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Introduction
Dummy variable analysis of variance technique is an alternative 

approach to the non-parametric Friedman’s two-way analysis of 
variance test by ranks used to analyze sample data appropriate for 
use in parametric statistics for two factor random and mixed effects 
or analysis of variance models with one replication or observation per 
treatment combinations.1,2

To develop a non-parametric alternative method for the analysis 
of matched samples that are appropriate for use with two factor 
random and mixed-effects analysis of variance models with only one 
observation per cell or treatment combination, we may suppose that 
a researcher has collected a random sample of size ’a’ observations 
randomly drawn from a population ‘A’ of subjects or blocks of subjects 
exposed to or observed at some ‘c’ time periods, points in space, 
experimental conditions, tests, or treatments that are either fixed or 
randomly drawn from population B experimental conditions, points in 
time, tests or experiments comprising numerical measurements.

The proposed method

Let ijy  be the thi  observation drawn from population A, that is 
the observation on the thi  subject or block of subjects exposed to or 
observed at the thj  level of factor B that is thj  treatment or time 
period for i=1,2,…,a; j=1,2,…,c.

Now to set up a dummy variable multiple regression model for use 
with a two factor analysis of variance problem, we as usual present 
each factor or the so called parent independent variable with one 
dummy variable of 1s and 0s less than the number of its categories 
or levels.2 Thus factor A, namely subject or block of subjects with ‘a’ 
levels is represented with a-1 dummy variables of 1s and 0s, while 
factor B with c levels is represented by c-1 dummy variables of 1s 
and 0s.

Hence we may let

;
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Also let

if y is an observation or response at the jth levelij
of B treatment and ith level of factorx
A subject or block of subjects

otherwise

for j c and all i a


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
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(2)

Then the resulting dummy variable multiple regression model 
fitting or regressing the dependent or criterion variable ijy on the 
dummy variables representing factors A (subject or block of subjects) 
and B (treatment) is
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Abstract

This paper presents and discuses the use of dummy variable multiple regression 
techniques in the analysis of samples drawn from several related or dependent 
populations ordinarily appropriate for random effects and mixed effects derived from 
the two factor analysis of variances model with one observation per-cell or treatment 
combinations. Using the extra sum of squares principle the method develops necessary 
sums of squares, degrees of freedom and the F-ratios required to test the significance 
of factor level effects thereby helping to resolve the problem of one observation 
per treatment combination, encountered in the usual two factor analysis of variance 
models with one observation per cell. The method provides estimates of the overall 
and factor mean effects comparable to those obtained with the two factor analysis 
of variance methods. In addition, the method also provides estimates of the total or 
absolute effects as well as the direct and indirect effects of the independent variables 
or factors on the dependent or criterion variable which are not ordinarily obtainable 
with the usual analysis of variance techniques. The proposed method compares 
favorably with the usual Friedman’s two-way analysis of variance test by ranks using 
some sample data.
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                               0 1; 1; 2; 2; 1; 1; 1; 1; 2; 2; 1; 1;
...... ....

l A l A A l A A l A B l B B l B c B lc B i
y x x x x x x e

α α
β β β β β β β

− − − −
= + + + + + + + + +          (3)

For 1,2, ,n a.c l= … =  sample observations where ly  is the thl  
response or observation on the criterion or dependent variable; ls

x

are dummy variables of 1s and 0s representing levels of factors A 
and B; ls

β are partial regression coefficients and  ls
e are error terms, 

with ( ) 0iE e = ,for 1,2, ,n a.c l= … = . Note that since there are only one 
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observation per row by column, that is factor A (subject or block of 
subjects) by factor B (treatment) combination; for one to be able to 
have an estimate for the error sum of squares for the regression model, 
and hence be able to test desired hypotheses, it is necessary to assume 
that there are no factors A by B interactions or that such interactions 
have been removed by an appropriate data transformation. Also note 
that an advantage of the present method over the extended median 

test for dependent or matched samples and also over the Friedmans 
two –way analysis of variance test by ranks is that the problem of tied 
observations within subjects or blocks of subjects does not arise, and 
hence unlike in the other two non-parametric methods under reference 
there is no need to find ways to adjust for or break ties between scores 
within blocks of subjects.3 The expected or mean value of the criterion 
variable is from equation 3.

                         
( )

0 1; 1; 2; 2; 1; 1; 1; 1; 2; 2; 1;B 1;
.... ....l A l A A l A A l A B l B B l B c lc B

E y x x x x x x
α α

β β β β β β β
− − − −

= + + + + + + + +                            (4)

To find the expected or mean effect of any of the factors or parent 
independent variables, we set all the dummy variables representing 
that factor equal to 1 and all the other dummy variables found in 
equation 4 equal to 0.Thus for example the expected or mean effect 
or value of factor A (subject or block of subjects) on the dependent 
variable is obtained by setting ; ;1 0l A j Bx and x= =  in equation 4 for 

1,2, , 1; j 1,2, , 1l a c= … − = … − .

Similarly the expected or mean value of factor B (treatment) 

is obtained by setting ; ;1 0l B j Ax and x= =  in equation 4 for 

1,2, , 1; j 1,2, , 1l c a= … − = … −  thereby obtaining

          
( )

1 1

; 0 ; ; 0 ;
1 1

( )
a c

l A l A l B l B
l l

E y and E yβ β β β
− −

= =

= + = +∑ ∑                       (5)

Now the dummy variable multiple regression model of equation 3 
can equivalently be expressed in matrix form as

                                   
y X eβ= +                                                                      (6)

Where y  is an nx1 column vector of observations or scores on 
the dependent or criterion variables; X is an nxr design matrix of ‘r’ 
dummy variables of 1s and 0s; β  is an rx1 column vector of partial 
regression coefficients; and e  is on nx1 column vector of error terms, 
with ( ) 0E e =  where ‘n’=a.c observations and ‘n’=(a-1)+(c-1)=a+c-2 
dummy variables of 1s and 0s included in the regression model.

Similarly the expected value of y  is from equation 4.

                                       ( ) .E y X β=                                                                      (7)

Application of the usual methods of least squares to either equation 
3 or 6 yields an unbiased estimate of the regression parameter β  as 

                              ( ) 1ˆ b X X X yβ −′ ′= =                                                (8)

Where ( ) 1X X −′  is the inverse matrix of the non-singular variance-
covariance matrix X X′ . A hypothesis that is usually of research 
interest is that the regression model of either equation 3 or 6 fits, 
or equivalently that the independent variables or factors have no 
effects on the dependent or criterion variable, meaning that the partial 
regression coefficient is equal to zero stated symbolically that we have 
the null hypothesis.

                   0 1
: 0 : 0H versus Hβ β= ≠

	             
(9)

As in equation 3 this null hypothesis is tested using the usual 
F-test presented in an analysis of variance Table where the total sum 

of squares is calculated in the usual way as

                                       
2.SSTotal y y n y′= −

                                                       
(10)

With n-1=a.c-1 degrees of freedom where y  is the mean value of 
the dependent variables.

Similarly the treatment sum of squares in analysis of variance 
parlance which is the same as the regression sum of squares in 
regression models is calculated as

                      
2. . .SSTreatment SSR b X y n y′ ′= = −                               

(11)

With (a-1)+(c-1) =a+c-2 degrees of freedom. The error sum of 
squares SSE indicates the difference between the total sum of squares, 
SST and the sum of squares regression SSR; thus,

                 
.SSE SST SSR y y b X y′ ′ ′= − = −

                        
(12)

With ( )( . 1) ( 1) ( 1) ( 1)( 1)a c a c a c− − − + − = − −  degrees of freedom.

These results are summarized in an analysis of variance Table 
(Table 1)

The null hypotheses H0 of Equation 13 is tested using the F-ratio of 
Table 1. The null hypothesis is rejected at the if the calculated F-ratio 
is greater than the tabulated or critical F-ratio at a specified α -level of 
significance, otherwise the null hypothesis H0 is accepted. 

If the model fits, that if not all the elements of β  are equal to zero, 
that is if the null hypothesis H0 of equation 9 is rejected, then one may 
proceed to test further hypothesis concerning factor level effects, that 
is one may proceed to test the null hypothesis that factors A (subject or 
block of subjects) and B (treatment) separately have no effects on the 
dependent or criterion variable. In other words, the null hypotheses

	         

0 1

0 1

: 0 : 0

: 0 : 0

A A

B B

H versus H

and

H versus H

β β

β β

= ≠

= ≠
                 

(13, 14)

Where 
A B

andβ β  are respectively the (a-1) and (c-1) vectors of 
partial regression coefficients or effects of factor A (subject or block 
of subjects) and B (treatment) on the criterion or dependent variable. 
However a null hypothesis that is usually of greater interest here is 
that of equation 14, that is that treatments, points in time or space of 
tests or experiments do not have differential effects on subjects.
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Table 1 Two factor analysis of variance Table for the full model of Equation 6

Source of variation Sum of squares Degrees of freedom Mean sum of squares F-ratio

Regression(treatment) 2. . .SSR b X y n y′ ′= − a+c-2

Error .SSE y y b X y′ ′ ′= − (a-1)(c-1)

Total 2.SST y y n y′= − (a.c)-1

2
SSRMSR

a c
=

+ −

( 1)( 1)
SSEMSE

a c
=

− −

MSR
MSE

Now to obtain appropriate test statistics for use in testing these null 
hypothesis we apply the extra sum of squares principle to partition the 
treatment or regression sum of squares SSR into its two component 
parts namely, the sum of squares due to factor A (subject or block of 
subjects), SSA and the sum of squares due to factor B (treatment), 
SSB, to enable the calculation of the appropriate F-ratios. 

Now the nxr matrix X for the full model of equation 6 can be 
partitioned into its two component sub-matrices namely AX , an nx(a-
1) design matrix of a-1 dummy variables of 1s and 0s representing 
the included a-1 levels of factor A (subject or block of subjects) 
and BX , an nx(c-1) matrix of the c-1 dummy variables of 1s and 
0s representing the included c-1 levels of factor B (treatment). The 
partial regression coefficient b , estimated being an rx1 column vector 
of regression effects of equation 8 can also be partitioned into the 
corresponding partial regression coefficients estimated such as, Ab
,which is an (a-1)x1 column vector of partial regression coefficients 
or effects of factor A and Bb which is a (c-1)x1 column vector of the 
effects of factor B on the dependent variable. Hence the treatment sum 
of squares SST, that is the sum of squares regression SSR of equation 
11 can be equivalently expressed as 

( )

2 2

2 2

. ( ) . . ;

( ) . . . . . .A
A B A BA B

B

SSTreatment SSR b X y n y X b y n y

equivalently as

b
SSR X X y n y b X y b X y n y

b

′ ′ ′= = − = −

′ 
  ′ ′ ′ ′= − = + − 
                        	

						                

(15)

or equivalently

 ( ) ( )2 2 2 2. . . . . . . .A BA BSSR b X y n y b X y n y b X y n y n y′ ′ ′ ′ ′ ′= − = − + − +
          

(16)

Which when interpreted is the same as the statement

ˆ( )SSTreatment SSR SSA SSB SS y µ= = + + =                         (17)

Where SSR is the sum of squares of regression for the full model 
with r=a+c-2 degrees of freedom; SSA is the sum of squares due to 
factor A (subject or block of subject); with a-1 degrees of freedom; 
SSB is the sum of squares due to factor B (treatment) with c-1 degrees 
of freedom; and ˆ( )SS y µ=  is an additive correction factor due to 

mean effect. These sums of squares namely SSR, SSA and SSB are 
obtained by separately fitting the full model of equations 6 with X, 
and the reduced regression models of A BX and X again separately on 
the criterion or dependent variable y . 

Now if the full model of equation 6 fits, that is if the null hypothesis of 
equation 9 is rejected, then the additional null hypotheses of equations 
13 and 14 may be tested using the extra sum of squares principle [4,5]. 
If we denote the sums of squares due to the full model of equation 6 
and the reduced models due to the fitting of the criterion variables 

y  to any of the reduced design matrices A BX and X  by SS(F) and 

SS(R) respectively then following the extra sum of squares principle4,5 
the extra sum of squares due to a given factor is calculated as

		  ( ) ( ) ESS SS F SS R= − 		          (18)

With degrees of freedom obtained as the difference between the 
degrees of freedom of SS(F) and SS(R); that is as Edf=df(F)-df(R). 
Thus the extra sums of squares for factors A (subject or block of 
subjects) and B (treatment) are obtained as follows respectively

	            ;ESSA SSR SSA ESSB SSR SSB= − = −                                                 (19)

With ( 1) ( 1) ( 1) 1a c a b− + − − − = −  degrees of freedom and 

( 1) ( 1) ( 1) 1a b b a− + − − − = −  degrees of freedom.

Note that since each of the reduced models and the full model 
have the same total sum of squares SST, the extra sum of squares 
may alternatively be obtained as the difference between the 
error sum of squares of each reduced model and the error sum of 
squares of the full model. In other words, the extra sum of squares 
is equivalently calculated as 

( ) ( ) ( ) ( ) ( ) ( )ESS SS F SS R SST SS F SST SS R SSE R SSE F= − = − − − = −  		
						                 (20)

With degrees of freedom similarly obtained. Thus the extra sum 
of squares due to factors A (subject or block of subjects) and B 
(treatment) are alternatively obtained as follows respectively. 

		         ESSA SSEA SSE= −                                                                             (21)

With c-1 and a-1 degrees of freedom. Where SSR and SSE are 
respectively the regression sum of squares and the error sum of 
squares for the full model and SSEA and SSEB are respectively the 
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error sums of squares for the reduced models for factors A and B. The 
null hypotheses of equations 13 and 14 are tested using the F-ratios 

		             

MESA
FA MSE

=
                                                                                     

(22)

With a-1 and (a-1)(c-1) degrees of freedom where

		            1
ESSA

MESA
c

=
−

                                                                             (23)

Is the mean extra sum of squares due to factor A (subject or block 
of subjects) and

		           

MESB
FB MSE

=
                                                                                

(24)

With a-1 and (a-1)(c-1) degrees of freedom where

		      1
ESSB

MESB
a

=
−

 		                             (25)

Is the mean extra sum of squares due to factor B (treatment).These 
results are summarized in Table 2a which for ease of presentation also 
includes the sum of squares and other values of Table 1 for the full 
models.

If the various F–ratios and in particular the F-ratios based on 
the extra sums of squares of Table 2b indicate that the independent 
variables or factor levels have differential effects on the response, 
dependent, or criterion variable, that is if the null hypotheses of either 
equation 13 or 14 or both are rejected, then one may proceed further 
to estimate desired factor level effects and test hypotheses concerning 
them. 

Table 2a Table showing two factor Analysis of Variance for Sums of Squares for the full model and due to reduced models and other statistics

Source of variation Sum of squares (SS) Degrees of 
freedom(DF)

Mean sum of 
squares(MS) F-ratio

Full model

Regression 2.SSR b X y n y′ ′= − a+c-2

Error SSE y y b X y′ ′ ′= − (a-1)(c-1)

Factor A (Subjects on block of subjects)

Regression 2.SSA b X y n yAA′ ′= − a-1

Error SSEA y y b X yAA′ ′ ′= − a(c-1)

Factor B(Treatment)

Regression c-1

Error SSEB y y b X yBB′ ′ ′= − c(a-1)

Total 2.y y n y′ − a.c-1

2
SSRMSR

a c
=

+ −

( 1)( 1)
SSEMSE

a c
=

− −

MSRF
SSR

=

1
SSAMSA
a

=
−

( 1)
MSAMSEA

a c
=

−

1
SSBMSB
c

=
−

( 1)
MSEBMSEB
c a

=
−

MSBF
MSEB

=2.SSB b X y n yB B′ ′= −

Table 2b Two-factor Analysis of Variance Table for the Extra sums of Squares due to reduced models and other statistics (Continuation)

Extra sum of squares 
(ESS=SS(F)-SS(R) Degrees of freedom(DF) Extra mean sum of squares (EMSA) F-ratio

ESR=SSR 2a c+ −

ESER=SSE (a-1)(c-1)

Factor A

ESSA=SSR-SSA c-1

ESSEA=SSEA-SSE=ESSA c-1

2
SSREMSR

a c
=

+ −
MSRF
MSE

=

( 1)( 1)
SSEEMSE

a c
=

− −

1
ESSAEMSA
c

=
− A

EMSAF
MSE

=

1
ESSEAEMSEA

c
=

−
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Extra sum of squares 
(ESS=SS(F)-SS(R) Degrees of freedom(DF) Extra mean sum of squares (EMSA) F-ratio

Factor B

ESSB=SSR-SSB a-1

ESSEB=SSEB-SSE=ESSB a-1

a.c-1

Table Continued

1
ESSBEMSB
a

=
− B

EMSBF
MSE

=

1
ESSEBEMSEB

a
=

−

2.y y n y′ −

In fact an additional advantage of using dummy variable regression 
models in two factor or multiple factor analysis of variance type 
problems is that the method also more easily enables the estimation 
of factor level effects separately of several factors on a specified 
dependent or criterion variable. For example it enables the estimation 
of the total or absolute effect, the partial regression coefficient or the 
so called direct effect of a given independent variable here referred to 
as the parent independent variable on the dependent variable through 
the effect of its representative dummy variables as well as the indirect 
effect of that parent independent variable through the mediation of 
other independent variables in the model.6 The total or absolute effect 
of a parent independent variable on a dependent variable is estimated 
as the simple regression coefficient of that independent variable 
represented by codes assigned to its various categories when regressed 
on the dependent variable. The direct effect of a parent independent 
variable on a dependent variable is the weighted sum of the partial 
regression coefficients or effects of the dummy variables representing 
that parent independent variable on the dependent variable where the 
weights are the simple regression coefficients of each representative 
dummy variable regressing on the specified parent independent 
variable represented by codes. The indirect effect of a given parent 
independent variable on a dependent variable is then simply the 
difference between its total and direct effects.6

Now the direct effect or partial regression coefficient of a given 
parent independent variable on a dependent variable is obtained by 
taking the partial derivative of the expected value of the corresponding 
regression model with respect to that parent independent variable. For 
example the direct effect of the parent independent variable ‘A’ say on 
the dependent variable Y is obtained from equation 5 as 

1
; ;

; ;
1

1
;

;
1

;
;

( ) ( )( )
. .

( )
.

( )
sin . 0

a
l A l Zi

l A l ZA A A Al l

a
l A

A l A
Al

l Z
l Z

Al

dE x dE xdE y
dir

d d d

or

dE x
dir

d

dE x
ce

d

β β β

β β

β

−

=

−

=

∑= = +∑

=∑

∑ = 	      

(26)

For all other independent variable ‘z’ in the model different from 
‘A’.

The weight 
;

;
( )l A

l A
A

dE x
d

α =  is estimated by fitting a simple regression 

line of dummy variable. ;l Ax regressing on its parent independent 
variable, A represented by codes and taking the derivative of its 
expected value with respect to ‘A’. Thus, if the expected value of the 

dummy variable ;l Ax regressing on its parent independent variable ‘A’ 

is expressed as ( ); 0 ; .l A l AE x Aα α= +

Then the derivative of this expected value with respect to A is

		        

( );
;

dE xl A
l AdA

α=
                                                                    

(27)

Hence using Equation 27 in Equation 26 gives the direct effect of 
the parent independent variable A on the dependent variable Y as

		
1

; ;
1

.
a

l A l AA
l

dirβ α β
−

=

∑=

		              
(28)

Whose sample estimate is from Equation 8

		

1

; ;
1

ˆ .
a

l A l AA A
l

dir b dir bβ α
−

=

∑= =

                                                          
(29)

The total or absolute effect of ‘A’ on ‘Y’ is estimated as the simple 
regression coefficient or effect of the parent independent variable ‘A’ 
represented by codes on the dependent variable ‘Y’ as

			 
ˆ

A A
bβ =

                                                                                   (30)

Where Ab  is the estimated simple regression coefficient or effect 
of ‘A’ on ‘Y’. The indirect effect of ‘A’ on ‘Y’ is then estimated as the 
difference between Ab and Ab dir , that is as

		  ˆ
A A A A
indir b indir b b dirβ = = −                      (31)

The total, direct and indirect effects of factor B are similarly 
estimated.

Illustrative example 1
The body weights of a random sample of 10 Broilers here termed “ 

subject or block of subjects” regarded as factor ‘A’ with ten levels and 
types of weighing machine here termed “treatment” regarded as factor 
‘B’ with five levels are shown below.

To set up a dummy variable regression model of body weight (y) 
regressing on “subject or block of subjects” here termed factor ‘A’ with 
ten levels and types of weighing machine, here termed “treatments” 
treated as factor ‘B’ with five levels, we as usual represent factor 
‘A’ with nine dummy variables of 1s and 0s and factor ‘B’ with four 
dummy variables of 1s and 0s, using Equation 1.
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The resulting design matrix ‘X’ for the full model is presented in 
Table 3 where 1; Ax  represents level 1 or broiler No.1; 1;Bx  represents 
levels 9 or broiler No.9 and so on. Similarly 1;Bx  represents weighing 
machine No.1 or treatment 1, 2;Bx  represents weighing machine No.2 
or treatment 2 and so on, until 4;Bx represents weighing machine No.4 
or treatment 4.

Using the design matrix X of Table 3 for the full model of Equation 
6 we obtain the fitted regression Equation expressing the dependent of 
broiler body weight on, that is as a function of broiler (subject) treated 
as factor A and type of weighing machine (treatment) treated as factor 
B, both represented by dummy variables of 1s and 0s, as 

             

; ; ; ; ; ;1 2 3 4 5 6

; ; ; ; ; ; ;7 8 9 1 2 3 4

ˆ 2.302 0.593 3.175 0.212 2.023 1.491 0.352

1.219 0.123 2.185 0.094 0.235 2.329 0.029

l l A l A l A l A l A l A

l A l A l A l B l B l B l B

y x x x x x x

x x x x x x x

= − + + − − +

− + − − − + −

Now to estimate the total or absolute effect of type of weighing 
machine (treatment), ‘B; or body weight y of broilers, we regress iy  
on ‘B’ represented by codes to obtain ˆ 0.054B Bbβ = = . The weights 

;j Bα  to be applied to Equation 6 to determine the direct effect are 
obtained as explained above by taking the derivative with respect to 
‘B’ of the expected value of the simple regression equation expressing 
the dependence of the dummy variable ijx  of 1s and 0s on its parent 

variable ‘B’ represented by codes yielding

1; 2; 3; 4;0.20; 0.10; 0.00 0.10B B B Bandα α α α=− =− = =  .

Using these values in Equation 6, we obtain with Equation 6 the 
partial or the so called direct effect of type of weighing machine 
(treatment) ‘B’ on body weight ‘y’ of broilers as 

		
( ) ( ) ( ) ( )ˆ ˆ0.094 0.2 0.235 0.10 0.00 2.329 0.029 0.10 0.0394dir b dir dir b dirB B B Bβ β= = − ×− + − ×− + × + − × = =

Hence the corresponding indirect effect is estimated using 
Equation 6 as

ˆ 0.0146B Bindir b indirβ = = .

The total or absolute, direct and indirect effects of the subjects or 
block of subjects called factor A are similarly calculated.

It would for comparative purpose be instructive to also analyze 
the data of example 1 using Friedman two-way analysis of variance 
test by ranks.

To do this we first rank for each broiler (subject) the body weight 
as obtained using the five weighing machines (treatment) from the 
smallest ranked ‘1’ to the largest ranked ‘5’. All tied body weights for 
each broiler are as usual assigned their mean ranks. The results are 
presented in Table 4.

Using the ranks shown in Table 4, we calculate the Friedmans test 
statistic as

		

( )2 2 2 2 2

2 2
.

1

12 13 33 27 40.5 36.512 3 ( 1) 3(10)(5 1) 198.38 180 17.38
( 1) (10)(5)(5 1)

c

j
j

R r c
rc c

χ
=

+ + + +
= − + = − + = − =∑

+ +

Which with c-1=5-1=4 degrees of freedom is statistically significant 
( )2 13.2770.99;4χ = , indicating that weighing machines probability differ in 

the values of body weights of broilers obtained using them. This is the 
same conclusion that is also reached using the present method.

Table 3 Design matrix for the sample data of example 1

S/no ( l )

Body 
weight 
(yi) 1 2 3 4 5 6 7 8 9 1 2 3 4

1 1.9 1 1 0 0 0 0 0 0 0 0 1 0 0 0

2 2 1 1 0 0 0 0 0 0 0 0 0 1 0 0

3 2.1 1 1 0 0 0 0 0 0 0 0 0 0 1 0

4 2.1 1 1 0 0 0 0 0 0 0 0 0 0 0 1

5 1.9 1 1 0 0 0 0 0 0 0 0 0 0 0 0

6 1.7 1 0 1 0 0 0 0 0 0 0 1 0 0 0

7 2 1 0 1 0 0 0 0 0 0 0 0 1 0 0

8 1.8 1 0 1 0 0 0 0 0 0 0 0 0 1 0

9 2.1 1 0 1 0 0 0 0 0 0 0 0 0 0 1

;8l Ax
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S/no ( l )

Body 
weight 
(yi) 1 2 3 4 5 6 7 8 9 1 2 3 4

10 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0

11 1.9 1 0 0 1 0 0 0 0 0 0 1 0 0 0

12 2.2 1 0 0 1 0 0 0 0 0 0 0 1 0 0

13 1.9 1 0 0 1 0 0 0 0 0 0 0 0 1 0

14 2.2 1 0 0 1 0 0 0 0 0 0 0 0 0 1

15 2.2 1 0 0 1 0 0 0 0 0 0 0 0 0 0

16 1.8 1 0 0 0 1 0 0 0 0 0 1 0 0 0

17 2.2 1 0 0 0 1 0 0 0 0 0 0 1 0 0

18 2.1 1 0 0 0 1 0 0 0 0 0 0 0 1 0

19 2 1 0 0 0 1 0 0 0 0 0 0 0 0 1

20 2.1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

21 1.9 1 0 0 0 0 1 0 0 0 0 1 0 0 0

22 1.8 1 0 0 0 0 1 0 0 0 0 0 1 0 0

23 1.9 1 0 0 0 0 1 0 0 0 0 0 0 1 0

24 2.2 1 0 0 0 0 1 0 0 0 0 0 0 0 1

25 2.1 1 0 0 0 0 1 0 0 0 0 0 0 0 0

26 1.8 1 0 0 0 0 0 1 0 0 0 1 0 0 0

27 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0

28 2.1 1 0 0 0 0 0 1 0 0 0 0 1 0 0

29 2.1 1 0 0 0 0 0 1 0 0 0 0 0 1 0

30 2.1 1 0 0 0 0 0 1 0 0 0 0 0 0 1

31 1.8 1 0 0 0 0 0 0 1 0 0 1 0 0 0

32 2.1 1 0 0 0 0 0 0 1 0 0 1 1 0 0

33 1.9 1 0 0 0 0 0 0 1 0 0 0 0 1 0

34 2.2 1 0 0 0 0 0 0 1 0 0 0 0 0 1

35 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0

36 1.7 1 0 0 0 0 0 0 0 1 0 1 0 0 0

37 2.1 1 0 0 0 0 0 0 0 1 0 0 1 0 0

38 1.9 1 0 0 0 0 0 0 0 1 0 0 0 1 0

39 1.9 1 0 0 0 0 0 0 0 1 0 0 0 0 1

40 2.1 1 0 0 0 0 0 0 0 1 0 0 0 0 0

41 1.8 1 0 0 0 0 0 0 0 0 1 1 0 0 0

42 1.9 1 0 0 0 0 0 0 0 0 1 0 1 0 0

43 2 1 0 0 0 0 0 0 0 0 1 0 0 1 0

44 2.1 1 0 0 0 0 0 0 0 0 1 0 0 0 1

45 2.1 1 0 0 0 0 0 0 0 0 1 0 0 0 0

46 2 1 0 0 0 0 0 0 0 0 0 1 0 0 0

47 2.1 1 0 0 0 0 0 0 0 0 0 0 1 0 0

48 2 1 0 0 0 0 0 0 0 0 0 0 0 1 0

49 2.1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

50 2.1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

;8l Ax
Table Continued

https://doi.org/10.15406/bbij.2016.03.00077


Dummy variable multiple regression analysis of matched samples 165
Copyright:

©2016 Okeh et al.

Citation: Okeh UM, Oyeka ICA. Dummy variable multiple regression analysis of matched samples. Biom Biostat Int J. 2016;3(5):158‒165. 
DOI: 10.15406/bbij.2016.03.00077

Table 4 Ranks of body weights of broilers in Table 1

Body Weight(Treatment)

Broiler(Subject) 1 2 3 4 5

1 1.5 3 4.5 4.5 1.5

2 1 3.5 2 5 3.5

3 1.5 4 1.5 4 4

4 1 5 3.5 2 3.5

5 2.5 1 2.5 5 4

6 1 2 4 4 4

7 1 4 2 5 3

8 1 4.5 2.5 2.5 4.5

9 1 2 3 4.5 4.5

10 1.5 4 1.5 4 4

Total 13 33 27 40.5 36.5

Summary and conclusion
This paper has proposed the use of dummy variable multiple 

regression methods for the analysis of several related or dependent 
samples appropriate for random effects and mixed effects two factor 
analysis of variance with one observation per cell or treatment 
combination.

Using the extra sum of squares principle, the method developed 
necessary sums of squares, degrees of freedom and the F-ratios 
required in testing for the significance of factor level effects.

The method provided estimates of the overall and factor mean 
effects comparable to those obtained with the two factor analysis of 
variance method. In addition the method also provided estimates of the 
total or absolute effects as well as the direct and indirect effects of the 
independent variables or factors on the dependent or criterion variable 
which are not ordinarily obtainable with the usual analysis of variance 
techniques. The proposed method is illustrated with some sample data 
and shown to compare favorably with the usual Friedmans two-way 
analysis of variance test by ranks often used for the same purpose.

Acknowledgement
None.

Conflict of interest
None.

References
1.	 Oyeka ICA. Ties Adjusted Two way Analysis of Variance tests with 

unequal observations per cell. Science Journal of Mathematics & 
Statistics. 2013;(2013):1–6.

2.	 Boyle, Richard P. Path Analysis and Ordinal Data. American Journal of 
Sociology. 1970;75(4):461–480.

3.	 Oyeka ICA, Afuecheta EO, Ebuh GU, et al.  Partitioning the total 
chi-square for matched Dichotomous Data. International Journal of 
Mathematics and Computations. 2012;16(3):41–50. 

4.	 Draper NR, Smith H. Applied Regression Analysis. John Wiley & sons, 
New York, USA. 1966.

5.	 Neter J, Wasserman W, Christopher N. Applied Linear Statistical Models. 
New York, USA. 1974.

6.	 Wright, Sewall. The Methods of Path Coefficients. The Annals of 
Mathematical Statistics. 1934;5(3):161–215.

https://doi.org/10.15406/bbij.2016.03.00077
http://www.sjpub.org/sjms/sjms-104.pdf
http://www.sjpub.org/sjms/sjms-104.pdf
http://www.sjpub.org/sjms/sjms-104.pdf
http://www.ceserp.com/cp-jour/index.php?journal=ijmc&page=article&op=view&path%5b%5d=1332
http://www.ceserp.com/cp-jour/index.php?journal=ijmc&page=article&op=view&path%5b%5d=1332
http://www.ceserp.com/cp-jour/index.php?journal=ijmc&page=article&op=view&path%5b%5d=1332
http://www.ssc.wisc.edu/soc/class/soc952/Wright/Wright_The%20Method%20of%20Path%20Coefficients.pdf
http://www.ssc.wisc.edu/soc/class/soc952/Wright/Wright_The%20Method%20of%20Path%20Coefficients.pdf

	Title
	Abstract
	Keywords
	Introduction
	The proposed method 

	Illustrative example 1 
	Summary and conclusion 
	Acknowledgement
	Conflict of interest 
	References
	Table 1
	Table 2a
	Table 2b
	Table 3 
	Table 4

