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Introduction
Learning from clinical experience (whether during formal 

research or in the course of patient care) is impeded by mainly 
two processes: bias and chance. Medical research results many 
times become inconclusive because some bias is detected after 
the results are available. A dictionary definition of ‘bias’ is ‘a one-
sided inclination of the mind. In statistics, ‘bias’ is ‘systematic 
error’ that can produce results that depart from the true values. 
That is, bias is a process at any stage of inference tending to 
produce results that depart systematically from the true values. 
It is any trend in the design, collection, analysis, interpretation, 
publication, or review of data that can lead to conclusions that 
are systematically different from the truth. Therefore, it is 
important that all sources of bias are considered at the time of 
planning a study, and all efforts are made to control them. Other 
type of error is ‘random error’. Random variation can never be 
eliminated totally; however, one can reduce the role of chance by 
proper design, adequate sample size, and appropriate analyses. 
Chance should always be considered when assessing the results 
of clinical observations. But it is very important to note that these 
two sources of error–bias and chance–are not mutually exclusive. 
In clinical research a great deal of effort is aimed at avoiding bias 
whenever possible and controlling for and estimating its effects 
when bias is unavoidable. On the other hand, random error 
resulting from the play of chance is inherent in all observations. 
Though it can be minimized, it cannot be avoided altogether.      

It is well known that ‘bias’ can produce dramatic change in 
study results. Few such dramatic effects of bias are shown in an 
excellent article by Sackett [1] on ‘biases in analytic research’. 

There is no need of quoting such dramatic effect showing examples 
as the role of bias is already known to all. In many situations where 
an investigator is looking for an association between exposure to 
risk factor and subsequent disease, it is not possible to randomly 
allocate exposure to subjects (for example, you cannot insist that 
some people smoke and others do not or randomly expose some 
industrial workers to radiation). Thus studies relating exposure 
to outcome are often observational–where the investigator 
simply observes what happens and does not intervene. Factors 
(variables) that are related to both the exposure of a risk factor 
and the outcome are called confounding factors. Other biases 
(confounding also is one type of bias but it is controversial to 
keep it separately or treat as one of the biases) also may occur 
in observational studies. However, since the essential feature of a 
clinical trial is the random allocation of treatment to subjects may 
(note that randomization is a sort of insurance and not a guaranty 
scheme) overrules this possibility. But they should be looked for 
even in clinical trials especially ‘Phase IV’ trials as they are more 
like observational studies (controversy!!). Though in “RTCs” 
occurrence of bias (including confounding) is less likely, is not 
‘impossible’. In “observational” (cross-sectional or longitudinal) it 
is more likely. Therefore, be careful always.   

Various possible sources of bias are listed in few (below 
quoted) references. Those are not mutually exclusive sources 
generally and the overlap is substantial. Some of the biases in 
those lists are collection of many biases of similar type and 
generally the list is not exhaustive. New ones are identified 
occasionally (or new names for same type of bias are given often). 
Some steps suggested to minimize bias (in the results) are given 
at the end. All steps are not applicable in all the situations. Adopt 
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Abstract

Medical research results many times become inconclusive because of some bias. 
Bias is a process at any stage of inference tending to produce results that depart 
systematically from the true values. It is any trend in the design, collection, 
analysis, interpretation, publication, or review of data that can lead to conclusions 
that are systematically different from the truth. Therefore, it is important that all 
sources of bias are considered at the time of planning a study, and all efforts are 
made to control them. It is well known that ‘bias’ can produce dramatic change 
in study results. In clinical research a great deal of effort is aimed at avoiding 
bias whenever possible and controlling for and estimating its effects when bias 
is unavoidable.

Various possible sources of bias are known (listed few books). These lists of 
plausible biases are generally not exhaustive. New ones are identified (or new 
names for same type of bias are given often). Some steps are suggested to 
minimize bias are given at the end. If a study is planned, designed, executed, 
analyzed, interpreted, etc., properly then occurrences of any type of ‘bias’ are 
less likely. 

Confounding, one important type of bias and other confusing term ‘effect 
modification’ is also discussed in more details.
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the ones that are applicable to your setup. Note that if a study is 
planned, designed, executed, analyzed, interpreted, etc., properly 
then occurrences of any type of ‘biases’ are less likely. 

 Sackett [1] identified 56 possible biases that may arise in any 
analytic research of which over two-thirds are related to aspects 
of study design and execution. Methodologically inferior trials or 
studies might produce bias in both directions, thereby causing 
greater variability in estimates of treatment effects. Empirical 
evidence [2] shows that estimates of treatment effects would be 
larger in trial in which 

1.	 Adequate measures had not been taken to conceal treatment 
allocation; 

2.	 Adequate measures had not been taken to generate the 
allocation schedule; 

3.	 Some allocated participants had been excluded from the 
analysis; and 

4.	 Measures had not been taken to implement double-blinding. 
It is noted in one survey that odds ratios were exaggerated 
by 41% in trials where treatment allocation was inadequately 
concealed, and by 30% when the process of allocation 
concealment was not clearly described. It is well known that 
the process of ‘randomization’ is important in eliminating 
selection bias.  The importance of ‘blinding’ is that it avoids 
observer bias. Non-blinding studies (according to the same 
survey) over-estimate treatment effects by about 17%. Trials 
of poor reporting quality are also known to over estimate 
the effect of treatment. Bias may also lead to fallacious 
interpretation of study/trial results. In few books [e.g. 3] a 
complete chapter devoted to ‘statistical fallacies’ enumerate 
indirectly the effect of many such biases.   

Some of these biases may also lead to one of the important 
errors namely of missing data which is frequently encountered 
in clinical studies. Generally this is neglected which may 
significantly bias the results of the study, apart from reducing 
study power. They are a serious problem that undermines the 
scientific trustworthiness of causal conclusions from clinical 
trials or observational longitudinal studies. There are imputation 
methods (imputation is the method in which each missing value 
in a data set is filled in with a value to yield one complete data set). 
But choice of the appropriate method is important because there 
are assumptions involved, example, Last Observation Carried 
Forward (LOCF) method assumes that the response remains 
constant at the last observed value. This assumption can be biased 
if the timing and the rate of withdrawal is related to the treatment 
(e.g. in the case of degenerative diseases, using the last observed 
value to impute for missing data at a later point in the study means 
that a higher observation will be carried forward, resulting in an 
overestimation of the true end-of-study measurement).                

Similarly choice of the appropriate analysis method is also 
very important. Wrong choice may produce lot of bias [3]. Like 
the methods of survival analysis are required to analyze duration 
data (though their use is restricted possibly due to lack of 
awareness and the intricacies involved). Many instances can be 
quoted of wrong choice of methodology of data analyses, quoting 
one common example should suffice to highlight the relevance. In 

several types of studies we may want to examine the consistency 
of an observed relation across two or more subgroups of the 
individuals studied. For example, in a clinical trial we might want 
to know if the observed treatment difference is the same for 
young and old patients or for both the genders (males, females) 
or for different stages of disease at presentation. In such cases we 
are interested in examining whether one effect is modified by the 
value of another variable. This may be viewed as the examination 
of the heterogeneity of an observed effect such as treatment 
benefit across subsets of individuals. The statistical term for 
heterogeneity of this type is “interaction” [3]. The medical concept 
of “synergy” is the same thing (opposition in physiological 
action is “antagonism”). The statistical term interaction relates 
to the non-independence of the effects of two variables on the 
outcome of interest. It is advised very strongly (with reasoning) 
in the literature that to conclude presence of interaction always 
“compare effect sizes and not the P values” [4]. Comparing ‘P’ 
values alone can be misleading. Comparing confidence intervals 
is less likely to mislead. However, the best approach is to compare 
directly the effect sizes using “test of interaction” [5]. Still one 
can often see the practice of comparing ‘P’ values alone in such 
situations. 

Remember that unlike chance and confounding, which can be 
evaluated quantitatively, the effects of bias are far more difficult to 
evaluate and may even be impossible to take into account in the 
analysis. For this reason, it is of paramount importance to design 
and conduct each study in such a way that every possibility for 
introducing bias has been anticipated and that steps have been 
taken to minimize its occurrence. It must be clearly kept in mind 
that tests of statistical significance and confidence intervals 
evaluate only the role of chance as an alternative explanation of 
an observed association between an exposure and disease [6]. 
While an examination of the ‘P’ value and or confidence interval 
may lead to the conclusion that chance is an unlikely explanation 
for the findings, this provides absolutely no information 
concerning the possibility that the observed association is due to 
the effects of uncontrolled bias or confounding. All three possible 
alternative explanations (chance, bias, confounding) must always 
be considered in the interpretation of the results of every study 
[7]. One more point of vital importance to be kept in mind is that 
‘clinical significance is different than statistical significance’ [8]. 

It may be noted that most of the ‘biases’ fall into one of three 
broad categories: 

a)	 Selection Bias: (occurs when comparisons are made between 
groups of patients that differ in determinants of outcome 
other than the one under study).

b)	 Measurement Bias: (occurs when the methods of 
measurements are dissimilar among groups of patients).

c)	 Confounding Bias: (occurs when two factors are associated 
i.e. travel together and the effect of one is confused with or 
distorted by the effect of the other).

Some steps suggested for minimizing bias: Develop an 
unbiased scientific temperament by realizing that you are in the 
occupation of relentless search for truth. Specify the problem to 
the minutest detail. Assess the validity of the identified target 
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population, and the groups to be included in the study in the 
context of objectives and the methodology. Assess the validity 
of antecedents and outcomes for providing correct answer to 
your questions. Beware of epistemic uncertainties arising from 
limitation of knowledge. Evaluate the reliability and validity of the 
measurements required to assess the antecedents and outcomes, 
as also of the other tools you plan to deploy. Carry out a pilot study 
and pretest the tools. Make changes as needed. Identify all possible 
confounding factors and other sources of bias, and develop an 
appropriate design that can take care of most of these biases if 
not all. Choose a representative sample, preferably by random 
method. Choose an adequate size of sample in each group. Utilize 
the knowledge about the population while planning a study. 
Train yourself and coworkers in making correct assessments. Use 
matching, blinding, masking, and random allocation as needed. 
Monitor each stage of research, including periodic check of the 
data. Minimize non-response and partial response. Double check 
the data and cleanse it of errors in recording, entries, etc.

Analyze the data with proper statistical methods. Use 
standardized or adjusted rates where needed, do the stratified 
analysis, or use mathematical models such as regression to take 
care of biases that could not be ruled out by design. Interpret the 
results in an objective manner based on evidence. Report only 
the evidence based results – enthusiastically but dispassionately. 
Exercise extreme care in drafting the report and keep comments 
or opinions separate from the results. Bias and other aspects of 
design can be very adequately taken care of if you could imagine 
yourself presenting the results a couple of years hence to a critical 
but friendly audience. Consider what your colleagues could 
question or advise at that time, consider their reaction when you 

conclude that the results are significant and also if you conclude 
that the results are not significant. Remember that statistical 
significance and non-significance are equally important.

In short, always remember (as said earlier) that if a study is 
planned, designed, executed, analyzed, interpreted, etc., properly 
then occurrences of any type of ‘biases’ are less likely. Further ask 
‘can there be non-causal explanations of the results? Are there any 
confounding factors that have been missed? Whether chance or 
sampling error could be an explanation?’. Such consideration will 
help you to develop proper design, and to conduct the study in an 
upright manner.

Measures of association must be interpreted in terms of the 
potential for confounding effects of extraneous variables in the 
design. Confounding is introduced when extraneous variable(s) 
interfere with the observed association between the exposure (i.e. 
risk factor) and outcome. A confounder is a variable that is 

I.	 Independently of the exposure, is a risk factor for the 
disease, and

II.	 Associated with the exposure, and

III.	 Is not part of the causal link between the exposure and the 
disease.

To illustrate this concept, consider the hypothetical data 
(showing the association between the use of oral contraceptive 
and myocardial infarction with confounding by age) displayed in 
following table (similar to table 15.3 in “Foundation of Clinical 
Research : Applications to practice” 2nd edition by L.G. Portney & 
M.P.Watkins, 2000, Prentice Hall, New Jersey) Table 1: 

Table 1: Odds ratios-association between ‘passive smoking’ and ‘cancer’ with potential confounding variable ‘personal smoking’.

About Nature of 
Sample Exposure Status

Cancer
Odds Ratio 

(Crude/Raw)

Odds Ratio (Mantel-
Haenszel Pooled-
Adjusted for Self-

Smoking)Cases Controls Total

Total Sample
Passive Smoking Present 281 210 491

1.63 1.63
Passive Smoking Absent 228 279 507

Smokers

Total 509 489 998

Passive Smoking Present 120(=a1) 80(=b1) 200

2.09

Passive Smoking Absent 111(=c1) 155(=d1) 266

Non-Smokers

Total 231 235 466(=n1)

Passive Smoking Present 161(=a2) 130(=b2) 291

1.31

Passive Smoking Absent 117(=c2) 124(=d2) 241

Total 278 254 532(=n2)
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The odds ratio [between oral contraceptive and myocardial 
infarction] for the total sample is 2.2. Therefore, women who 
use oral contraceptive (OC) have greater than twice the risk of 
myocardial infarction (MI) over those who do not use OC; however 
the question [often raised] is about the potential confounding 
effect of age in the analysis. Let us now examine the role of ‘age’. 

I.	 First, we know that ‘age’ is generally a risk factor associated 
with MI. In fact, in the above data, among the nonusers of 
OC, the proportion of cases is greater for older subjects [88 
/ 183 = 0.48] than for younger subjects [26 / 85 = 0.31]. This 
suggests that ‘age’ is a risk factor for MI independent of OC 
use. 

II.	 Second, the data also show that some relationship exists 
between ‘age’ and use of OC; among the controls, there is 
a higher proportion of OC users in the young ‘age’ category 
[17 / 76 = 0.22] as compared with old ‘age’ category (7 / 
102 = 0.07].

III.	 Third, ‘age’ cannot be considered a causal link between OC 
use and MI. 

Therefore ‘age’ meets all the three [above mentioned] criteria 
for a confounding factor. We can evaluate the possible confounding 
by ‘age’ in the analysis of the data by stratifying the sample into 
younger and older ‘age’ groups: ‘under 40’ and ‘40 or above’. Odds 
ratio for these ‘age’ strata each is 2.8 i.e. each stratum shows the 
same risk associated with OC use regardless of age. The individual 
estimates for each group (i.e. strata specific) are considered 
“unconfounded” for age; however, these unconfounded estimates 
are different from the overall or crude odds ratio of 2.2. This 
difference tells us that age does affect the risk estimate; that 
is, age is a confounding variable. Because OC users tend to be 
younger, and younger women tend to have fewer MIs, the crude 
odds ratio was an underestimate of the risk of MI associated 
with OC use. When ‘age’ is taken into account (pooled estimate 
by M-H is described below), the actual risk is higher. If there was 
no discrepancy between the crude and unconfounded estimates, 
there would be no confounding. The degree of discrepancy is 
indicative of the extent to which ‘age’ confounded the original data 
[one possible measure could be ‘percentage underestimation’ 
which for these data is {{(2.8-2.2)/2.2}×100} = 27.27%].     

To evaluate the effect of confounding in an analysis, 
the researcher must collect information on the potentially 
confounding variable(s). If the investigator in this example had 
not collected data on subjects’ ages, the preceding analysis would 
not have been possible. Although ‘age’ is continuous variable, for 
such analysis we have to make few strata (here only two are made 
but one can make more ‘clinical meaningful’ strata, remember 
that an estimate will change for different cut-off). The researcher 
must be able to predict what variables are possible confounders. 
It is possible that several confounding factors will be operating 
in one study. In addition to controlling for confounding in the 
analysis, researcher can use design strategies, such as matching or 
homogeneous subjects, to control for these effects. For instance, if 
we were to restrict the subjects to women under 40, age could not 
be a confounding factor.

When data are stratified, and separate risk estimates (here 
odds ratio, but in prospective studies-relative risks) are calculated 
for each stratum, it is possible to report each estimate; however, 
it is usually more useful to calculate a single overall estimate 
that reflects the association between risk factor (exposure) and 
disease with the confounding factor taken into account. Most 
commonly used procedure to accomplish this is by Mantel-
Haenszel [set of Mantel-Haenszel pooled risk estimates provide a 
weighed summary value that can be used to report risk associated 
with a specific exposure (risk factor) adjusted for the confounding 
variable].

Pooled Odds Ratio by Mantel-Haenszel=ORM-H=[{Sum{(aidi)/N} 
/ Sum{(bici)/N}]

(ORM-H={[(a1d1) / (n1)]  + [(a2d2) / (n2)]} / {[(b1c1) / (n1)]  + 
[(b2c2) / (n2)]}]=2.8 for above data)

When the Mantel-Haenszel estimate differs from the crude 
estimate, it is the Mantel-Haenszel estimate that should be 
reported. It is most appropriately used when the stratum specific 
estimates are uniform that is when there is no ‘effect modification’.

Confounding variables can be thought of as ‘nuisance’ 
variables, they may or may not be present depending on the source 
population and how subjects are chosen. However, sometimes 
a third factor will interact with the exposure (risk factor) and 
disease variables in such a way as to present a constant effect and 
such a variable is called an ‘effect modifier’ which is generally a 
natural phenomenon that exists independent of the study design 
& will always be a factor in interpretation of risk. Effect modifiers 
tend to be biologically related to the variables being studied. For 
example, suppose we wanted to look at the association between 
exposure to asbestos and development of lung cancer. We 
prospectively follow a group of asbestos workers and a group of 
workers in a different industry for, say, 15 years. Assume we found 
that asbestos is a risk factor for lung cancer, with a relative risk of 
4.5. We also have collected data on the subjects’ smoking habits as 
well because we know that smoking is also a risk for lung cancer. 
We can stratify our subjects according to smokers & non-smokers 
and look at the relative risk associated with asbestos exposure 
for each group. Suppose we find that the risk associated with 
asbestos for smokers is 5.0, whereas the risk for non-smokers is 
1.3. This would tell us that smoking is an effect modifier-that the 
effect of asbestos is exacerbated for a smoker in terms of risk for 
lung cancer. The fact that the stratum specific risk estimates are 
different for smokers and non-smokers indicates that smoking 
interacts with asbestos as an effect modifier. Note that this is not 
the case with confounding variable, as illustrated in the above 
example of MI and OC use.   

Assumption made in the estimation of a common odds ratio 
(by above M-H method) is that the strength of association is the 
same in each stratum. If the underlying odds ratio is different in 
the various strata, then it makes little sense to estimate a common 
odds ratio.  Suppose we are interested in studying the association 
between a disease variable ‘D’ and an exposure variable (risk 
factor) ‘E’, but are concerned about the possible confounding effect 
of another variable ‘C’. Then we stratify the study population into 
‘k’ strata according to the variable ‘C’ and compute the odds ratio 
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relating disease to exposure in each stratum.  If the underlying 
(true) odds ratio is different across the ‘k’ strata, then there is 
said to be ‘interaction’ or ‘effect modification’ between ‘E’ and ‘C’ 
and the variable ‘C’ is referred to as an “effect modifier”. In other 
words, if ‘C’ is an effect modifier, the relationship between disease 
and exposure (risk factor) differs for different levels of ‘C’.

Important question that “how can we detect if any variable 
(say ‘C’) is an effect modifier?” is addressed by ‘Woolf’ test. 
Suppose we have a dichotomous disease variable ‘D’ and exposure 
‘E’. We stratify our study population into ‘k’ strata according to a 
confounding variable ‘C’. Let ORi = underlying odds ratio in the ith 
stratum. To test the hypothesis

HO: OR1 =......= ORi =......= ORk versus H1: at least two of the ORi are 
different with a significance level α, use the following procedure:

Test statistic X2hom = Sum{wi(ln ORi – ln OR)2} which follows 
Chi-square distribution under HO. ln ORi is the log odds ratio; 

wi = {(1/ai) + (1/bi) + (1/ci) + (1/di)}-1; i goes from 1 to k

ln OR = {Sum wi (ln ORi) / Sum wi }; i goes from 1 to k (i.e. Sum 
over all the categories).

Example: In one study on effect of passive smoking on cancer 
risk, potential confounding variable being ‘smoking’ by the test 
subjects themselves (i.e. personal smoking), because personal 
smoking is related to both cancer risk and spouse smoking 
(=passive smoking) Table 2.

For this data set ln OR1 = 0.739, w1 = 27.55, ln OR2 = 0.272, w2 
= 32.77 and thus χ2hom = 3.27; df=1; P >0.05. Thus there is no 
significant effect modification.

Table 2: Odds ratios-association between ‘use of oral contraceptive’ and ‘myocardial infarction’ with confounding by age.

About Nature of 
Sample Exposure Status

Myocardial Infarction
Odds Ratio 

(Crude/Raw)

Odds Ratio (Mantel-
Haenszel Pooled Estimate-

Adjusted for Age Categories)
Cases Controls Total

Total Sample

OC User 39 24 63
2.2 2.8

Non User 114 154 268

Total 153 178 331

< 40 Years Old

OC User 21(=a1) 17(=b1) 38
2.8

Non User 26(=c1) 59(=d1) 85

Total 47 76 123(=n1)

≥ 40 Years Old

OC User 18(=a2) 7(=b2) 25
2.8

Non User 88(=c2) 95(=d2) 183

Total 106 102 208(=n2)

There is a test (called ‘Chi-square M-H’ as it is again given 
by Mantel & Haenszel) to assess the significance of pooled (i. e. 
adjusted for confounder) odds ratio and a method to estimate 
its [pooled (i.e. adjusted for confounder) odds ratio] but are not 
discussed (or given) here to avoid lot of mathematics. However, 
interested readers can refer to excellent book by Rosner 
(“Fundamentals of Biostatistics” 5th edition, Bernard Rosner, 
Duxbury Thomson Learning, CA, 2000) and note its availability 
in software ‘CIA’ [“Confidence Interval Analysis” software  
accompany excellent book: Altman DL, Machin D, Bryant TN, and 
Gardner MJ. ‘Statistics with Confidence: Confidence Intervals and 
Statistical Guidelines’ 2nd edition, BMJ Books, London, 2003].     
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