 -0.035 0 0.99 |
MidSTG 0.003 0.002 -0.333 0.641 0.388 0.003 0.002 -0.333 0.669 0.67
dPostSTG 0.431 0.466 0.081 0.855 0.997 0.431 0.43 -0.002 0.829 |
dPreM -0.01 -0.032 22 0918 0.083 -0.01 -0.022 1.2 0.925 0.099
dMl 0.006 0.033 4.5 0.864 0.152 0.006 0.022 2.667 0.828 0.199
PreM on

IFG 0.267 0.17 -0.363 0.666 0.633 0.267 0.185 -0.306 0.681 0.708
dMidSTG -20.397 -19.428 -0.048 0.632 | -20.397 -18.969 -0.07 0.669 |
MidSTG -0.013 0.033 -3.538 0.633 0.35 -0.013 0.027 -3.077 0.67 0.331
dIFG -4.215 -4.018 -0.047 0.856 0.997 -4.215 -3.986 -0.054 0.791 |
dPreM on

IFG -0.018 -0.023 0.278 0.659 | -0.018 -0.0237 0.317 0.681 0.708
dIFG -0.035 -0.035 0 | 0 -0.19 -0.19 0 | 0
dMidSTG -0.04 -0.04 0 | 0 -0.04 -0.04 0 | 0
dPostSTG 0.29 0.29 0 | 0 0.29 0.29 0 | 0
PreM 0 0.002 0 0.637 0.363 0 0.002 0 0.676 0.324
MidSTG 0.009 0.017 0.922 0.658 | 0.009 0.011 0.189 0.674 |
PostSTG -0.013 -0.0173 0.331 0.658 | -0.013 -0.0173 0.331 0.681 |

dMl 0.28 0.28 0 0.99 0.99 0.28 0.28 0 | 0
dIFG on

dMl 0.567 0.612 0.079 0.939 0.896 0.567 0.609 0.074 0.946 0.995
dPreM 0.43 1.23 1.86 0.654 0.997 0.43 1.222 1.842 0.68 |

Note | Results based on 200000 MCMC samples for | 110 discrete time points. Chi-Sq = 24.87 (4); RMSEA = .025; SRMR = 0.008/SD = 0.007.

Note 2 Results based on 200000 MCMC samples using 2220 discrete time points. Chi-Sq = 17.12 (4); RMSEA = .025; SRMR = 0.008/SD = 0.007.
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N=3 N=5
Path Population  Average %Bias 95% Power  Population Average %Bias 95% Power
coverage coverage
dMlI 61.43 45.285 -0.263 0.673 | 61.429 47.049 -0.234 0.708 |
dIFG 26.715 26.734 0.001 0.943 | 26.715 26.785 0.003 0.943 |
MidSTG 0 0 0 | 0 -1.99 0 -1 | 0
dMidSTG ~ -2.04 -0.702 -0.656 0.677 0.323 -2.04 -0.785 -0.615 0.709 0.462
MidSTG
on
IFG -1.99 -1.7115 -0.14 0.657 0.999 -1.99 -1.729 -0.131 0.704 |
PostSTG
on
IFG -0.735 -0.4095 -0.443 0.676 0.997 -0.735 -0.446 -0.393 0.701 0.999
MidSTG 0.546 0.519 -0.05 0.723 | 0.546 0.521 -0.046 0.713 |
dMidSTG ~ -7.79 -10.024 0.287 0.682 | -7.79 -9.811 0.259 0.705 |
dIFG 7.847 10.794 0.376 0.66 | 7.847 10418 0.328 0.694 |
dM1I on
IFG 0.004 0.006 0.6 0.675 0.368 0.004 0.006 0.525 0.7 0.398
dMidSTG 0 0 0 | 0 0 0 0 | 0
dPostSTG ~ 0.089 0.098 0.101 0.93 0.43 0.089 0.098 0.101 0.93 0.43
dPreM 0.28 0.28 0 | 0 0.28 0.28 0 | 0
dIFG 0.28 0.28 0 | 0 -0.28 -0.28 0 | 0
M 0.008 0.006 -0.25 0.658 0.682 0.008 0.006 -0.25 0.703 0.899
PreM -0.054 -0.0401 -0.257 0.667 | -0.054 -0.0417 -0.228 0.702 |
MidSTG 0.019 0.014 -0.253 0.67 | 0.019 0.015 -0.226 0.698 |
PostSTG 0.019 0.014 -0.253 0.661 | 0.019 0.015 -0.221 0.7 |
dPostSTG
on
IFG -0.025 -0.025 0 0.931 | -0.025 -0.0249 -0.004 0.954 |
dMidSTG ~ -0.037 -0.037 0 | 0 -0.037 -0.037 0 | 0
PostSTG -0.008 -0.009 0.125 0.71 | -0.008 -0.0084 0.05 0.729 |
PreM 0.028 0.028 -0.004 0.876 | 0.028 0.028 -0.014 0.854 |
dIFG 0.083 0.073 -0.117 0.825 0.943 0.083 0.074 -0.106 0.782 0.993
dPreM 0.098 0.155 0.579 0.667 0.955 0.098 0.15 0.533 0.709 0.999
dMlI 0.089 0.091 0.019 0.947 0.779 0.089 0.09 0.016 0.938 0.921
Ml on
IFG -0.576 -0.5707 -0.009 0.93 | -0.576 -0.5715 -0.008 0918 |
PostSTG -0.415 -0.4219 0.017 0.863 | -0415 -0.4208 0.014 0.854 |
dPostSTG ~ -2.929 -2.955 0.009 0.936 0.998 -2.929 -2.912 -0.006 0.943 |
dMidSTG  0.207 0.21 0.013 0.95 0.063 0.207 0.195 -0.059 0.937 0.081
dPreM 0.543 0.546 0.006 0.949 0.166 0.543 0.55 0.013 0.934 0.234
PreM 0.437 0.459 0.051 0.719 | 0.437 0.455 0.041 0.709 |
MidSTG -0.051 -0.0582 0.141 0817 0.835 -0.051 -0.0574 0.125 0.765 0.943
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N=3 N=5

Path Population  Average %Bias 95% Power  Population Average %Bias 95% Power
coverage coverage

dMidSTG

on

IFG -0.006 -0.0056 -0.067 0.948 | -0.006 -0.0058 -0.033 0.946 |

dIFG -0.035 -0.035 0 | 0 -0.035 -0.035 0 | 0

MidSTG 0.003 0.002 -0.367 0.67 0.845 0.003 0.002 -0.333 0.7 0.939

dPostSTG ~ 0.431 0.426 -0.011 0.76 | 0.431 0.432 0.002 0.747 |

dPreM -0.01 -0.0293 1.93 0.9 0.139 -0.01 -0.0226 1.26 0.859 0.189

dMlI 0.006 0.026 33 0.787 0.243 0.006 0.022 2.667 0.743 0.279

PreM on

IFG 0.267 0.184 -0.31 0.676 0.717 0.267 0.194 -0.272 0.705 0.747

dMidSTG ~ -20.397 -18.8361 -0.077 0.661 | -20.397 -18.856 -0.076 0.707 |

MidSTG -0.013 0.029 -3.238 0.66 0.333 -0.013 0.024 -2.877 0.698 0.336

dIFG -4.215 -3.9623 -0.06 0.722 | -4.215 -3.959 -0.061 0.714 |

dPreM on

IFG -0.018 -0.0239 0.328 0.656 | -0.018 -0.0233 0.294 0.698 0.708

dIFG -0.19 -0.19 0 | 0 -0.19 -0.19 0 | 0

dMidSTG ~ -0.04 -0.04 0 | 0 -0.04 -0.04 0 | 0

dPostSTG  0.29 0.29 0 | 0 0.29 0.29 0 | 0

PreM 0 0.002 0 0.67 0.333 0 0.002 0 0.698 0.302

MidSTG 0.009 0.01'1 0.2 0.68 | 0.009 0.011 0.178 0.713 |

PostSTG -0.013 -0.0174 0.338 0.673 | -0.013 -0.0169 0.3 0.71 |

dMlI 0.28 0.28 0 | 0 0.28 0.28 0 | 0

dIFG on

dMl 0.567 0.6l 0.076 0.929 0.999 0.567 0.603 0.063 0.898 |

dPreM 0.43 1.259 1.928 0.678 | 0.43 1.173 1.728 0.705 |

Note | Results based on 1000 MCMC samples for 3330 discrete time points. Chi-Sq = 24.87 (4); RMSEA = .025; SRMR = 0.008/SD = 0.007.

Note 2 Results based on 5550 MCMC samples using | 1 10 discrete time points. Chi-Sq = 34.19 (4); RMSEA = .022; SRMR = 0.007/SD = 0.007.

Results

Emergent patterns in connectivity — right hemisphere: A primary
goal of the method illustrated here was to present a methodological
approach for identifying emergent patterns (i.e. strength and
connectivity) in effective network connectivity using ECoG data
under two study conditions. Our analytic strategy provides a way to
capture intrinsic, delayed and contemporaneous relations in a single,
unified model. A secondary goal included evaluating the tenability
of pooling covariance matrices across subjects to conduct group-
level analyses of ECoG data to model effective connectivity. Pooling
subject covariance matrices was determined as untenable and we
proceeded by modeling intra individual dynamics of each subject.
Examination of Figure 1 reveals unique paths and associated strengths
by playback-listen and vocalization conditions. For example, the final
models by study condition were not conclusively the same, the sign

and standardized path loadings were inconsistent or reversed in sign
or both. The exception to this pattern of findings is in the case of
some cross-covariances (i.e. lagged relationships with an ROI on
itself or a lagged relationship with another ROI’s lagged relationship).
However, the observed pattern(s) of lagged effects was expected and
provides no further insight relative to the goals of our study.

Discussion

Modeling complex relationships of neural systems based on
functional and effective connectivity poses unique challenges to
neuroscientists. In this paper we presented an approach to modeling
effective and intrinsic relationships between ROIs simultaneously
within a functional network. A primary goal of our work included
systematically addressing issues specific to effective and intrinsic
connectivity in a way that yielded an accurate map of vocal
sensorimotor integration within and between ROIs. This is particularly
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important in dealing with electrophysiological data from neurosurgical
patients because of the exquisite anatomical localization and temporal
resolution.

The modeling approach presented here is aimed toward increasing
an understanding of the causal relationships observed among
electrodes during different conditions that implicate various stages of

Panel a
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sensorimotor vocal control. Our approach is geared to the development
of network models that can explain the neural control of human
vocalization. Specifically, our work is focused on understanding
feed forward (FF) and feedback (FB) control mechanisms using a
paradigm by which we alter auditory feedback to subjects in real time
while they are vocalizing. Such data inform specific processes such as
self-voice identification and FB based error detection.

Subject 186: Right Hemisphere Playback-Listen Condition

—_—
Effective
Connectivity

)
~

1
00

Note. dIFG = inferior temporal gyrus, dPreM = premotor cortex, dM1 = primary
motor cortex, dPostSTG = posterior temporal gyrus, dMidSTG = anterior
temporal gyrus. Coefficients are standardized weights/estimates. d indicates
derivative. For clarity, only inner paths representing instantaneous change

between ROls are illustrated. For complete results see Table X.

Search Posterior Probability = .47; x* = 7.52(2), p = 0.02; RMSEA = .03 (0.01-0.09); CFI = .99; BIC = 378.93

Panel b

Subject 186: Right Hemisphere Vocalization Condition

—_—
Effective
Connectivity

Note. dIFG = inferior temporal gyrus, dPreM = premotor cortex, dM1 = primary
motor cortex, dPostSTG = posterior temporal gyrus, dMidSTG = anterior
temporal gyrus. Coefficients are standardized weights/estimates. d indicates
derivative. For clarity, only inner paths representing instantaneous change

between ROls are illustrated. For complete model results see Table X.

Search Posterior Probability = .53; x* = 3.2(2), p = 0.20; RMSEA = .02 (0.00-0.06); CFI = 1.0; BIC = 374.84

Figure | Listen and Vocalization Conditions — Right Hemisphere (Subject 186).

Our work proceeded by first demonstrating an approach for
estimating delayed data structures relative to each ROI using
differential equations. Second, real-time and delayed representations
were input for each region into a baseline or null model that assumed
no relationships. Next, an heuristic iterative search algorithm was used
to iteratively specify directional paths between regions. Our method

was demonstrated on 5 regions of the voice network using ECoG data.
The approach presented here offers a systematic and comprehensive
way to model effective and intrinsic relationships and appears to work
well for electrocorticography (ECoG), a form of electrophysiological
data collected from electrodes placed on the surface of patents’ cortex
during neurosurgery.
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While this is not an applications paper, it is useful to determine
the nature of the relations among the ROIs modeled here. In this work
we used data for which subjects vocalized an “ah” at a comfortable
loudness and pitch feel or listened to their own vocalizations (passive
listening). Based on our previous work with fMRI, ERP and ECoG we
selected regions that are implicated in sensory control of the human
voice. What is novel about the use of ECoG data is that we were able
to divide STG into multiple regions in order to determine functional
connectivity associated with the percolation of this region, a task that
is highly challenging with fMRI or scalp based ERP data. Since we
know that the STG plays a central role in the sensory motor control
of the voice, this region likely serves as the hub for modulation of
other brain regions.’’? Given this, by understanding how different
regions within the area relate to one another and to the rest of the
brain will shed light on this complex process. That the middle and
posterior STG show differential connectivity patterns allows for the
generation of neural control hypotheses that can drive our future
work in a large group of subjects and help provide mechanistic
information about vocalization in healthy and disease. For example,
we know that patients with Parkinson’s disease have hypophonia in
which they vocalize with very low loudness levels. Importantly, we
know that they under scale motor output such that they report that
they are speaking at normal or greater than normal loudness levels.
These patients have abnormal responses to altered auditory feedback
and this may be associated with abnormal STG function within the
broader network of brain regions controlling vocalization.

In our fMRI and evoked response potential (ERP) studies we have
shown key connectivity differences associated with alterations in
auditory feedback during vocalization. Our dynamic causal modeling
of ERP signals has shown important coupling properties associated
with bilateral STG, inferior frontal and pre-motor cortices. We have
extended this observations to study musicians with absolute pitch,
those with relative pitch and non-musicians showing that connectivity
variations in these regions differentiated the three subject groups.
While these findings are important, the ability to use ECoG data
and capitalize on its temporal and spatial resolution will allow for
far greater insight into the role of different regions of STG in vocal
control.

Limitations: The method introduced here includes a novel and powerful
approach to modeling ECoG data. However, we acknowledge several
limitations that warrant investigation in future studies. First, in the
present study the selection of electrodes was anatomically driven. In a
future study we plan to investigate the utility of our modeling approach
using a physiological response-based electrode location strategy.
Second, a larger sample of subjects will allow us to conduct a more
comprehensive evaluation of our modeling framework in measuring
neuronal dynamics focusing on intra-individual (single-subject)
versus inter individual (group-level). Third, in a related manner, using
a larger sample of subjects exhibiting language dominant versus non-
dominant network differences, we will be able to evaluate the utility
of our modeling approach in accurately capturing brain dynamics.
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