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Abstract

This paper presents and discuses the use of dummy variable multiple regression
techniques in the analysis of samples drawn from several related or dependent
populations ordinarily appropriate for random effects and mixed effects derived from
the two factor analysis of variances model with one observation per-cell or treatment
combinations. Using the extra sum of squares principle the method develops necessary
sums of squares, degrees of freedom and the F-ratios required to test the significance
of factor level effects thereby helping to resolve the problem of one observation
per treatment combination, encountered in the usual two factor analysis of variance
models with one observation per cell. The method provides estimates of the overall
and factor mean effects comparable to those obtained with the two factor analysis
of variance methods. In addition, the method also provides estimates of the total or
absolute effects as well as the direct and indirect effects of the independent variables
or factors on the dependent or criterion variable which are not ordinarily obtainable
with the usual analysis of variance techniques. The proposed method compares
favorably with the usual Friedman’s two-way analysis of variance test by ranks using
some sample data.
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Introduction

Dummy variable analysis of variance technique is an alternative
approach to the non-parametric Friedman’s two-way analysis of
variance test by ranks used to analyze sample data appropriate for
use in parametric statistics for two factor random and mixed effects
or analysis of variance models with one replication or observation per
treatment combinations.'?

To develop a non-parametric alternative method for the analysis
of matched samples that are appropriate for use with two factor
random and mixed-effects analysis of variance models with only one
observation per cell or treatment combination, we may suppose that
a researcher has collected a random sample of size ’a’ observations
randomly drawn from a population ‘A’ of subjects or blocks of subjects
exposed to or observed at some ‘c’ time periods, points in space,
experimental conditions, tests, or treatments that are either fixed or
randomly drawn from population B experimental conditions, points in
time, tests or experiments comprising numerical measurements.

The proposed method

Let y; be the i observation drawn from population A, that is

the observation on the i subject or block of subjects exposed to or
observed at the ;™ level of factor B that is j” treatment or time
period for i=1,2,...,a; j=1,2,....c.

:ﬁo

+p

X
Y 1,4 11;4

1 2;4 12;4 a

For /=1,2,...n=a.c sample observations where y, is the "

response or observation on the criterion or dependent variable; X,

B, Xy Tt B X B

Now to set up a dummy variable multiple regression model for use
with a two factor analysis of variance problem, we as usual present
each factor or the so called parent independent variable with one
dummy variable of 1s and Os less than the number of its categories
or levels.? Thus factor A, namely subject or block of subjects with ‘a’
levels is represented with a-1 dummy variables of 1s and Os, while
factor B with c levels is represented by c-1 dummy variables of 1s
and Os.

Hence we may let

Lif Yij is an observation on the ith subject or block of
Xa = subjects and jth level of factor B (treatment) (1)
0,0therwise

fori=12,..,a—1l;and all j =1,2,...,c

Also let
1,if Yij is an observation or response at the jth level
[ of factor B (treatment) and ith level of factor (2)
B A(subject ,or block of subjects)

O,otherwise

Jor j=1,2,..c—l;and alli =1,2,...,a.

Then the resulting dummy variable multiple regression model
fitting or regressing the dependent or criterion variable y; on the
dummy variables representing factors A (subject or block of subjects)
and B (treatment) is

+p

pY +
2;B 12;B

l;Bxll;B + ﬂc—l;Bxlc—l;B + ei (3)

are dummy variables of 1s and Os representing levels of factors A
and B; ﬂl are partial regression coefficients and € are error terms,
with E(ei§v=0 ,for /=1,2,...,n=a.c . Note that since there are only one
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Dummy variable multiple regression analysis of matched samples

observation per row by column, that is factor A (subject or block of
subjects) by factor B (treatment) combination; for one to be able to
have an estimate for the error sum of squares for the regression model,
and hence be able to test desired hypotheses, it is necessary to assume
that there are no factors A by B interactions or that such interactions
have been removed by an appropriate data transformation. Also note
that an advantage of the present method over the extended median
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test for dependent or matched samples and also over the Friedmans
two —way analysis of variance test by ranks is that the problem of tied
observations within subjects or blocks of subjects does not arise, and
hence unlike in the other two non-parametric methods under reference
there is no need to find ways to adjust for or break ties between scores
within blocks of subjects.’ The expected or mean value of the criterion
variable is from equation 3.

E(y,) = ﬁo + ﬂl;Axll;A + ﬂZ;Axlz;A + ""+ﬂ —I;Axla—l;A + 'Bl;Bxll;B + ﬂz;szz;B ot ﬂc—l;Bxlc—l;B (4)

a

To find the expected or mean effect of any of the factors or parent
independent variables, we set all the dummy variables representing
that factor equal to 1 and all the other dummy variables found in
equation 4 equal to 0.Thus for example the expected or mean effect
or value of factor A (subject or block of subjects) on the dependent
variable is obtained by setting x, ,=l and x; ;=0 in equation 4 for

1=1,2,...,a-1;j=1,2,.. .c—1.
Similarly the expected or mean value of factor B (treatment)
is obtained by setting x;z=land x;,=0 in equation 4 for

1=1,2,...,c-1;j=1,2,...,a—1 thereby obtaining

a-1 c—1

E(yz;A):ﬂ(ﬁZ Biaand E(y;3)=Po+ X By %)
I=1 =1

Now the dummy variable multiple regression model of equation 3
can equivalently be expressed in matrix form as

y=Xp+e (6)

Where yp is an nx1 column vector of observations or scores on
the dependent or criterion variables; X is an nxr design matrix of ‘r’
dummy variables of 1s and Os; £ is an rx1 column vector of partial
regression coefficients; and e is on nx1 column vector of error terms,
with E(e)=0 where ‘n’=a.c observations and ‘n’=(a-1)+(c-1)=a+tc-2
dummy variables of 1s and Os included in the regression model.

Similarly the expected value of y is from equation 4.

E(y)=X.p @)

Application of the usual methods of least squares to either equation
3 or 6 yields an unbiased estimate of the regression parameter S as

B=b=(xx)" X'y (8)

Where (X X )_' is the inverse matrix of the non-singular variance-

covariance matrix X’X . A hypothesis that is usually of research
interest is that the regression model of either equation 3 or 6 fits,
or equivalently that the independent variables or factors have no
effects on the dependent or criterion variable, meaning that the partial
regression coefficient is equal to zero stated symbolically that we have
the null hypothesis.

Hozﬁzgversusleﬁ;tQ )

As in equation 3 this null hypothesis is tested using the usual
F-test presented in an analysis of variance Table where the total sum

of squares is calculated in the usual way as

SSTotal = y'y —n.5" (10)

With n-1=a.c-1 degrees of freedom where y is the mean value of
the dependent variables.

Similarly the treatment sum of squares in analysis of variance
parlance which is the same as the regression sum of squares in
regression models is calculated as

SSTreatment = SSR =b".X".y — n.)72 1mn

With (a-1)+(c-1) =atc-2 degrees of freedom. The error sum of
squares SSE indicates the difference between the total sum of squares,
SST and the sum of squares regression SSR; thus,

SSE = SST -SSR = y'y —b'X".y (12)

With (a.c-1)~((a—1)+(c-1))=(a-1)(c-1) degrees of freedom.

These results are summarized in an analysis of variance Table
(Table 1)

The null hypotheses H of Equation 13 is tested using the F-ratio of
Table 1. The null hypothesis is rejected at the if the calculated F-ratio
is greater than the tabulated or critical F-ratio at a specified « -level of
significance, otherwise the null hypothesis H_ is accepted.

If the model fits, that if not all the elements of S are equal to zero,
that is if the null hypothesis H  of equation 9 is rejected, then one may
proceed to test further hypothesis concerning factor level effects, that
is one may proceed to test the null hypothesis that factors A (subject or
block of subjects) and B (treatment) separately have no effects on the
dependent or criterion variable. In other words, the null hypotheses

Ho :/_?A =QversusH1 :EA #0

and (13, 14)

HO:,B =QversusH1:ﬂ =0

—B —B

Where S and B are respectively the (a-1) and (c-1) vectors of

partial regression coefficients or effects of factor A (subject or block
of subjects) and B (treatment) on the criterion or dependent variable.
However a null hypothesis that is usually of greater interest here is
that of equation 14, that is that treatments, points in time or space of
tests or experiments do not have differential effects on subjects.
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Table | Two factor analysis of variance Table for the full model of Equation 6
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Source of variation Sum of squares Degrees of freedom Mean sum of squares F-ratio
SSR MSR
i ' ’ =2 - MSR= -
Regression(treatment) SSR=b'.X y-ny atc-2 PP ASE
Error SSE=y'y—b'X".y (a-1)(c-1) SE:S‘S‘iE
** - (a=D)(c-1)
Total SST:y'y_n.yz (a.c)-1

Now to obtain appropriate test statistics for use in testing these null
hypothesis we apply the extra sum of squares principle to partition the
treatment or regression sum of squares SSR into its two component
parts namely, the sum of squares due to factor A (subject or block of
subjects), SSA and the sum of squares due to factor B (treatment),
SSB, to enable the calculation of the appropriate F-ratios.

Now the nxr matrix X for the full model of equation 6 can be
partitioned into its two component sub-matrices namely X, , an nx(a-
1) design matrix of a-1 dummy variables of 1s and Os representing
the included a-1 levels of factor A (subject or block of subjects)
and X, an nx(c-1) matrix of the c-1 dummy variables of 1s and
0Os representing the included c-1 levels of factor B (treatment). The
partial regression coefficient b, estimated being an rx1 column vector
of regression effects of equation 8 can also be partitioned into the
corresponding partial regression coefficients estimated such as, b,
,which is an (a-1)x1 column vector of partial regression coefficients
or effects of factor A and b, which is a (c-1)x1 column vector of the
effects of factor B on the dependent variable. Hence the treatment sum
of squares SST, that is the sum of squares regression SSR of equation
11 can be equivalently expressed as

SSTreatment = SSR = b'X'y - n.}z =(Xb).y- n.f2;

equivalently as

IZA ’ -2 ' ' ' ' —2
SSR=|(X, XB)b y-ny :(QA.XA.X+QB.XB.X)—n.y
=B
(15)
or equivalently
SSR:@X’X—n.yZ:(li y .X;.X—n.y2)+(11 5 Xpy-ny’ )+n.)72 (16)
Which when interpreted is the same as the statement
SSTreatment = SSR = SSA+ SSB + SS(y = 1) 17)

Where SSR is the sum of squares of regression for the full model
with r=a+c-2 degrees of freedom; SSA is the sum of squares due to
factor A (subject or block of subject); with a-1 degrees of freedom;
SSB is the sum of squares due to factor B (treatment) with c-1 degrees
of freedom; and SS(y=/) is an additive correction factor due to

mean effect. These sums of squares namely SSR, SSA and SSB are
obtained by separately fitting the full model of equations 6 with X,

and the reduced regression models of X, and X again separately on
the criterion or dependent variable y .

Now ifthe full model of equation 6 fits, that is if the null hypothesis of
equation 9 is rejected, then the additional null hypotheses of equations
13 and 14 may be tested using the extra sum of squares principle [4,5].
If we denote the sums of squares due to the full model of equation 6
and the reduced models due to the fitting of the criterion variables

Y to any of the reduced design matrices X, and X, by SS(F) and

SS(R) respectively then following the extra sum of squares principle*’
the extra sum of squares due to a given factor is calculated as

ESS = SS(F)-SS(R) (18)

With degrees of freedom obtained as the difference between the
degrees of freedom of SS(F) and SS(R); that is as Edf=df(F)-df(R).
Thus the extra sums of squares for factors A (subject or block of
subjects) and B (treatment) are obtained as follows respectively

ESSA=SSR—SSA; ESSB=SSR—-SSB (19)

With (a—=1)+(c—=1)—(a—-1)=b -1 degrees of freedom and
(a-1)+(b-1)—(b-1)=a—-1 degrees of freedom.

Note that since each of the reduced models and the full model
have the same total sum of squares SST, the extra sum of squares
may alternatively be obtained as the difference between the
error sum of squares of each reduced model and the error sum of
squares of the full model. In other words, the extra sum of squares
is equivalently calculated as

ESS=SS(F)-SS(R)=SST-SS(F)-SST-SS(R)=SSE(R)-SSE(F)
(20
With degrees of freedom similarly obtained. Thus the extra sum

of squares due to factors A (subject or block of subjects) and B
(treatment) are alternatively obtained as follows respectively.

ESSA = SSEA — SSE 21

With c-1 and a-1 degrees of freedom. Where SSR and SSE are
respectively the regression sum of squares and the error sum of
squares for the full model and SSEA and SSEB are respectively the
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error sums of squares for the reduced models for factors A and B. The
null hypotheses of equations 13 and 14 are tested using the F-ratios

_ MESA
A~ MSE (22)
With a-1 and (a-1)(c-1) degrees of freedom where
ESSA
MESA = % 23)

Is the mean extra sum of squares due to factor A (subject or block

of subjects) and

_ MESB ”
B~ MSE 24

With a-1 and (a-1)(c-1) degrees of freedom where
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ESSB
MESB = ——

a-1
Is the mean extra sum of squares due to factor B (treatment).These
results are summarized in Table 2a which for ease of presentation also
includes the sum of squares and other values of Table 1 for the full

models.

(25

If the various F-ratios and in particular the F-ratios based on
the extra sums of squares of Table 2b indicate that the independent
variables or factor levels have differential effects on the response,
dependent, or criterion variable, that is if the null hypotheses of either
equation 13 or 14 or both are rejected, then one may proceed further
to estimate desired factor level effects and test hypotheses concerning
them.

Table 2a Table showing two factor Analysis of Variance for Sums of Squares for the full model and due to reduced models and other statistics

g Degrees of Mean sum of .
Source of variation Sum of squares (SS) freedom(DF) squares(MS) F-ratio
Full model
SSR MSR
Regression =b' X' y—n7y> atc-2 MSR= F=—-
g SSR=Xy-n.y a+c—2 SSR
SSE
Error SSE:X'X_Q’X’X (a-1)(c-1) MSEzm
Factor A (Subjects on block of subjects)
SSA
i ’ ’ 2 - -
Regression SSA=b' 4 X'y y-n.y a-1 MSA4 1
MSA
E = v=b X' -1 MSEA=
rror SSEA=y' y—=b' 4X'qy a(e-1) a(e—1)
Factor B(Treatment)
: T _2 : MSB:@ F:@
Regression SSB=b BXBX_ n.y c-l 1 MSEB
MSEB
Error SSEBZX’ X_Q’BX’BX c(a-1) MSEB:C(Q_l)
Total X'X‘”fz a.c-|

Table 2b Two-factor Analysis of Variance Table for the Extra sums of Squares due to reduced models and other statistics (Continuation)

Extra sum of squares

(ESS=SS(F)-SS(R) Degrees of freedom(DF) Extra mean sum of squares (EMSA) F-ratio
SSR MSR
ESR=SSR EMSR= F=—"""
ate=2 a+c-2 MSE
SSE
= -1)(c- EMSE=——"—
ESER=SSE (a-1)(c-1) (a=1)(c-D)
Factor A
ESSA=SSR-SSA ol Emsa=E534  EMS4
c-1 MSE
ESSEA
ESSEA=SSEA-SSE=ESSA c-1 EMSEA= o
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Table Continued
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Extra sum of squares

(ESS=SS(F)-SS(R) Degrees of freedom(DF) Extra mean sum of squares (EMSA) F-ratio
Factor B
ESSB=SSR-SSB a-l Emsp=L558 . EMSB
a—1 MSE
ESSEB=SSEB-SSE=ESSB a-l EMSEB :EiSjB
Y y-n 7 a.c-1

In fact an additional advantage of using dummy variable regression
models in two factor or multiple factor analysis of variance type
problems is that the method also more easily enables the estimation
of factor level effects separately of several factors on a specified
dependent or criterion variable. For example it enables the estimation
of the total or absolute effect, the partial regression coefficient or the
so called direct effect of a given independent variable here referred to
as the parent independent variable on the dependent variable through
the effect of its representative dummy variables as well as the indirect
effect of that parent independent variable through the mediation of
other independent variables in the model.® The total or absolute effect
of a parent independent variable on a dependent variable is estimated
as the simple regression coefficient of that independent variable
represented by codes assigned to its various categories when regressed
on the dependent variable. The direct effect of a parent independent
variable on a dependent variable is the weighted sum of the partial
regression coefficients or effects of the dummy variables representing
that parent independent variable on the dependent variable where the
weights are the simple regression coefficients of each representative
dummy variable regressing on the specified parent independent
variable represented by codes. The indirect effect of a given parent
independent variable on a dependent variable is then simply the
difference between its total and direct effects.®

Now the direct effect or partial regression coefficient of a given
parent independent variable on a dependent variable is obtained by
taking the partial derivative of the expected value of the corresponding
regression model with respect to that parent independent variable. For
example the direct effect of the parent independent variable ‘A’ say on
the dependent variable Y is obtained from equation 5 as

. dE(y) <! dE(x;.4) dE(x).7)
dir = = =20 S B, =
B dir a) Hﬂ’;,A 4, %ﬂz,z 4,
or
(26)

ooal dE(x;. )

B dir=Y ,[)’,;A.TZ'A
=1 A
dE(x,.
sincex g, Euz)
/ ’ dA

For all other independent variable ‘z’ in the model different from
‘A
dE(x,.,)
The weight %;4= d =
A

is estimated by fitting a simple regression

line of dummy variable. X, regressing on its parent independent
variable, A represented by codes and taking the derivative of its
expected value with respect to ‘A’. Thus, if the expected value of the

dummy variable x,. , regressing on its parent independent variable ‘A’
is expressed as E(XI;A )=ao+a,;A A

Then the derivative of this expected value with respect to A is
= 27

Hence using Equation 27 in Equation 26 gives the direct effect of
the parent independent variable A on the dependent variable Y as

a-1
B dir = % a1 f.

I=1
Whose sample estimate is from Equation 8

(28)

n a-1
ﬂAdl'r = bAdil” = Z Ot,;A.b,:A (29)
=1
The total or absolute effect of ‘A’ on ‘Y is estimated as the simple
regression coefficient or effect of the parent independent variable ‘A’

represented by codes on the dependent variable ‘Y~ as
B, =b
A A
Where b, is the estimated simple regression coefficient or effect

of ‘A’ on °Y’. The indirect effect of ‘A’ on ‘Y’ is then estimated as the
difference between b, and b ,dir , that is as

B indir =b indir =b —b dir (1))
A A A A

The total, direct and indirect effects of factor B are similarly
estimated.

(30)

lllustrative example |

The body weights of a random sample of 10 Broilers here termed “
subject or block of subjects” regarded as factor ‘A’ with ten levels and
types of weighing machine here termed “treatment” regarded as factor
‘B’ with five levels are shown below.

To set up a dummy variable regression model of body weight (y)
regressing on “subject or block of subjects” here termed factor ‘A’ with
ten levels and types of weighing machine, here termed “treatments”
treated as factor ‘B’ with five levels, we as usual represent factor
‘A’ with nine dummy variables of 1s and Os and factor ‘B’ with four
dummy variables of 1s and 0s, using Equation 1.
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The resulting design matrix ‘X’ for the full model is presented in
Table 3 where x;., represents level 1 or broiler No.1; X;.; represents
levels 9 or broiler No.9 and so on. Similarly x; , represents weighing
machine No.1 or treatment 1, x, , represents weighing machine No.2

or treatment 2 and so on, until x,., represents weighing machine No.4
or treatment 4.

y =2.302-0.593x  +3.175x +0.212x
i ll;A 12;A 13;

-1.219x +0.123x —2.185x
17;A 18;A 19;A

Now to estimate the total or absolute effect of type of weighing
machine (treatment), ‘B; or body weight y of broilers, we regress
on ‘B’ represented by codes to obtain fz=b;=0.054 . The weights
a;.p to be applied to Equation 6 to determine the direct effect are
obtained as explained above by taking the derivative with respect to
‘B’ of the expected value of the simple regression equation expressing
the dependence of the dummy variable x; of 1s and Os on its parent

—2.023x
4 i

—0.094x
;B

Copyright:
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Using the design matrix X of Table 3 for the full model of Equation
6 we obtain the fitted regression Equation expressing the dependent of
broiler body weight on, that is as a function of broiler (subject) treated
as factor A and type of weighing machine (treatment) treated as factor
B, both represented by dummy variables of 1s and Os, as

-1.491x  +0.352x
434 I5;4 lg:4

-0.235x  +2329x  —0.029x
1,:B I3;B Iy

;B
variable ‘B’ represented by codes yielding
a;,3=-0.20;0, ,=—0.10;a;,5=0.00 and a,,;=0.10 .

Using these values in Equation 6, we obtain with Equation 6 the
partial or the so called direct effect of type of weighing machine
(treatment) ‘B’ on body weight ‘y’ of broilers as

Bydir = b pdir = (=0.094x-0.2) +(~0.235x-0.10) + (0.00x2.329) + (=0.029x0.10) B pdir = b pdir = 0.0394

Hence the corresponding indirect effect is estimated using
Equation 6 as

Bgindir=bgindir=0.0146 .

The total or absolute, direct and indirect effects of the subjects or
block of subjects called factor A are similarly calculated.

It would for comparative purpose be instructive to also analyze
the data of example 1 using Friedman two-way analysis of variance
test by ranks.

2 12

132+332+272+40.52+36.52)

To do this we first rank for each broiler (subject) the body weight
as obtained using the five weighing machines (treatment) from the
smallest ranked ‘1’ to the largest ranked ‘5°. All tied body weights for
each broiler are as usual assigned their mean ranks. The results are
presented in Table 4.

Using the ranks shown in Table 4, we calculate the Friedmans test
statistic as

s R? —3r(c+l)—12(
-J -

Z =
rc(c+l)j:]

10)(5)(5+1)

Which with c-1=5-1=4 degrees of freedom is statistically significant

(13_99;4:13-277) , indicating that weighing machines probability differ in

Table 3 Design matrix for the sample data of example |

3(10)(5+1)=198.38-180=17.38

the values of body weights of broilers obtained using them. This is the
same conclusion that is also reached using the present method.

Body X4
Sino (1)  Weight I 2 3 4 5 6 7 8 9 I 2 3 4
(i)
| 19 I | 0 0 0 0 0 0 0 0 I 0 0 0
2 2 | | 0 0 0 0 0 0 0 0 0 | 0 0
3 21 I | 0 0 0 0 0 0 0 0 0 0 I 0
4 21 | | 0 0 0 0 0 0 0 0 0 0 0 |
5 19 I | 0 0 0 0 0 0 0 0 0 0 0 0
6 17 I 0 I 0 0 0 0 0 0 0 I 0 0 0
7 2 | 0 | 0 0 0 0 0 0 0 0 | 0 0
8 18 I 0 I 0 0 0 0 0 0 0 0 0 I 0
9 21 | 0 | 0 0 0 0 0 0 0 0 0 0 |

Citation: Okeh UM, Oyeka ICA. Dummy variable multiple regression analysis of matched samples. Biom Biostat Int J. 2016;3(5):158-165.

DOI: 10.15406/bbij.2016.03.00077


https://doi.org/10.15406/bbij.2016.03.00077

164

Copyright:

©2016 Okeh et al.

Dummy variable multiple regression analysis of matched samples

Table Continued

xlg;A

Body
weight
(i)

Sino (1)

10

1.9

22

12

1.9
22
22

13

14

15

1.8

16

22

17

2.1

18

19
20
21

2.1

1.9

1.8

22
23

1.9

22

24

2.1

25

1.8

26

27
28
29
30
31

2.1

2.1

2.1

1.8

2.1

32
33

1.9

22

34

35

1.7

36
37
38
39

2.1

1.9

1.9

2.1

40

1.8

41

1.9

42

43

2.1

44

2.1

45

46

2.1

47

48

2.1

49

2.1

50
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Table 4 Ranks of body weights of broilers in Table |

Copyright:
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Body Weight(Treatment)

Broiler(Subject) | 2 3 4 5

| 1.5 3 45 4.5 1.5
2 | 35 2 5 35
3 1.5 4 1.5 4 4
4 | 5 35 2 35
5 25 | 2.5 5 4

6 | 2 4 4 4

7 | 4 2 5 3

8 | 4.5 25 25 4.5
9 | 2 3 4.5 4.5
10 1.5 4 1.5 4 4
Total 13 33 27 40.5 36.5

Summary and conclusion

This paper has proposed the use of dummy variable multiple
regression methods for the analysis of several related or dependent
samples appropriate for random effects and mixed effects two factor
analysis of variance with one observation per cell or treatment
combination.

Using the extra sum of squares principle, the method developed
necessary sums of squares, degrees of freedom and the F-ratios
required in testing for the significance of factor level effects.

The method provided estimates of the overall and factor mean
effects comparable to those obtained with the two factor analysis of
variance method. In addition the method also provided estimates of the
total or absolute effects as well as the direct and indirect effects of the
independent variables or factors on the dependent or criterion variable
which are not ordinarily obtainable with the usual analysis of variance
techniques. The proposed method is illustrated with some sample data
and shown to compare favorably with the usual Friedmans two-way
analysis of variance test by ranks often used for the same purpose.
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